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Abstract
A minimum cost spanning tree game is called ultrametric if the cost function on

the edges of the underlying network is an ultrametric. We show that every ultra-
metric minimum cost spanning tree game is represented as a (-ost allocation game
on a rooted tree and give an $O(??^{2})$ time algorithm to find su$(.h$ a representation,
where $?l$ is the number of plavers. Using the known results on the time complexity
of solutions of cost allocation games on rooted trees, we then show that there ex-
ist $O(\uparrow?^{2})$ time algorithms for computing the Shapley value, the nucleolus and the
$c- galitaJ^{\cdot}iail$ allocation of the ultrametric minimum cost spanning tree games.

1 Introduction
$Let$ $N=\{1, \cdots , \uparrow z\}$ , where $?l\geq 1$ is an integer. Suppose that $K_{N_{0}}$ is the complete graph
whose vertex set is $N_{0}=N\cup\{0\}$ and a function $uf$ which assigns a nonnegative cost $w(e)$

to each edge $e$ of $K_{N_{0}}$ is given. A minimum cost spanning tree game (MCST game for
short) is a cooperative (cost) game $(N. c_{tL},)$ defined as follows: for $S’\subseteq N$ let $c_{u\rangle}(S)$ be the
cost of a minimum cost spanning tree of the subgraph of $K_{N_{0}}$ induced by $S\cup\{0\}$ . Bird [2]
showed that the core of an PtICST game is always nonempty by explicitly constructing a
core allocation, which is often called a Bird allocation (also see [8]).
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An ultrametric $\backslash _{\wedge}IC^{\c_{)}^{1}}T$ game is an $\backslash _{A}$ I CST game where $t$ he cost funct ion $n$ on the edges
of the underlying graph is tm ultrametric. $i.e..$ for each dist inct $i.j.k\in N_{0}$ we have

$1l’(j, k)\leq 111ax\{tl)(i.j), t1)(j.h\cdot)\}$ . (1)

$A_{11}$ ultrainetric $\perp\backslash IC^{\tau}ST$ gaine is not onl:, $r$ of interest in its $(j)11$ right $\dagger$ ) $nt$ also associated with
every (general) M $IC^{\tau}ST$ games in the following $\iota\backslash aY’$. Let $(N. c_{tA}.)$ be an arbitrary $hIC^{t}\cdot ST$

game. which $1t1a_{L}\backslash$

’ not be ultrametric. For each $i.j\in N_{0}$ let $1\overline{1}^{1}(i.j)$ be the $inaxinlnni$ of
$n(k.l)$ over all the edges $(k.l)$ in the path from $i$ to $j$ in some minimum cost spanning
tree of $K_{N_{0}}$ . The cost function $\overline{1}^{1}$ thus defined is known to be an ultrarnetric (see [19]),
and conversely, each ultrainetric function is ( $leri\backslash re(\rfloor$ in this wav (see [17]). Bird [2] showed
that the core of the $i\backslash ICST$ garne $(N. c_{1t}.)$ contains that of ultrarnetric PtICST $gai\iota ie(N, c_{\overline{u}}.)$

associated with the cost function $t\overline{l}^{1}$ . Bird called the latter core the irreducible core and
the irreducible core of an M CST game $(N. r_{\iota\iota}.)$ and the associate$(\rfloor$ game $(N, c.)$ have been
studied bv many authors (e.g. [2]. [1]. [14] and [19]).

$C^{\tau}ost$ allocation ganies on rooted trees are another class of cooperative (cost) games.
Let $T=$ $(V. \lrcorner 4)$ be a rooted tree whose set of leaves is $N=\{1\ldots. , ’?\}$ and let $l$ be a
function which assigns a nonnegative length $l(0)$ to each edge $0$ of $T$ . For $g\subseteq N$ define
$t,(k5’)$ as tbe total length of edges that belongs to sonie path froin a leaf $i\in 6$

’ to the
root. We call the resulting game $(N, t_{l})$ a cost allocation game on a rooted tree. This
class of games is equivalent to the $ganle\backslash s$ st udied } $)\backslash ^{r}L^{\cdot}$ AIegiddo [15] and the standard tree
gaines [9] (see [12]). Any cost allocation gaine $011$ a rooted tree is submodular and there
exist efficient algorithrns for conipnting solutions like the nucleolus and the egalitarian
allocation for theni $(|15]. |7]. |12\rceil)$ .

In this paper, we show that aii.’ ultrametric $\backslash _{A}$ ICST game can be represented as a
cost allocation game on a rooted tree. It follows that for an ultrainetric AICST ganie
$\iota ve$ can coilip $\iota$ite the Shaplev value, the nucleolus and the egalitarian allocation in $O(7t^{2})$

$ti\iota ne$ . It should be noted here. in contrast, that coinputing solutions of a general MCST
gaine are intractable: coinputing the nucleolus of the $\backslash _{A}IC^{t}STg\iota$ is NP-hard [5] and
testing membership in the core of I ICST games is co-NP-complete [4]. The computational
complexities of the Shapley value $at]_{(}1$ the egalitarian allocat ion of the .hICST games are
still open problems.

