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Abstract

Computed Tomography (CT) is an imaging technique aims to observe
the internal structure of an object using its projections. The projection
data is generated using different modalities such as x-ray photon radiation
in x-ray CT and positron radiation of a radioactive materials in Positron
Emission Tomography (PET) and Single Photon Emission Computed To-
mography (SPECT). The use of x-ray CT in medical imaging had been
an essential tool for diagnosis and therapy in most of hospitals worldwide.
In this paper, we consider a traditional problem in CT imaging known
as the interior tomography. In this problem, measured projection data
is truncated such that it is limited to the rays passing through a limited
region located completely inside the object. We review the recent develop-
ments for this problem and present a new Bayesian approach for iterative
reconstruction in interior tomography.

1 Introduction
In computed tomography (CT), the interior tomography (also called local to-
mography) is defined as the reconstruction of a region of interest (ROI) that is
located completely inside the scanmed object from limited projection data [1]. In
this problem all projection rays are truncated such that left and right portions
of the projection data are missing for all view angles. Two CT imaging config-
urations for full scan and ROI scan corresponding to the interior problem are
shown in figure 1. It was believed for a long time that the solution of the interior
problem is not unique even if the exact information on the object support (OS)
is known [1]. The term object support refer to the contour line representing the
object exact boundaries. As shown in figure 2 and the corresponding profiles
in figure 3, when the projection data is truncated corresponding to the inte-
rior problem, the conventional Filtered Backprojection (FBP) reconstruction
algorithm suffers from DC-shift and low-frequency artifacts. These artifacts
may cause incorrect diagnosis in some clinical applications. Though the interior
problem has been a topic in image reconstruction research for a long time (for
example, see [2-6] $)$ , it is still a challenging problem. Recently, investigating

数理解析研究所講究録
第 1676巻 2010年 145-156 145



(a) (b)

Figure 1: CT imaging configurations for (a) whole object imaging and (b) inte-
rior ROI imaging.

interior problem becomes a hot topic of research and new findings have been
discovered. New discovery in interior problem has a several potential useful
usage in clinical applications. For example, reducing the patient dose by fo-
cusing the radiation rays into a limited ROI in x-ray CT imaging, magnifying
imaging without a requirement for hardware upgrade and suppressing scattering
artifacts. In this paper, we overview the recent advances in finding the exact
solution to the interior problem and present preliminary results obtained from
the current research.

2 Recent Developments

2.1 Differentiated Backprojection (DBP)

Based on the concept of analytical reconstruction, it had been believed for a
long time that ROI reconstruction, even for a small region, requires all projec-
tion rays passing through the whole object. However, the developed theories
based on Differentiated Backprojection (DBP) [7] and Backprojection-Filtration
(BPF) [8] succeeded in reducing the required set of projection rays for exact and
stable ROI reconstruction. In these studies, an ROI can be reconstructed us-
ing the $twc\succ step$ Hilbert method if the ROI lies within the union of lines that
do not contact the remaining portion of the object (i.e. ROI should includes
both opposite boundaries of the object) as shown in figure 4(a). These results,
obtained from analytical analysis, was also confirmed with a study based on
iterative reconstruction using Maximum Likelihood Expectation-Maximization
(ML-EM) algorithm in [9]. Later on, the sufficient conditions for accurate ROI
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Figure 2: Reconstructed images of the Shepp-Logan phantom (high contrast).
(a) The original phantom, the reconstructed images using FBP algorithm with
(b) full scan and (c) interior ROI scan. Gray scale is [0.10.4].

Phantom Full scan ROI scan

Figure 3: The vertical (left) and horizontal (right) profiles corresponding to the
white line segments in figure 2.

reconstruction is relaxed in [10]. It is proved that the accurate reconstruction
can be achieved by selecting the ROI such that it includes a single boundary of
the object given that compact OS is well-defined (figure $4(b)$ ). It became clear
that the position of the ROI is an important factor to determine the possibility
of accurate reconstruction.

