goooboooogn
O 1676 O 20100 157-168 157

FAFERE &/ NE St AR — L o R & K FoB AECD 7 — I
ND
Representation of Ultrametric Minimum Cost Spanning Tree
Games as Cost Allocation Games on Rooted Trees

TZRE FOBLT oAk dEA

Rk T
b BHEIR T R TR

Kazutoshi Ando™* and Shinji Kato?

"Faculty of Engineering, Shizuoka University
Hamamatsu 432-8561. Japan

tGraduate School of Engineering, Shizuoka University
Hamamatsu 432-8561, Japan.

Abstract

A minimum cost spanning tree game is called ultrametric if the cost function on
the edges of the underlying network is an ultrametric. We show that every ultra-
metric minimum cost spanning tree game is represented as a cost allocation game
on a rooted tree and give an O(n?) time algorithm to find such a representation,
where 7 is the number of players. Using the known results on the time complexity
of solutions of cost allocation games on rooted trees, we then show that there ex-
ist O(n?) time algorithms for computing the Shapley value, the nucleolus and the
egalitarian allocation of the ultrametric minimum cost spanning tree games.

1 Introduction

Let N = {1,---.n}, where n > 1 is an integer. Suppose that Ky, is the complete graph
whose vertex set is Nyp = N U{0} and a function w which assigns a nonnegative cost w(e)
to each edge e of Ky, is given. A minimum cost spanning tree game (MCST game for
short) is a cooperative (cost) game (N, ¢,.) defined as follows: for S C N let ¢, (S) be the
cost of a minimum cost spanning tree of the subgraph of Ky, induced by SU{0}. Bird [2]
showed that the core of an MCST game is always nonempty by explicitly constructing a
core allocation, which is often called a Bird allocation (also see [8]).

*Corresponding author. Email: ando@sys.eng.shizuoka.ac.jp
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An ultrametric MCST game is an MCST game where the cost function w on the edges
of the underlying graph is an ultrametric. i.e., for each distinct 7. j.k € Np we have

w(i k) < max{w(i.j). w(j. k)}. (1)

An ultrametric MCST game is not only of interest in its own right but also associated with
every (general) MCST games in the following way. Let (N.c,) be an arbitrary MCST
game, which may not be ultrametric. For each i.j € Ny let w(i. j) be the maximum of
w(k.l) over all the edges (k.l) in the path from 7 to j in some minimum cost spanning
tree of Ky,. The cost function @ thus defined is known to be an ultrametric (see [19]),
and conversely. each ultrametric function is derived in this way (see [17]). Bird [2] showed
that the core of the MCST game (N, ¢,.) contains that of ultrametric MCST game (N.c,)
associated with the cost function w. Bird called the latter core the irreducible core and
the irreducible core of an MCST game (N.c,) and the associated game (N.cz) have been
studied by many authors (e.g. [2]. [1]. [14] and [19]).

Cost allocation games on rooted trees are another class of cooperative (cost) games.
Let T = (V. A) be a rooted tree whose set of leaves is N = {1.....n} and let [ be a
function which assigns a nonnegative length l(a) to each edge ¢ of T. For S C N define
t1(S) as the total length of edges that belongs to some path from a leaf i € S to the
root. We call the resulting game (N.t;) a cost allocation game on a rooted tree. This
class of games is equivalent to the games studied by Megiddo [15] and the standard tree
games [9] (see [12]). Any cost allocation game on a rooted tree is submodular and there
exist efficient algorithms for computing solutions like the nucleolus and the egalitarian
allocation for them ([15]. [7]. [12]).

In this paper. we show that any ultrametric MCST game can be represented as a
cost allocation game on a rooted tree. It follows that for an ultrametric MCST game
we can compute the Shapley value. the nucleolus and the egalitarian allocation in O(n?)
time. It should be noted here. in contrast, that computing solutions of a general MCST
game are intractable: computing the nucleolus of the MCST games is NP-hard [5] and
testing membership in the core of MCST games is co-NP-complete [4]. The computational
complexities of the Shapley value and the egalitarian allocation of the MCST games are
still open problems.

The rest of this paper is organized as follows. In Section 2. we give definitions from
cooperative game theory and review basic results of ultrametric MCST games and cost
allocation games on rooted trees. In Section 3. we show that every ultrametric can be
represented by an equidistant rooted tree and give an O(n?) time algorithm to find such a
representation. In Section 4. we show that every ultrametric minimum cost spanning tree
game is reduced to a cost allocation game on a rooted tree. Section 5 gives conclusion of
this paper.