The rest of tbis paper is organized as follows. In Section 2, we give definitions froin
cooperative gaine $t$ heory and review basic results of ultrarnetric $\backslash _{A}$ ICST $ga\iota iles$ and cost
allocation games $0\iota t$ root $\epsilon^{1}(1$ trees. $I_{l1}$ Section 3, we show $t$ hat everv ultrametric can be
represented} $)\backslash ^{r}$ an equidistant rooted tree and $gi$ ve an $O(/\iota^{2})\{$ iine algorit llil] to find such a
representation. In Section 4, we show tltat $e\backslash \Gamma er\backslash r\iota ltra\iota 1letric\iota ni_{1}\iota i_{1}ntl1l$ cost spanning tree
gaine is reduced to a cost allocation $ga\iota 1le$ on a rooted tree. Section 5 gives conclusion of
$t$ his paper.

2 Preliminaries
In this section. we give definitions $fro\iota li$ cooperative ganie theory. and review basic results
of $\iota iltrailletric\backslash \wedge$ ICST gaiiies and cost allocation gaines $011$ rooted trees.

$\backslash t^{Y}!e$ denote bv $\mathbb{R}$ the set of real nunibers and by $\mathbb{R}_{+}$ the set of nonnegative real nuinbers.
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2.1 Cooperative games
A cooperative (cost) $ga7ne$ (N. c) is a pair of a finite set $N=\{1, \cdots , ’?\}$ and a function
$c\cdot:2^{N}arrow \mathbb{R}$ with $c(\emptyset)=0$ . We call $N=\{1, \cdots, n\}$ the set of the players and the function
$c$ is called the characteri.$\backslash t\cdot ic$ function. In the context of this paper, the value $c(5’)$ for
$S\subseteq N$ is interpreted as the total cost of some activity when only the members in $S$

’

cooperate.
A cooperative game $(N, c)$ is subadditive if for all .5’, $T\subseteq N$ with $S\cap T=\emptyset$ we have

$c(S)+c\cdot(T)\geq c(S\cup T)$ . Also, a gante $(N, c\cdot)$ is submodular (or concave) if for all $S,$ $T\subseteq N$

we have $c(S)+c(T)\geq c(S\cup T)+c(S\cap T)$ . The core of the cooperative game $(N, c)$ is
defined as follows

$c(\overline{)}re(c)=\{x|x\in \mathbb{R}^{N},\forall S\subseteq N:x(S)\leq c(S), ’\iota^{B}(N)=c(N)\}$ , (2)

where $x(S’)= \sum_{i\in S}\tau(?)$ for $S\subseteq N$ . Note that the directions of the inequalities in the
usual definition of the core are reversed. The core of a submodular game is nonempty [18].

The Shapley $\{\prime alue\Phi:Narrow \mathbb{R}$ of game $(N, c)$ is defined as

$\Phi(i)=\sum_{i\not\in S\subseteq N}\frac{|S|!(7\not\supset-|6^{\eta}|-1)!}{7\iota!}(c(S\cup\{i\})-c(S))$ $(i\in N)$ . (3)

If game $(N, c)$ is submodular, the Shaplev value of $(N, c)$ is in the core.
For a vector $x\in \mathbb{R}^{N}$ let us denote by $\tilde{a}^{\backslash }$ the vector in $\mathbb{R}^{N}$ obtained by rearranging

the components of $:l$
’ in nondecreasing order. For vectors $\backslash \tilde{x}$ and $\tilde{y}$ in $\mathbb{R}^{n}$ we say $\tilde{x}$ is

lexicographically greater than $\tilde{y}$ if there exists $k=1,$ $\cdots$
$,$

$\uparrow t$ such that $\overline{x}_{i}=\tilde{y}_{i}(i=1,$ $\cdots,$ $k-$

1 $)$ and $\tilde{x}_{k}$. $>\tilde{y}_{k}$ . For a submodular game $(N, c)$ the egalitarian allocation is the unique
vector $x$ in the core which lexicographically maximizes $\tilde{x}$ over the core. The concept of
egalitarian allocation for general cooperative games was introduced in [3] and that for
concave games was studied in [6].

For a cooperative game $(N, c)$ and a vector $x$ such that $x(N)=c(N)$ , the excess
$e(S.’\iota)$ of $x$ for subset $S\subseteq N$ is defined as

$e(S^{r}\iota^{\tau})=c(S)-x(S)$ . (4)

Given a vector $x$ with $\backslash ’\ddagger\cdot(N)=c(N)$ let us denote by $\theta(x)$ the sequence of components
$e(S.x)(\emptyset\subset|S\subset N)$ arranged in order of nondecreasing magnitude. The nucleolus [16]
of game $(N, c)$ is defined to be the unique vector.$\iota$ which lexicographically maxiinizes
$\theta(’\iota)$ over all the vectors $:i$ . with $:r(N)=c(N)$ .

2.2 (Ultrametric) MCST games
All graphs we consider in this paper are simple undirected graphs (without self-loop and
parallel edges). Therefore, an edge $0$ of a graph $G=(l_{7}^{\prime^{r}}A)$ is an unordered pair of distinct
vertices $u,$ $v\in V$ but we write $0=$ (zt, v) instead of $a=\{u, u\}$ . A graph $G=(V, A)$ is
complete if $A=\{(u, v)|u, u\in V_{\backslash }u\neq v\}$ and we denote such a complete graph by $K\iota^{r}$ .