As detailed in [10], by selecting the ROI such that it includes a limited region
outside the compact OS (where the intensity values is a priori known to be zero),
the accurate ROI reconstruction is possible. These results was extended to solve
the interior problem by assuming that the a pnon knowledge is available inside
the ROI in [11-13]. This setup is shown in figure 4(c). Recently, the same
approach was also reported to solve interior problem in SPECT imaging [14].

Since the analytical inversion formula for the imaging setups shown in figure
4(b) and (c) is not known yet, this theory was evaluated by using the DBP
method with the projection onto convex sets (POCS) algorithm [10-13]. The
same results can be obtain by using different iterative methods such as ML-EM
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Figure 4: Definition of ROI for accurate reconstruction in the framework of
DBP (a) Noo et al. 2004 and Pan et al. 2005, (b) Defrise et al. 2006 and (c)
Kudo et al. 2008, Courdurier et al. 2008 and Ye et al. 2007.

reconstruction algorithm.
To illustrate the results achieved in [11-13] we apply a computer simulation

using modified version of FORBILD thorax phantom. We select ROI as internal
region covering the cardiac and assume that a priori knowledge corresponding
to a small region located inside both the lung and ROI is available and OS is
defined as the region corresponding to the 120% larger than the exact phantom.
By using the ML-EM algorithm with 100 iterations, a significant improvement
is recognized as shown in figure 5 and the corresponding profiles in figure 6.

2.2 Compressed Sensing (CS)
The theory of compressed sensing (also called compressive sensing) demonstrate
that it is possible to reconstruct an accurate images from highly undersampled
projection data [15, 16]. The main idea is to include a distance function con-
sisting of $I_{1}/\ell_{0}$ norm of the reconstructed image into the cost function for image
reconstruction. This technique based on the fact that $\ell_{p}$ norm $(0\leq p\leq 1)$ is
effective in finding the sparse solution compared to the conventional $\ell_{2}$ norm.
The image sparsity is enforced by transforming the image into an appropriate
domain such as discrete gradient or wavelet transforms. A recent study inves-
tigates solving the interior problem using the concept of compressed sensing is
in [17]. It is stated that, the exact reconstruction of the interior ROI is possible
by using Total Variation (TV) minimization assuming that the intensity values
within each region (organ) is absolutely uniform.

2.3 Further extension
Recalling from the summery above, the exact reconstruction of interior ROI is
hold if a compact OS of the object is defined and a prion information for a
small subregion is available. Rom practical point of view, the accurate a pnori
knowledge of internal structure is not easy to be achieved. In some limited
clinical applications, the a pnon information can be provided using known
anatomical structure such as air in a trachea or dense bone. Also, the a prion
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Figure 5: Reconstructed images of $mo$ dified FORBILD thorax phantom. (a)
Thorax phantom, object support, a priori known sub-regiOn and interior ROI,
reconstructed images by using ML-EM algorithm (b) without a pnori knowledge
and (c) with a prion knowledge corresponding to the small dashed circle in (a).
Gray scale is [0.941.1].
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Figure 6: Profiles corresponding to the white line segments in figure 5.

information can be provided using a previous scan of the same patient. However,
such techniques can lose their merits due to the registration errors. The point
to be investigated here is, how to obtain an internal a pnon information and
at the same time avoid the registrations errors. In the following section, we will
explain the details of the current research investigating this problem.
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Figure 7: Reconstructed images of the disk phantom. (a) Phantom and interior
ROI, reconstructed images with (b) OS-EM method, (c) R-MAP method with
a prion knowledge corresponding region $A,$ $(d)$ R-MAP method with a prion
knowledge corresponding region $B,$ $(e)$ same as (d) with 300 iterations. Gray
scale is [0.91.1]