2 Preliminaries

In this section. we give definitions from cooperative game theory. and review basic results
of ultrametric MCST games and cost allocation games on rooted trees.
We denote by R the set of real numbers and by R, the set of nonnegative real numbers.



159

2.1 Cooperative games

A cooperative (cost) game (N, c) is a pair of a finite set N = {1,---,n} and a function
c: 2N - R with ¢(@)) = 0. We call N = {1,---,n} the set of the players and the function
c is called the characteristic function. In the context of this paper, the value ¢(S) for
S C N is interpreted as the total cost of some activity when only the members in S
cooperate.

A cooperative game (N, c) is subadditive if for all S, T C N with SNT = () we have
c(S)+c(T) > c(SUT). Also, a game (N, ¢) is submodular (or concave) if for all S, T C N
we have ¢(S) + ¢(T) > ¢(SUT) + c(SNT). The core of the cooperative game (N, ¢) is
defined as follows

core(c) = {x |2 € RN, VS C N:2(5) < ¢(S),2(N) = c(N)}, (2)

where 2(S) = >, ga(i) for S € N. Note that the directions of the inequalities in the
usual definition of the core are reversed. The core of a submodular game is nonempty [18].
The Shapley value : N — R of game (N, ¢) is defined as

oy = 3 B ISI= VoG i) —es)) (e M), (3)

, n!
i@SCN

If game (N, c) is submodular, the Shapley value of (N, ¢) is in the core.

For a vector z € RV let us denote by # the vector in RV obtained by rearranging
the components of = in nondecreasing order. For vectors & and g in R™ we say # is
lexicographically greater than i if there exists k = 1,--- ,nsuch that#;, =g, (¢ = 1,-- -, k—
1) and & > §x. For a submodular game (N, c¢) the egalitarian allocation is the unique
vector = in the core which lexicographically maximizes # over the core. The concept of
egalitarian allocation for general cooperative games was introduced in [3] and that for
concave games was studied in [6].

For a cooperative game (IV,c) and a vector x such that x(N) = c¢(N), the excess
e(S,x) of x for subset S C N is defined as

e(S,x) = ¢(S) — x(.9). (4)

Given a vector x with @(N) = ¢(N) let us denote by (x) the sequence of components
e(S.x) (0 € S C N) arranged in order of nondecreasing magnitude. The nucleolus [16]
of game (N, c) is defined to be the unique vector x which lexicographically maximizes
0(x) over all the vectors @ with (N) = ¢(N).

2.2 (Ultrametric) MCST games

All graphs we consider in this paper are simple undirected graphs (without self-loop and
parallel edges). Therefore, an edge a of a graph G = (V, A) is an unordered pair of distinct
vertices u,v € V but we write a = (u,v) instead of a = {u,v}. A graph G = (V, A) is
complete if A= {(u,v)|u,v € V,us# v} and we denote such a complete graph by Ky-.
A graph G = (V| A) is called a tree if it is connected and contains no cycle. For a
tree T = (V, A), a vertex v € V is called a leaf if there exists exactly one edge incident
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to v. For a graph G = (V. A) a subgraph I1 - (W, B) is called a spanning tree it V= 1’
and H is a tree. We also say that B is a spanning tree of ¢ = (V. A) if H = (W.B) is a
spanning tree of .

Let Ky, be the complete graph with vertex set Ny == {0.1,--- . n} and let w: Nox Ny —
R, be a function such that w(i.¢) = 0 for all i € Ny and w(i. j) = w(j.i) for all i, j € Np.
We call such a pair (Kn,.w) a network. For each subset I of edges of Ky,. we define the
cost w(I') of I' by

w(l) = Z w(i.j). (5)

(i.7)er

For each S C N we write Sy = S U {0}. The minimumn cost spanning tree game (or
MCST game for short) associated with network (Kpy,.w) is a cooperative game (N, c,)
defined by

c(S) = min{w (') | T is a spanning tree of Kg,} (S C N). (6)

where Kg, is the complete subgraph of Ky, with vertex set Sy. The core of an MCST
game is always nonempty. Indeed. a vector called a Bird allocation (2] is in the core (see
(8]). It is easy to see that an MCST game is subadditive. However, an MCST game is
not submodular in general even if w is a metric.

A function u: Ny x Ny — R, is called an wltrametric if for each distinet i, j.k € Ny
we have

w(i, k) < max{w(i.j). w(j. k)}. (7)

Equivalently, w is an ultrametric if and only if for each distinct 7, j, k& € Ny the maximum
of w(i.j),w(j. k),w(i, k) is attained by at least two pairs. An MCST game (N,c,) is
called ultrametric if w is an ultrametric.