A graph $G=(V, A)$ is called a tree if it is connected and contains no cycle. For a
tree $T=(V, A)$ , a vertex $v\in V$ is called a leaf if there exists exactly one edge incident
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to $\iota)$ . For a graph $\zeta_{7}’=(l’. \lrcorner\underline{\prime}1)$ a $s$ ubgraph $H=(l4’, J3)$ is called a spanning tree if $l^{r}=lt$
‘

and $H$ is a tree. We also say $t$ hat $B$ is a spanning tree of $\zeta_{\tau^{v}}=(l_{\backslash }^{r}A)$ if $fI=(lt’.I3)$ is a
spanning tree of $G$ .

Let $K_{N_{0}}$ be the complete graph with vertex set $N_{0}=\{0.1. \cdots , ’?\}$ and let $u^{f}:N_{0}\cross N_{0}arrow$

$\mathbb{R}_{+}$ be a function such that $u(i, i)=0$ for all $i\in N_{0}$ and $n(;,j)=u)(j, i)$ for all $i,j\in N_{0}$ .
$\backslash 1^{\tau}\prime e$ call such a pair $(K_{N_{0}}, u)$ a $netwo7’ k$. For each subset $\Gamma$ of edges of $K_{N_{0}}$ . we define the
cost $\iota\downarrow|(\Gamma)$ of $\Gamma$ by

$u)( \Gamma)=\sum_{(i.j)\in\Gamma}tl’(i.j)$
. (5)

For each $S\subseteq N$ we write $S_{0}=S’\cup\{0\}$ . The $\uparrow nini\uparrow m\iota\uparrow n$ $cost\backslash \backslash ^{\backslash }panning$ tree $ga\uparrow n.e$ (or
MCST $ga\uparrow ne$ for short) associated with network $(K_{N_{0}}, \iota)$ is a cooperative gante $(N, c..)$

defined by

$c_{u}.(S)=111it1$ { $u(\Gamma)|\Gamma$ is a spanning tree of $K_{S_{0}}$ } $(S\subseteq N)$ . (6)

where $K_{S_{0}}$ is the complete subgraph of $K_{N_{0}}$ with vertex set $S_{0}$ . The core of an $I\backslash IC^{\tau_{l}}ST$

game is always nonenipty. Indeed, a vector called a Bird allocation [2] is in the core (see
[8] $)$ . It is easy to see that an INICST game is subadditive. However, an bfCST game is
not subniodular in general even if $1l$) is a metric.

A function $u:N_{0}\cross N_{0}arrow \mathbb{R}_{+}$ is called an ultrametric if for each distinct $i.j_{1}k\in N_{0}$

we have
$n)(i, h\cdot)\leq 111$ax $\{u(i,j), n’(j.h\cdot)\}$ . (7)

Equivalently, $\iota$ ) is an ultrametric if and onlv if for eacb distinct $i,j.h\cdot\in N_{0}$ the niaxilllulll
of $u(i,j),$ $u(j, k),$ $n7(i, h\cdot)$ is attained by at least two pairs. An $\backslash 1$ ICST game $(N, c_{u}.)$ is
called ultrametric if $u$ is an ultrainetric.

In the rest of this section, we show that everv $n1t_{\Gamma al}iietric\backslash \downarrow IC^{t}ST$ game is submodular.
The statement of the following lennna can be found in $|2]$ .

Lemma 2.1 Suppos $e$ that $(N, c_{t1}.)$ is an, $nlfra\uparrow\gamma|_{!}$ et $\gamma ic\cdot MC1_{k}6’ T$ game a,ssociated with network
$(K_{N_{0}}, \mathfrak{u})$ . For $S\subseteq N$ and $i\not\in g$ we $hai$ } $e$

$c_{1l}.(S\cup\{i\})=c_{\alpha},(S’)+u(i.j^{*})$ , (8)

where $j^{*}\in 6_{0}$ is such that $u(?,j^{*})=111i\iota 1\{n)(i,j)|j\in S_{0}’\}$ .

(Proof) Let $\Gamma$ be a minimuin cost spanning tree of $K_{S_{0}}$ . It suffices to show that $\Gamma\cup\{(i,j^{*})\}$

is a lllitli $\iota$] $]$mn cost spanning tree of $K_{S_{0}\cup\{i\}}$ . For $j\in g_{0}$ with $j\neq j^{*}$ let us consider the
path

$j^{*}=j_{0},j_{1},$ $\cdots,j_{k}=j$ (9)

froin $j^{*}$ to $j$ in F. Bv the definition of $j^{*}$ . we have $u$ ) $(i.j^{*})\leq\alpha(i,j)$ . Then, since $\omega$ is an
$tl[trall]etric$ , we $ni\iota\iota st$ have $\alpha(j.j^{*})\leq 1^{1}(i,j)$ . Since $\Gamma$ is a $11li_{11}i111t111$ cost spanning tree of
$K_{S_{0}}$ we must have

$\iota e)(j_{p-1},j_{\mathcal{P}})\leq \mathcal{U}’(j_{\backslash }j^{*})$ $(?J=1, \cdot\cdot \cdot, k\cdot)$ . (10)

Therefore. we have
$u(j_{p-1}.j_{p})\leq tl’(i,j)$ $(p=1, \cdots, h\cdot)$ . (11)
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Hence, it follows froni the optinaality condition of the minimum cost spanning tree [13,
Tlieoreni $(\dot{y}.2]$ that $\Gamma\cup\{(i,j^{*})\}$ is a $l11i_{11}i111un1$ cost spanning tree of $K_{S_{0}\cup\{i\}}$ as required. $\square$

Proposition 2.2 (Kuipers [14]) Every ultrametric MCST game is $sub_{7}nodular$ .