3 On going research

3.1 Bayesian framework for CT reconstruction
Recently, we have developed the R-MAP (Reference-MAP) and the I-MAP
(Intensity-MAP) methods for image reconstruction from sparse projection data
[18]. In these methods, the image reconstruction cost function includes two
terms. The first term is the log-likelihood function and the second term is a
distance function between the reconstructed image and a set of a pnon known
image/intensity values. In R-MAP method, the formulation of cost function is
as follow

$f_{\beta}(\vec{x})=$
$\vee L(\vec{x})$

$+\beta$
$\sim^{f}D(\tilde{x})\vec{x}^{re})$ (1)

negative log-likelihood function distance function

$L( \vec{x})=\sum_{i=1}^{m}[\sum_{j=1}^{n}a_{ij}x_{j}-y_{i}\log(\sum_{j=1}^{n}a_{ij}x_{j})]$ (2)

$D( \tilde{x}\rangle x^{wef})=\sum_{j=1}^{n}d(x_{j}, x_{j}^{ref})$ and $d(a, b)=|a-b|$ (3)
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where $\vec{x}=(x_{1}, \ldots, x_{n})$ is the image vector, $\vec{y}=(y_{1\}}\ldots , y_{m})$ is the projection
data, $A=\{a_{ij}\}$ is the $m\cross n$ system matrix and $\vec{x}^{ref}=$ $(x_{1}^{ref}, \ldots , x_{n}^{ref})$ is $a$

prion known image (reference image) that contain regions expected in prior
to imaging. The idea of R-MAP method was first disclosed in [19] to enhance
PET/SPECT imaging using anatomical information extracted from MRI$/CT$

scans. By using R-MAP method, we assume that the a pnori information is
available in the form of reference image. However, in I-MAP method, we relax
this condition and the required a pnori information is only a set of intensity
values.

The implementation of the R-MAP and I-MAP methods is done by repeat-
ing the following two sub-steps. The first sub-step is the normal image update
using the ML-EM algorithm. The second sub-step is a thresholding operations
applied to the image obtained from the first sub-step. The thresholding function
is designed such that it estimate the correct intensity values using the a priori
information. The R-MAP method is summarized as follow

[STEP 1] (Preprocessing) Prepare the reference image $x^{\sim ef}$ .
[STEP 2] (Initializarion) Set the initial image as $\tilde{x}^{(0)}=x^{\neg ef}$ . Set the iteration
number as $karrow 0$ .
[STEP 3-1] (EM-update) Compute the image vector $\vec{p}$ by

$p_{j}= \frac{x_{j}^{(k)}}{\sum_{i=1}^{m}a_{ij}}\sum_{i=1}^{m}\frac{a_{ij}y_{i}}{\sum_{j=1}^{n}a_{ij}x_{j}^{(k)}}$ (4)

[STEP 3-2] (Intensity thresholding) Compute the image vector $\overline{q}$ by

$q_{j}=\{\begin{array}{ll}p_{j}-\delta_{j} p_{j}>(x_{j}^{ref}+\delta_{j})p_{j}+\delta_{j} p_{j}<(x_{j}^{ref}-\delta_{j}) \delta_{j}=\Gamma_{\mathfrak{i}}^{\beta x}a_{tj}=x_{j}^{ref} (elsewhere)\end{array}$ (5)

[STEP 3-3] (Image update) Compute $\overline{x}^{(k+1)}$ by $x_{j}^{(k+1)}= \max(q_{j}, \epsilon)$ , where
$\epsilon>0$ is a small number to ensure the positivity of pixel value.
[STEP 4] (Convergence check) Increament the iteration number as $karrow k+1$

and go to [STEP 3-1] until reaching to a stopping criteria.

3.2 Preliminary results
In the current research, we investigate the use of R-MAP and I-MAP methods
for solving the interior problem. Here, we discuss the results obtained from a
preliminary studies of using R-MAP method. We assume that a single intensity
value $(\mu)$ inside the ROI is a pnon known but the positions of pixels having
this intensity value are unknown. It is clear that this a pnon information is
easy to be obtained $\wedge ompared$ to those in the previous work [11-13]. In the
previous studies, the interior sub-region should be defined completely (pixel
value and pixel position) but in the proposed method, a single intensity value
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Figure 8: Central profiles corresponding to images in Fig. 7.