In the rest of this section. we show that every ultrametric MCST game is submodular.
The statement of the following lemma can be found in [2].

Lemma 2.1 Suppose that (N,c,.) is an ulltrametric MCST game associated with network
(Kng.w). For SC N and i & S we have

ce(SU{i}) = cu(S) + w(i. j%). (8)
where j* € Sy is such that w(i,j*) = min{w(i, j) | j € So}.

(Proof) Let I' be a minimum cost spanning tree of Kg,. It suffices to show that TU{(¢, j*)}
is a minimum cost spanning tree of Ksyugp. For j € Sy with j # j* let us consider the
path
I =Josdie k=1 (9)
from j* to j in I'. By the definition of j*. we have w(i. j*) < w(i.j). Then, since w is an
ultrametric, we must have w(j.j*) < w(i, j). Since I' is a minimum cost spanning tree of
Kg, we must have
wWlip-1.dp) S wUoS?)  (p= 1o k). (10)
Therefore. we have
'w(jp~1~jp) < U.’('I'a.].) (]) =1,---,k). (1 1)



161

Hence, it follows from the optimality condition of the minimum cost spanning tree [13.
Theorem 6.2] that I'U {(7, j*)} is a minimum cost spanning tree of Ksyugiy as required. O

Proposition 2.2 (Kuipers [14]) FEvery ultrametric MCST game is submodular.

(Proof) Supposer that (N,c,) is an ultrametric MCST game associated with network
(Kng, w). It suffices to prove that S € T C N and i € N — T imply the following
inequality:

cul S U{i}) = culS) > culT U {i}) — cu(T). (12)

However, inequality (12) follows from Lemma 2.1. O

2.3 Cost allocation game on rooted trees

Let T = (V, A) be a tree with a distinguished vertex r and the set of leaves being
N = {1,...,n}. We call the vertex r the root of T and do not consider r to be a leaf.
Let [: A — R, be a function on A. We call such a pair (T',1) a rooted tree.

Denote by A; the set of edges on the unique path from 7 to r and for each S C N
define As by As = |J;.5 Ai. Then, the cost allocation game (N, t;) on a rooted tree (T, 1)
is defined by

t(S) = > I(a) (SCN). (13)

a€Ag

It is easy to see that any cost allocation game (N, ;) on a rooted tree is submodular.
Megiddo [15] showed that the Shapley value and the nucleolus of any cost allocation
game on a rooted tree can be found in O(n) and O(n?), respectively. Galil [7] improved
the latter time bound to O(nlogn). Iwata and Zuiki [12] gave O(nlogn) algorithms for
computing the nucleolus and the egalitarian allocation of cost allocation games on rooted
trees. Summarizing, we have the following lemma.

Lemma 2.3 (Megiddo [15], Galil [7], Iwata and Zuiki [12]) For each cost alloca-
tion game (N,t;) on a rooted tree the Shapley value, the nucleolus and the egalitarian
allocation can be computed in O(n), O(nlogn) and O(nlogn) time, respectively.

3 Equidistant Representation of Ultrametrics

Let (T = (V. A),1) be a rooted tree with root r and the set of leaves being M. For each
pair (u,v) of vertices of T, let us denote by d;(u, v) the length of the path from u to v
with respect to the function I: 4 — R,. We call a rooted tree (T.1) equidistant if for all
t,J € M we have d;(i,r) = d;(j,r). A rooted tree (T.l) with the set of leaves being M is
said to represent a function w: M x M — R, if

Let (T' = (V. A).l) be a rooted tree and let r be the root of T. The rooted tree
naturally induces a partial order < on V: for u,v € V', v < u if and only if u is on the
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unique path from v to r. If v < u, we say that u is an ancestor of v and that v is a
descendant of u. For u.u’ € V. v is called the least common ancestor if v is a common
ancestor (i.e. u < v and v’ < v) and every common ancestor of u and «’ is an ancestor of
v. We denote by leca(u. u’) the least common ancestor of u and «'.