(Proof) Supposer $that|(N, c_{u},)$ is an ultrametric MCST game associated with network
$(K_{N_{0}}, n))$ . It suffices to prove that $6’\subseteq T\subseteq N$ and $i\in N-T$ imply the following
inequality:

$c_{u},(S\cup\{i\})-c_{u\}}(S)\geq c_{u}|(T\cup\{i\})-c_{u)}(T)$ . (12)
However, inequality (12) follows from Lemma 2.1. $\square$

2.3 Cost allocation game on rooted trees
$LetT=(l^{r}, A)$ be a tree with a distinguished vertex $r$ and the set of leaves being
$N=\{1, \ldots, ?x\}$ . $l1/^{\tau}e$ call the vertex $r$ the root of $T$ and do not consider $r$ to be a leaf.
$Let|l:Aarrow \mathbb{R}_{+}$ be a function on $A$ . We call such a pair $(T, l)$ a rooted tree.

Denote by $A_{j}$ the set of edges on the unique path from $i$ to $\prime r$ and for each $S\subseteq N$

define $A_{S}$ by $A_{S}= \bigcup_{i\in S}A_{i}$ . Then, the cost allocation game $(N, t_{l})$ on a rooted tree $(T, l)$

is defined by

$t_{l}(S)= \sum_{o\in\wedge 4_{S}}.l(a)$
$(S\subseteq N)$ . (13)

It is easy to see that any cost allocation game $(N, t_{l})$ on a rooted tree is submodular.
PtIegiddo [15] showed that the Shaplev value and the nucleolus of any cost allocation
game on a rooted tree can be found in $O(’ l)$ and $O(n^{3})$ , respectively. Galil [7] improved
the latter tiine bound to $O(’ t\log n)$ . Iwata and Zuiki [12] gave $O(n\log n)$ algorithms for
coniputing the nucleolus and the egalitarian allocation of cost allocation gaines on rooted
trees. Sunnnarizing, we have the following leinina.

Lemma 2.3 (Megiddo [15], Galil [7], Iwata and Zuiki [12]) For each cost alloca-
tion game $(N, t_{l})$ on a rooted tree the Shapley value, the nucleolus and the egalitarian
allocation can be computed in $O(’ l)_{:}O(’ l\log n)$ and $O(n\log n)$ time, respectively.

3 Equidistant Representation of Ultrametrics
Let $(T=(VA), l)$ be a rooted tree with root $\uparrow$

. and the set of leaves being $\lrcorner \mathfrak{h}/I$ . For each
pair $(u, v)$ of vertices of $T$ , let us denote by $d_{l}(u, u)$ the length of the path from $u$ to $v$

with respect to the function $l:Aarrow \mathbb{R}_{+}$ . We call a rooted tree $(T, l)$ equidistant if for all
$i,j\in ilI$ we have $d_{l}(i, r)=d_{l}(j_{7}\cdot)$ . A rooted tree (T. l) with the set of leaves being $\lrcorner lI$ is
said to represent a function $u$ ) $:\lrcorner \mathfrak{h}[\cross$ Af $arrow \mathbb{R}+$ if

$uf(i,j)=d_{l}(i,j)$ $(i,j\in\lrcorner\eta I)$ . (14)

Let $(T= (V, A), l)$ be a rooted tree and let $r$ be the root of $T$ . The rooted tree
naturally induces a partial order $\preceq$ on $l^{r_{:}}$ for $u,$ $v\in \mathfrak{y}_{/}^{r},$ $u\preceq u$ if and only if $u$ is on the
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unique pat $hfroil\iota t$) to 1. If $b’\preceq tl$ . we sav $t$ hat $u$ is all ancestor of $\{)$ and that $u$ is a
descendant of $\tau\iota$ . For $n$ . $n’\in$ V. t) is called the least $c\cdot 0\uparrow 7?.\uparrow non$ ancestor if $u$ is a $co\iota 1ltlJ(11$

ancestor $(i.e. n\preceq t)$ and tt‘ $\preceq t$ ) $)$ and $e\backslash \prime er$ } comnion ancestor of $n$ and $t’$ is an ancestor of
$u$ . $\backslash \uparrow" e$ denote $t$ )$c\backslash ^{r}lca(t1, \iota’)$ the least common ancestor of $u$ and $tl’$ .