$(\mu)$ is the only required. We proposed formulating the reference image $x^{\sim ef}$ for
the R-MAP method such that

$x_{j}^{ref}=\{\begin{array}{ll}\mu x_{j}^{ref}\in ROI0 (elsewhere)\end{array}$ (6)

We evaluate the effect of using R-MAP method by a set of simulation studies.
In the first simulation we use a uniform disk phantom with hot/cold spots. The
image size was $256\cross 256$ and the projection data computed with parallel-beam
geometry over 256 bins and 256 angles (over 180) then truncated such that
only projection rays passing through the ROI are included. Reconstruction is
done using OS-EM and ordered subsets version of R-MAP method with 100
iterations and 4 subsets. In R-MAP method, we assume that the OS is a pnori
known as the region of 120% larger than the exact object. In this study, we use
two different values for $\mu$ corresponding to a large region (Region $A$ : background
region with $\mu=1.0$ ) and a small region (Region $B$ : cold spot with $\mu=0.9$).
Reconstructed images are shown in figure 7 and corresponding central profiles
are shown in figure 8.

Another simulation study was done using modified FORBILD thorax phan-
tom. We investigate the effect of enforcing a compact OS with OS-EM algorithm
and also we evaluate the using R-MAP method with a pnon known intensity
values corresponding to large and small regions (Region A and Region $B$ in
figure $9(a))$ . The image size was $512\cross 512$ and the projection data computed
with parallel-beam geometry over 512 bins and 512 angles (over 180’). Other
simulation setups remains similar to those of the previous study. Reconstructed
images are shown in figure 9.

Finally, we evaluate the proposed method using real CT data corresponding
to a single slice of head imaging obtained from Toshiba CT scanner. Projection
data was measured using the fan-beam geometry with 616 views (over 360’)
and 512 detector channels. The projection data was rebinned into parallel-
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Figure 9: Reconstructed images of the modified FORBILD thorax phantom.
(a) Phantom, interior ROI and regions used to computed reference images for
R-MAP method, reconstructed images with (b) OS-EM method with unknown
OS, (c) OS-EM method with compact OS corresponding to 120% of the exact
object, (d) R-MAP method with $\mu$ equals the intensity value of region A and
(e) R-MAP method with $\mu$ equals the intensity value of region B. Gray scale is
[0.941.1]
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Figure 10: Head CT data. (a) Reconstructed image from full scan data using
OS-EM and the interior ROI, (b) reference image for R-MAP method, (c) is
magnification of (a), reconstructed ROI by using (c) OS-EM method and (d)
R-MAP method. Gray scale is [0.00.8].

beam with 300 views (over 180’) and 512 radial bins. Image grid corresponding
to the whole image was set to of $512\cross 512$ pixels and the ROI was selected as
a circular internal region with a radius of 200 pixels. The OS-EM algorithm
(200 iterations/16 su.bsets) was used to reconstruct the whole object using the
full scan data as shown in figure 10(a). The value of $\mu$ for reference image is
computed as the average value of the internal ROI using image reconstructed
from full scan data. Then a reconstruction was performed for ROI imaging
using the OS-EM and R-MAP methods. Reconstructed ROI images are shown
in figure 10.

4 Conclusion
We provide a brief review for the recent development in the interior tomography.
It becomes true that exact reconstruction of interior ROI is possible under the
assumption that a small subregion is a pnon known. In clinical application,
achieving accurate estimate of this subregion is challenging due to registration
errors and other related restrictions. We investigate a new approach to ef-
fectively comput $e$ the a pnon information such that we limited the required
information to the intensity value only. We currently study implementing the
proposed approach on cardiac imaging.
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