Lemma 3.1 Let (K. w) be a network, where w: M x Al — R, s an ultrametric. Sup-
pose that I' is a minimum cost spanning tree of (Ka;, w). Then, we have

w(i,j) = max{w(k.l) | (k.l) is an edge on the path from i to j in I'}. (15)

(Proof) Let
Pii=jo g1 s =J (16)

be the path from 7 to j in I'. Since w is an ultrametric, we have
w(i,j) < max{w(jp-1,74p) |p=1.---.5}. (17)

However, by the optimality condition of the minimum cost spanning tree [13, Theorem
6.2], we must have the equality in (17). O

Lemma 3.2 (cf. Semple and Steel [17] and Gusfield [10]) For a function w: M x
M — R, , w s an ultrametric if and only if there exists an equidistant rooted tree which
represents w.

(Proof) [The “if” part:] Suppose that w: M x M — R, is represented by an equidistant
rooted tree (T = (V, A),l). Let i, j. k € M be distinct three elements of Af. We will show
the inequality (7). Since both of leca(7. j) and lca(j, k) are on the path from j to the root
in T = (V. A). we have lca(i. j) < lca(j.k) or lea(i. j) = lca(j. k). We only consider the
former case since the other case is treated similarly. Then. since ¢ < lca(i,j) < lca(j, k)
and k < lca(j. k), we have lca(i. k) < lca(j. k). Therefore. we have

w(ick) = di(i k) < d&i(j. k) = w(j. k) = max{w(i.j). w(j. k)}. (18)

where the last equation follows from leca(i. j) < lea(j. k).

[The “only if” part:] Suppose that w is an ultrametric. We proceeds by the induction
on m = |AM|. For m = 1.2 it is trivial to see that there exists an equidistant rooted tree
that represents w. Let m > 2.

Suppose that I is a minimuin cost spanning tree of (K, w) and let (*.j*) € T be
such that

w(i*. j7) = max{w(i, j) | (i,j) € I'}. (19)

Since I' is a spanning tree. I' — {(¢*. j*)} has exactly two connected components. Let Al
and Aly be the vertex sets of these components. Note that we have from Lemma 3.1 that

w(i.j) = w(i*.j*) (i € M,.j € My). (20)

Let us denote by w|M, the restriction of w to M, (p = 1,2). Since |M,| < m. we have by
the induction hypothesis that there exists an equidistant rooted tree (T, = (V,, 4,),1,)
which represents w|Al, for p = 1.2.
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For p = 1,2, let r, be the root of T, (p = 1,2) and let us denote by ¢, the distance
d,p(?l,,z between Tp a,nd 1€ M,. Let v be a new vertex which is not in V; U V5. Define a
rooted tree (T = (V, A),l) with root ¥ as follows.

V = VuWu{o}, (21)
A = A UAoU{({J r1), (0,72)}, (22)
lwé ; — 0 fgu v§ (v Tli,
sw(t*,j*) — 02 if (u,v o, T ,
vl = 9 f ) if (u,v) € A, 7 ((ww) € A). (23)
la(u, v) if (u,v) € As

By the definitions (21)-(23), (T = (V, A),l) is equidistant. To see that (T = (V, A),I)
represents w, let ¢,7 € M. For p = 1,2, if i, j € M), then we have

since (T},,1,) is a representation of w, and the path from i to j in T is in T,,. If ¢ € M,
and j € M,, we have by (20) and the definition of (7',1) that

w(i,j) = w(i*, 5°) = di(i. ). (25)

Gusfield [10] gave an algorithm for finding an equidistant rooted tree which represents
an ultrametric w: M x M — R,. Heun [11] showed that a modification of Gusfield’s al-
gorithm achieves the optimal time bound O(m?), where m = |M|. We give an alternative
time-optimal algorithm for finding an equidistant rooted tree which represents a given
ultrametric. The algorithm is shown in Algorithm 1.

Algorithm 1 maintains a forest F' = (V, A) consists of rooted trees which is initialized
to F'= (M, (). That is, initially there are m rooted trees. At each iteration, the algorithm
merges two rooted trees into a rooted tree.

Lemma 3.3 Let (ey,---,e,_1) be an ordering of the edges of a minimum cost spanning
tree I' of (Kar,w) in the Algorithm 1. For s = 0,1,---,m — 1, let Fs = (Vs, As) be the
forest obtained after the s-th iteration of the for-loop in Algorithm 1 and let us define
Gs = (M,Ts) by

L= {e1, -, e} (26)

Then, for alli,j € M i and j are in a connected component of G, if and only if they are
leaves of a rooted tree of F.

(Proof) We proceed by induction on s. For s = 0,1 the statement is obviously true. Let
s> 1.