Lemma 3.1 Let $(K_{\Lambda},, t’)$ be a network. where $u:\Lambda I\cross\lrcorner \mathfrak{h}Iarrow \mathbb{R}_{+}$ is an ultramet$7^{\backslash }ic.$ Snp-
pose that $\Gamma$ is a $7\gamma\iota ini\uparrow n$ . um cost spanning tree of $(K_{\Lambda I}, u)$ . Then. we have

$w(i,j)= \max$ { $w(k,$ $l)|(k.l)$ is an edge on the path from $i$ to $j$ in $\Gamma$ }. (15)

(Proof) Let
$P:i=j_{0},j_{1},$ $\cdots.j_{s}=j$ (16)

be the path froin $i$ to $j$ in F. Since $\iota$ is an ultrametric, we have

$tl’(i,j)\leq 111ax\{u(j_{p-1},j_{p})|p=1. \cdots, s\}$ . (17)

However, bv the optiiiiality condition of the minimunt cost spanning tree [13, Theorein
6.2], we must have the equalitv in (17). $\square$

Lemma 3.2 (cf. Semple and Steel [17] and Gusfield [10]) For a function $\{j:_{1}\lambda I\cross$

$11,Iarrow \mathbb{R}_{+:}u|$ is an ultrametric if and only if there exists an equidi.stant rooted tree which
represents $\iota$ ).

(Proof) [The if” part:] Suppose that $w;_{1}lI\cross\Lambda Iarrow \mathbb{R}_{+}$ is represented by an equidistant
rooted tree $(T=(V, A).l)$ . Let $i,j.h\cdot\in 1II$ be distinct three elements of Al. We will show
the inequality (7). Since both of $1ca(i.j)$ and $1ca(j, k)$ are on the path from $j$ to the root
in $T=$ $(V. \Lambda)$ . we have lca $(i.j)\preceq 1ca(j, k)$ or $1ca(i,j)\succeq$ lca $(j. k)$ . $\backslash 4^{1^{T}}e$ only consider the
fornter case since the other case is treated similarl. Then, since $i\preceq 1ca(i, j)\preceq 1ca(j. k)$

and $h\cdot\preceq$ lca $(j, h\cdot)$ , we have lca $(i. k)\preceq 1ca(j.h\cdot)$ . Therefore. we have

$t1’(i.k)=d_{l}(i, h\cdot)\leq d_{l}(j.h\cdot)=n(j, k)=$ inax $\{\iota(i.j). n\dagger(j, h\cdot)\}$ , (18)

where the last equation follows froiii $1ca(i.j)\preceq$ lca $(j.h\cdot)$ .
[The “only if’ part:] Suppose that $u$ . is an ultrametric. We proceeds by the induction

on $m=|_{1}1I|$ . For in $=1.2$ it is trivial to see that there exists an equidistant rooted tree
that represents $n$ . Let in $>2$ .

Suppose that $\Gamma$ is a minimum cost spanning tree of $(K_{\Lambda I}, u)$ and let $(i^{*}.j^{*})\in\Gamma$ be
such that

$tl’(i^{*}.j^{*})=111ax\{1l’(i,j)|(i,j)\in\Gamma\}$ . (19)

Since $\Gamma$ is a spanning tree. $\Gamma-\{(i^{*}, j^{*})\}$ has exactly two connected components. Let. $\Lambda I_{1}$

and $1][\underline{)}$ be the vertex sets of these components. Note that we have from Lemma 3.1 that

$n)(i,j)=u(i^{*}.j^{*})$ $(i\in 1lI_{1},j\in\Lambda I_{2})$ . (20)

Let us denote } $)y_{1^{1}}|_{1}tI_{p}$ the restriction of $\iota$ to $\Lambda I_{p}([J=1$ , 2 $)$ . Since $|\Lambda I_{p}|<m$ , we have by
the induction $h$} potliesis that there exists an equidistant rooted tree $(T_{p}=(\nu_{p^{A}}^{r},4_{p}), l_{p})$

which represents $n|1\backslash I_{p}$ for $l$) $=1.2$ .
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For $p=1,2$ , let $r_{p}$ be the root of $T_{p}(p=1,2)$ and let us denote $\dagger_{)}y\delta_{p}$ the distance
$d_{l_{p}}(?_{p}, i)$ between $?_{p}$ and $i\in ilI_{p}$ . Let $\hat{\iota)}$ be a new vertex which is not in $\ddagger _{1}^{f}\cup T_{2}^{\gamma}/$ . Define a
rooted tree $(T=(L_{\tau}^{r}A), l)$ with root $\hat{tJ}$ as follows.

$1^{\Gamma}$, $=$ $l_{1}^{\Gamma}/\cup V_{2}^{\Gamma}\cup\{c\wedge)\}$ , (21)
$A$ $=$ $A_{1}\cup A_{2}\cup\{(\iota\hat{)}, r_{1}), (\hat{u}, r_{2})\}$ , (22)

1 $(u, v)$ $=$ $\{\begin{array}{ll}\frac{1}{\frac,2\not\in}.1L^{1(i^{*},j^{*})-\delta_{1}}w(i_{\backslash }^{*}j^{*})-\tilde{\delta}_{\underline{9}} if(\tau\iota,v)=if(u_{\backslash }.v)=(\tau)r_{2})(\hat{v},r_{1})\wedge’,l_{1}(u, v) if (u, v)\in \text{ノ} 1,l_{2}(u, v) if (u, \cdot\iota))\in A_{2}\end{array}$ $((u, v)\in A)$ . (23)

By the definitions (21) $-(23),$ $(T=(V, \lrcorner 4), l)$ is equidistant. To see that $(T=(V, A), l)$
represents $w$ , let ?., $j\in\Lambda I$ . For $p=1,2$ , if $i,j\in\lrcorner \mathfrak{h}I_{p}$ , then we have

$u’(i,j)=d_{I_{p}}(i,j)=d_{l}(i,j)$ (24)

since $(T_{p}, l_{p})$ is a representation of $w_{p}|$ and the path from $i$. to $j$ in $T$ is in $T_{p}$ . If $i\in\Lambda I_{1}$

and $j\in il(I_{2}$ , we have by (20) and the definition of $(T, l)$ that

$u)(\cdot i,j)=w(i^{*},j^{*})=d_{l}(i,j)$ . (25)

口

Gusfield [10] gave an algorithm for finding an equidistant rooted tree which represents
an ultrametric $w:ilI\cross\Lambda Iarrow \mathbb{R}_{+}$ . Heun [11] showed that a modification of Gusfield’s al-
gorithm achieves the optimal time bound $O(7n^{2})$ , where $m=|_{1}lI|$ . We give an alternative
time-optimal algorithm for finding an equidistant rooted tree which represents a given
ultrametric. The algorithm is shown in Algorithm 1.

Algorithm 1 maintains a forest $F=(V_{\backslash }A)$ consists of rooted trees which is initialized
to $F=(\Lambda I, \emptyset)$ . That is, initially there are $m$ rooted trees. At each iteration, the algorithm
merges two rooted trees into a rooted tree.

Lemma 3.3 Let $(e_{1}, \cdots , e_{rn-1})$ be an ordering of the edge.-s of a minimum cost spanning
tree $\Gamma$ of $(K_{\Lambda I}, \alpha’)$ in the Algorithm 1. For $s=0,1,$ $\cdots,$ $m-1$ , let $F_{s}=(V_{s}, A_{s})$ be the
forest obtained afler the s-th iteration of the for-loop in Algorithm 1 and let us define
$G_{s}=(\Lambda I, \Gamma_{s})$ by

$\Gamma_{s}=\{e_{1}, \cdot\cdot \cdot e_{s}\}$ . (26)

Then, for all $i,j\in fl’Ii$ and $j$ are in a connected component of $G_{s}$ if and only if they are
lea$ves$ of a rooted tree of $F_{s}$ .

(Proof) We proceed by induction on $s$ . For $s=0,1$ the statement is obviously true. Let
$s>1$ .

$Lete_{s}=(i,j)$ . Let $C_{i}$ and $C_{j}$ be the connected components of $G_{s-1}=(\Lambda l, \Gamma_{s-1})$

which contain $i$ and $j$ , respectivelv. Let $M_{i}$ and $\Lambda I_{j}$ be the vertex sets of $C!_{i}$ and $C_{i}$ ,
respectively. By the induction hypothesis, for $k=i,$ $j$ the leave set of the rooted tree $T_{k}$

of $F_{s-1}$ containing $k$ is $\Lambda I_{k}$ .
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At the s-the iteration of the for-loop, the rooted trees $T_{i}$ and $T_{j}$ are merged into one
rooted tree whose set of leaves is A $I_{i}\cup\Lambda I_{j}$ . On the other hand. in $G_{S}$ the two components
containing $i$ and $j$ are merged into one component whose vertex set is A $I_{i}\cup$ A $I_{j}$ .

Connected components of $G_{s-1}$ other than $C_{i}$ and $(j_{j}$ are those of $G_{s-1}$ and rooted
trees of $F.-1$ other than $T_{j}$ and $T_{j}$ are those of $G_{s}$ . This completes the proof of the present
lemma. $\square$

Theorem 3.4 Given an ultmmetric $u;_{1}lI\cross\lrcorner lIarrow \mathbb{R}_{\dashv}-)Algori.th\uparrow n1$ terminates in $O(m^{2})$

tirn.e and outputs an equidistant rooted tree $(T=(V, A), l)$ which represents $u$ , where
$\}n=|_{A}AI|$ .

(Proof) First, we prove the validity of the algorithm. $\backslash 1^{v}e$ proceed by induction on $\uparrow n=$

$|_{4}\backslash I|$ . For $?n=1,2$ , the validity of Algorithin 1 is obvious.
Let $m>2$ and let. $(i,j)=e_{m-1}$ . $G_{m-2}$ has exactly two connected components $C_{i}$ and

(;
$j$ which contain $i$ and $j$ respectively. Let the vertex set of $C_{k}’$ be $\Lambda I_{k}(k=i,j)$ .

By Lemma 3.3, at the end of the $(\uparrow n-2)$-th iteration of the for-loop, the $forest|F_{m-2}$

has exactly two rooted trees $T_{j}$ and $T_{j}$ and the sets of leaves of $T_{j}$ and $T_{j}$ are $\mathfrak{h}I_{i}$ and $1lI_{j}$ ,
respectively.