Let e, = (i,7). Let C; and C; be the connected components of G,_; = (M,T,—;)
which contain ¢ and j, respectively. Let M; and M; be the vertex sets of C; and C;,
respectively. By the induction hypothesis, for k = i, j the leave set of the rooted tree Ty
of F,_y containing k is Alj.
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Input: An ultrametric u: Al x Al — R,.
Output: An equidistant rooted tree which represent w.
Find a minimum cost spanning tree I' of (K. w):
Let (e1.---.em—1) be an ordering of the edges in I' arranged in nondecreasing
magnitude of their costs;:
Let F' = (V, A) be the initial forest where V = M and A = §;
for s=1to m—-1do
Let (4,7) = es:
Find the roots r; and r; of the rooted trees of F containing i and j respectively;
Let © be a new vertex which does not belong to the vertex set V of the current
forest FF = (V, A);
Let V=V U{v}, A=AU{(r;,0).(r;.0)} and

1
l(r;,0) = -Q—w('i,j) — dy(r;. 1),
. 1 .
rj o) = gw(i,j) —di(rj.j):

Let © be the root of the merged tree;
end
Output the equidistant rooted tree (F = (V, A).1).
Algorithm 1: Algorithm for finding an equidistant representation of an ultrametric.

At the s-the iteration of the for-loop. the rooted trees T; and T; are merged into one
rooted tree whose set of leaves is Af; U Af;. On the other hand. in G5 the two components
containing ¢ and j are merged into one component whose vertex set is M, U M.

Connected components of GG;_y other than (; and (' are those of GG,_; and rooted
trees of F,_; other than T; and T} are those of ¢,. This completes the proof of the present
lemma. O

Theorem 3.4 Given an ultrametric w: M x M — R, , Algorithin 1 terminates in O(m?)
time and outputs an equidistant rooted tree (T = (V. A).l) which represents w, where
m = |M].

(Proof) First. we prove the validity of the algorithm. We proceed by induction on m =
|AL]. For m = 1,2, the validity of Algorithm 1 is obvious.

Let m > 2 and let (¢, j) = e—1. Gm—2 has exactly two connected components (; and
C'; which contain 7 and j respectively. Let the vertex set of (', be M, (k = i, j).

By Lemma 3.3, at the end of the (m — 2)-th iteration of the for-loop, the forest F,,_,
has exactly two rooted trees T; and T; and the sets of leaves of T; and T are Af; and M i
respectively.

Since the two connected components of (G,,—» are minimum cost spanning trees of
Kar, and Ky, it follows from the induction hypothesis that (T; = (Vi, A4;),l]4;) and
(T; = (Vj. A;).l|A;) are representations of w|M; and w|M;, respectively. Then. by the
proof of the “only if" part of Lemma 3.2. after the (in — 1)-th iteration, the finally
obtained forest is an equidistant rooted tree which represents w. This completes the
proof of the validity of the algorithm.
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Let us consider the time complexity of the algorithm. By Prim’s algorithm (see
e.g. [13]). a minimum cost spanning tree I' can be found in time O(m?) and the sorting of
I' is done in O(mlogm). At each iteration of the for-loop. finding the roots takes O(m)
time and the other steps take O(1) time. Hence, we have the claimed time bound O(in?).

a

4 The Reduction to Cost Allocation Games on Rooted
Trees

We first show the following theorem, which is the main result of this paper.

Theorem 4.1 For each ultrametric MCST game (N,c,) there exists a cost allocation
game (N, t;) on a rooted tree (T,1) such that

C'w(S) - tl(‘s’) (‘Sv - N) (27)

(Proof) Let (N,c,) be an ultrametric MCST game, where w: Ny x Ny — R, is an
ultrametric. By Lemma 3.2, there exists an equidistant rooted tree (T' = (V', A"),l")
which represents w where the set of leaves of T" is Ny. Define I: A’ — R, by

N R if (u,v) is on the path from O to the root, o p ;
Hu.v) = {21'('21,, v) otherwise ((u,0) €AY (28)
and let us consider the rooted tree (7”,1).
It suffices to show that
C'VU‘(ASY) — f](ASO) (Ag g N) (29)

since the desired rooted tree (T,1) can be derived by contracting all the edges on the
path from O to the root of T’, where we let the newly created vertex be the root of T,
provided that we have (29).