Since the two connected components of $G_{m-2}$ are minimum cost spanning trees of
$K_{\Lambda I_{i}}$ and $K_{\Lambda I_{j}}$ , it follows frorn the induction hypothesis that $(T_{j}= (V, A_{i}), l|\lrcorner 4_{j})$ and
$(T_{j}=(I_{j}^{\prime^{r}}, A_{j}), l|A_{j})$ are representations of $u$) $|$ A $I_{i}$ and $t^{1}|\angle 1I_{j}$ , respectively. Then. by the
proof of the :

$(111_{L}\backslash r$ if“ part of Lennna 3.2, after the $($ in $-1)$ -th iteration, the finally
obtained forest is $a\iota 1$ equidistant rooted tree which represents $n$ ). This coinpletes the
proof of the validity of the algorithnt.
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Let us consider the tiine complexity of the $algorit\mathfrak{t}\iota In$ . By $Pri\iota 11’ salgorith\iota il$ (see
e.g. $|13\rfloor)$ , a $111i_{11}i_{11}1U111$ cost spanning tree I“ can be found in tiine $O(m^{2})$ and the sorting of
$\Gamma$ is done in $O(m1(\supset gm)$ . At each iteration of the for-loop, finding the roots takes $O(m)$

tiine and the other steps take $O(1)$ time. Hence, we have the claiined tinie bound $O$ (in 2).
口

4 The Reduction to Cost Allocation Games on Rooted
Trees

We first show the following theorein, $\backslash \backslash rhich$ is the maiii result of this paper.

Theorem 4.1 For each! $i\iota ltm\uparrow netric$ MCST game $(N, c_{e\iota}.)$ there exists a cost allocation
$ga\uparrow n,e$ $(N. f_{l})$ on a rooted tree $(T, l).such$, that

$c_{\iota\iota},(S)=t_{l}(S)$ $(S\subseteq N)$ . (27)

(Proof) Let $(N, c_{u)})$ be an ultrametric MCST game, where $u’:N_{0}\cross N_{0}arrow \mathbb{R}_{+}$ is an
ultrantetric. By Lemma 3.2, there exists an equidistant rooted tree $(T’=(V’, A’), l’)$
which represents u) where the set of leaves of $T’$ is $N_{0}$ . Define $l:A’arrow \mathbb{R}_{+}$ by

$t(u, u)=\{\begin{array}{ll}0 if (u, u) is on the path froM 0 to the root,2l’(?1, u) otherwise\end{array}$ $((u, u)\in A’)$ (28)

and let us consider the rooted tree $(T’, l)$ .
It suffices to show that

$c_{tl},(S)=t_{l}(S_{0})$ $(S\subseteq N)$ (29)

since the desired rooted tree $(T, l)$ can be derived by contracting all the edges on the
path from $0$ to the root of $T’$ , where we let the newly created vertex be the root of $T$ ,
provided that we have (29).

We prove (29) by induction on $|S|$ . For $S’=\emptyset$ this is trivial. If $S=\{i\}$ for some
$i\in N$ , then we have

$t_{l}(6_{0}^{\eta})=d_{l’}(i, 0)=u)(i, 0)=c_{tt}.(6’)$ (30)

since $(T’, l’)$ represents $w$ and $(T’, l’)$ is equidistant.
Let $1\leq|S|<?t$ and $i\in N-S$ . We will show $c_{\mathcal{U}^{}}(S\cup\{i\})=t_{l}((S\cup\{i\})_{0})$ . Let

$j^{*}\in S_{0}$ be such that
$w(i,j^{*})=111i\iota 1\{w(i,j)|j\in S_{0}\}$ (31)

and let $u^{*}\in V$ be the least coniinon ancestor of $i$ and $j^{*}$ in $T’$ . $Let|$

$P$ : $i=u_{0},$ $a_{1},$ $u_{1},0_{2},$ $\cdots$ , $v_{k-1},$ $a_{k},$ $v_{k}=u^{*}$ (32)

be the path froin $i$ to $t)^{*}$ in $T’$ . Then, we have

$n(i,j^{*})=d_{l’}(?,j^{*})=d_{l}(?, v^{*})= \sum_{p=1}^{k}l(0_{p})$ (33)

since $(T’, l’)$ represents $m$ and $(T’, l’)$ is equidistant.
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Claim. For all $\rho=1,$ $\cdots.k$ , if $0_{p}\in 4_{S_{0}}$ . then we have $l(0_{p})=0$ .
(Proof) Suppose $t$ hat $0_{p}\in\lrcorner 4_{S_{0}}$ and $l(0_{p})>0$ for soiiie $\rho=1,$ $\cdots$ , $h\cdot$ . Since $0_{p}\in A_{9_{0}}$ ,

vertex $u_{p-1}$ is a $co\iota l1111Ol1$ ancestor of $i$ and soin$ej\in S_{0}’$ . Then, since $l(0_{p})>0$ we must
have $n(i,j)<t^{1}(i.j^{*})$ . which contradicts the choice (31) of $j^{*}$ . $(F_{\lrcorner}iid$ of the proof of the
Claim)

It follows from the Claim. the induction hypothesis and Lemma 2.1 that

$t_{l}((S\cup\{i\})_{0})$ $=$ $\sum_{0\in A_{S_{0}}}l(0)+\sum_{p=1}^{\Lambda}l(a_{p})$ (34)

$=$ $t,(S_{0}^{1})+d_{l}(i, u^{*})$ (35)
$=$ $c_{\alpha},(S)+u(i.j^{*})$ (36)
$=$ $c_{ll},(S\cup\{i\})$ , (37)

which completes the proof of the present theorem. $\square$

$\backslash 1^{\tau}le$ have the following corollary front Theorem 4.1.