We prove (29) by induction on
1 € N, then we have

S|. For S = { this is trivial. If S = {¢} for some

t1(:S0) = dp(i.0) = w(i.0) = cu(S) (30)

since (7",1") represents w and (7T",l’) is equidistant.
Let 1 < [S] <nandi e N—S. We will show ¢,(SU {i}) = ((SU{i}),). Let
7% € 5y be such that

w(, 7°) = min{w(i, j) | j € So} (31)

and let v* € V be the least common ancestor of 7 and j* in T’. Let
P:.i= Vo,A1,VU1, 42, Ukp—1.QL, VU — v* (32)
be the path from i to v* in T'. Then, we have
k
w(i,j*) = dp(i.j%) = di(i.v*) = > I(ap) (33)
p=1

since (T7,l') represents w and (T”,1') is equidistant.
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Claim. For all p = 1.--- . k.if g, € Ag,. then we have [(a,) = 0.

(Proof) Suppose that a, € Ag, and {(a,) > 0 for some p = 1,--- k. Since q, € Ag,,
vertex v, is a common ancestor of i and some j € Sy. Then. since I(a,) > 0 we must
have w(i.j) < w(i.j*). which contradicts the choice (31) of j*. (End of the proof of the

Claim)

It follows from the Claim. the induction hypothesis and Lemma 2.1 that

k

t((SU{i})y) = D Ua)+ > Uay) (34)
aGAsO p=1

= t(So) + dili, v*) (35)

= ,(S) + w(i. j*) (36)

= Cu‘(S U {I})* (37)

which completes the proof of the present theorem. O

We have the following corollary from Theorem 4.1.

Corollary 4.2 For any ultrametric MCST game the Shapley value, the nucleolus and
the egalitarian allocation can be computed in O(n?) time.

(Proof) By Lemma 3.4, we can construct the equidistant tree (7’.1") which represents w
in O(n?) time. Then, by Lemma 2.3, the Shapley value, the nucleolus and the egalitarian
allocation of the game (N.t;) can be found in time dominated by O(n?). Therefore, we
have O(n?) time bound for computations of all these solutions. O

We have seen that any ultrametric MCST game can be represented as a cost allocation
game on a rooted tree (T,1). The rooted tree (T.1) can be derived from an equidistant
rooted tree (T7.1') by compressing the path from 0 to the root. We call such a rooted
tree nearly equidistant. More precisely. a rooted tree (T.1) is called nearly equidistant if
for each immediate descendant v of the root of T, the subtree rooted at v is equidistant.
Note that an equidistant rooted tree is nearly equidistant.

Theorem 4.3 For each ultrametric MCST game (N.c,) there exists a cost allocation
game (N.t;) on a nearly equidistant rooted tree (T.l) such that ¢,, = t;. Conversely, for
each cost allocation game (N.t;) on a nearly equidistant rooted tree (T.l), there exists an
ultrametric MCST game (N.c,) such that c, = t.

(Proof) The first statement follows from Theorem 4.1.

We prove the second statement. Let (T = (V. A).l) be a nearly equidistant rooted
tree whose set of leaves is N. Let v, (p = 0,1.--- k) be the immediate descendants of
the root r and let T, be the equidistant subtree rooted at v, (p = 0.1,---,k). For each
p=0.1.---,k let us denote by 9, the distance d;(i.r) from a leaf i of T}, to the root r.
We can assume without loss of generality that do > 0y > - -+ > k.

Suppose that {r,---.r;,0} is a set of new vertices such that {ry,---, 7.0} NV = 0.
Define a rooted tree (T' = (V'. 4").l') as follows.

| A ‘/U{l'l.“'~rk~0}* (38)
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A = (A= {(vpr) [ p =1 MU (vporp) | p = 1.+ k)

U{(Tp’ 7117—1) Ip =2, k} U {(7‘1, 71)? (O1 rk‘)}ﬂ (‘39)
l(vp, 1) if a = (vp,rp) for some p =1,--- k,
do — 01 if a = (ry,r),
I'(a) = dp—1—0, ifa=(rp,rp_y1) forsomep=2---k, (a€A). (40)
5k if a = (0 ’I’k),
[(a) otherwise

[t is easy to see that rooted tree (7T”,l') is equidistant, and hence, it follows from
Lemma 3.2 that there exists an ultrametric w: Ny x Ny — R, which is represented
by (T".1'). The construction of (T,1) in the proof of Theorem 4.1 shows that we have
Cp = f[. ]

5 Conclusion

We showed that any ultrametric MCST game can be represented as a cost allocation game
on a rooted tree and gave an O(n?) time algorithm to find such a representation, where
n is the number of players. Using this representation theorem together with complexity
results on the solutions of cost allocation games on rooted trees, we showed that the
Shapley value, the egalitarian allocation and the nucleolus of an ultrametric MCST game
can be computed in time O(n?).
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