Corollary 4.2 For any $c\iota ltm\uparrow n.etricMc_{!c}9Tga\uparrow n.e$ the Shap$leyt^{1}alue_{:}$ the nucleolus and
the $egalita7Y$.an allocation can be computed in $O(n^{2})ti\uparrow ne$ .

(Proof) By Lemma 3.4. we can construct the equidistant tree $(T’.l’)$ which represents $u\rangle$

in $O(n^{2})$ time. Then, by Lemnia 2.3, the Shaplev value, the nucleolus and the egalitarian
allocation of the game $(N, t_{l})$ can be found in time dominated by $O(n^{2})$ . Therefore, we
have $O(n^{2})tinle$ bound for computations of all these solutions. $\square$

$l\lambda^{\tau}/e$ have seen that aiiv ultrametric IICST game can be represented as a cost allocation
game on a rooted tree $(T, l)$ . The rooted tree $(T, l)$ can be derived from an equidistant
rooted tree $(T’, l’)$ by compressing the path from $0$ to the root. We call such a rooted
tree nearly equidistant. bIore precisely. a rooted tree (T. l) is called nearly $equir4ista\uparrow it$ if
for each $i_{1}n$iiiediate descendant t) of the root of $T$ , the subtree rooted at $u$ is equidistant.
Note that an equidistant rooted tree is nearly equidistant.

Theorem 4.3 For each $nltm\prime netric$ AICST game $(N. c_{u}.)$ there exists a cost allocation
$ga7ne$ $(N. t_{l})$ on a nearly $eqc\iota idi.stant$ rooted $t_{7}\cdot ee$ (T. l) snch that $c_{u},$ $=t_{l}$ . $Con?$ ) $ersely$, for
each cost allocation $ga7ne(N, t,)$ on a nearly equidistan $t$ rooted tree $(T. l)_{i}$ there exists an
ultmmetric AICST $ga7ne$ $(N. c_{u}.)$ such that $c_{u}$ . $=t,$ .

(Proof) The first statement follows from Theoreni 4.1.
$\backslash t^{Y}e$ prove the second statement. Let $(T=(V_{\backslash }A), l)$ be a nearly equidistant rooted

tree whose set of leaves is $N$ . Let $u_{p}$ $(?^{j}=0,1. \cdots , A\cdot)$ be the immediate descendants of
$t$ he root ’ and let $T_{I)}$ be the equidistant $s$ ubtree rooted at $u_{p}$ $(p=0,1, \cdots , k)$ . For each
$p=0.1$ . $\cdots$ , $k$. let us denote bv $\overline{\delta}_{p}$ the distance $d_{l}(i. r)$ from a leaf $i$ of $T_{p}$ to the root $?’$ .
$\backslash 1^{v}\prime e$ can assume without loss of generality that $\overline{\delta}_{0}\geq\overline{\delta}_{1}\geq\cdots\geq\delta_{k}$ .

Suppose that $\{\prime_{1}, \cdots , \prime_{A}., 0\}$ is a set of $new$ vertices such that $\{’ 1, \cdots , 7_{k}, 0\}\cap 1’r=\emptyset$ .
Define a rooted tree $(T’=(l^{r/}. \lrcorner 4’), l’)$ as follows.

$I^{\prime/}/$

$=$ $V\cup\{\prime_{1}.\cdots. r_{k}.0\}$ , (38)
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$A’$ $=$ $(A-\{(1J_{p}, r)|p=1, \cdots,$ た $\})\cup\{(?)p’ 7^{\cdot}p)|p=1, \cdots,$ た $\}$

$\cup\{(r_{p}, \prime_{p-1})|p=2, \cdots, k\}\cup\{(?_{1}, \uparrow^{\urcorner}), (0, r_{k})\}$ ,

$l’(a)$ $=$ $\{\begin{array}{ll}l(v_{p}, 7^{\cdot}) if 0=(v_{p’ p}) for so\iota iiep=1, \cdots, k,\delta_{0}-\delta_{1} if 0=(r_{1}, \uparrow),\overline{\delta}_{p-1}-\delta_{p} if 0=(_{p’ p-1}) for soine p=2, \cdots, k,\delta_{k} if a=(0, r_{k}),l(a) otherwise\end{array}$ $(a\in A’)$ .

(39)

(40)

It is easy to see that rooted tree $(T’, l’)$ is equidistant, and hence, it follows from
Lemnia 3.2 that there exists an ultrametric $w:N_{0}\cross N_{0}arrow \mathbb{R}_{+}$ which is represented
by $(T’, l’)$ . The construction of $(T, l)$ in the proof of Theorem 4.1 shows that we have
$c_{w}=t_{l}$ . $\square$

5 Conclusion
We showed that any ultrametric MCST game can be represented as a cost allocation game
on a rooted tree and gave an $O(n^{2})$ time algorithm to find such a representation, where
$r\iota$ is the number of players. Using this representation theorem together with complexity
results on the solutions of cost allocation games on rooted trees, we showed that the
Shapley value, the egalitarian allocation and the nucleolus of an ultrametric MCST game
can be computed in time $O(\uparrow\iota^{2})$ .
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