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Abstract

In this paper, we consider an optimization problem of maximizing a single linear function
over the set of efficient solutions to a multicriteria linear optimization problem. We show
that this problem belongs to the class $-$ rkltP-hard from the viewpoint of computational
complexity. We also show that it can still be solved in finite steps using a simple algorithm.

Key words: Global optimization, d.c. optimization, multicriteria optimization, efficient
set, $\circ\Lambda’/l’$-hardness.

1 Introduction

In real world applications of optimization, it is often difficult to select an objective to be
optimized among various conHicting ones. A typical example is the portfolio optimization,
where many investors puzzle over whether to optimize retum or risk. The best resolution
of this sticky issue is to optimize all possible objectives simultaneously. The multicriteria
optimization came from such a rose-colored idea. However, except in very rare cases, it is
impossible to optimize multiple conflicting objectives simultaneously. As a compromise, an
optimality concept newly introduced is efficiency, or Pareto optimality. Efficient solutions are
those for which any change that makes some objective better off must necessarily make others
worse off. Unfortunately, this concept is not the perfect answer to resolving the issue, because
the number of efficient solutions is in general infinite. Decision makers, $e.g.$ , investors, have to

again puzzle over which efficient solution to select. Then, how should we select the best one
from those infinitely many efficient solutions $l$ We can do it with further help of optimization,
i.e., optimization over the set of efficient solutions.

In this paper, we discuss an optimization problem of maximizing a single linear function
over the efficient set associated with a multicriteria linear optimization problem. Since the
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efficient set is usually not a convex set, but a difference of two convex sets (d.c. set), the
problem is classified as multiextremal global optimization and has multiple locally optimal
solutions. After reviewing some properties of this problem in the succeeding two sections,

we show from the viewpoint of computational complexity that the problem belongs to the
class $,$

$/V$-hard in Section 4. Although this result is rather negative against the prospect of
efficient algorithms, we show in Section $\backslash 5$ that a simple algorithm can generate a globally
optimal solution in finite steps. Lastly, we refer to some future work on this class of problems
in Section 6.

2 Multicriteria linear optimization

Let us consider the multicriteria linear optimization problem

maximize $c^{1}x$

maximize $c^{\underline{\gamma}}x$

: : (1)

maximize $c^{p}x$

subject to Ax $\leq b$ ,

where $A\in \mathbb{R}^{m\cross n},$ $b\in \mathbb{R}^{m}$ and $c^{j}\in \mathbb{R}^{n},$ $i=1,$ $\ldots,p$ . Let us denote the feasible set with

$F=\{x\in \mathbb{R}^{n}| Ax\leq b\}$ ,

and assume for simplicity that $F$ is nonempty and bounded. If $p=1$ , then (1) is just a linear
programming problem

maximize cx
(2)

subject to $x\leq F$,

where $c\in \mathbb{R}^{n}$ . Before going into the main subject, we will first describe how much (1) with
$p\geq 2$ is different from (2).

As long as the feasible set $F$ is nonempty and bounded, there is a feasible solution $x^{*}\in F$

which optimizes the objective function cx of (2). However, in general, there is no feasible
solution optimizing all objective functions $c^{1}x,$

$\ldots,$
$c^{p}x$ of (1) simultaneously. Therefore, we

need a different optimality concept for (1) than the usual one for (2).

Definition 2.1. A feasible solution $x\in F$ is said to be efficient for (1) if there is no $y\in F\backslash \{x\}$

such that
Cy $\geq$ Cx and Cy $\neq$ Cx,

where $C\in \mathbb{R}^{p\cross n}$ is the matrix whose rows are $c^{1},$ $\ldots,c^{p}$ .

An efficient solution is also called a Pareto optimal solution, and is often interpreted as
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$1^{\vee}ol1ows$ , in economics: “It is not possible to change the allocation of rcsources in such a way
as to make some people better $01^{\backslash }l$ without making others worse $0$ fl’.” The following gives a
Pareto optimality condition, which will be used for the later analysis.

Theorem 2.1. Let $x’\in F$ and 1 denote the index set ofactii $e$ (onstmints, i. e.,

$a^{j}x’=b;$ , $i\in I$ ; $a^{j}x’<b;$ , $i\not\in I$ ,

where $a^{l}\in \mathbb{R}^{\prime l}$ and $b_{i}\in \mathbb{R}$ denote the $ith$ rows ofA and $b$ , respectively. Then $x’$ is efficient if
and only if the following system has no solution $u\in \mathbb{R}$“ :

$A^{I}u\leq 0$ . $Cu$ $\geq 0$ , $Cu$ $\neq 0$ , (3)

where $A^{I}\in \mathbb{R}^{l_{1}\cross n}$ and its rows are $a^{j},$ $i\in I$ .

Proof Suppose (3) has a solution $u$ . Let $x=x’+\alpha u$ . Then there is a positive number $\alpha’$ such
that $x\in F$ for all $\alpha\in(0, \alpha’]$ . However, Cx $\geq Cx’$ and Cx $\neq Cx’$ hold because C(x-x’) $=$

$\alpha Cu$ . Hence, $x’$ is not efficient. Suppose in tum (3) has no solution. Let $u=x-x’$ for any
$x\in F$ . Since $A^{I}u\leq b_{J}$ , we have $A^{I}u\leq 0$ . Therefore, $u$ does not satisfy Cu $\geq 0and/or$ Cu $\neq 0$ .
This implies that $x’$ is efficient because Cx $\geq Cx’and/or$ Cx $\neq Cx’$ do not hold. $\square$

Let us denote the set of feasible but inefficient solutions of (1) with

$\overline{E}=$ { $x\in F|\exists y\in F$, Cy $\geq$ Cx and Cy $\neq$ Cx}.

Then the set of efficient solutions is obviously given as

$E=F\backslash \overline{E}$.

It is easy to see that $\overline{E}$ is a convex set. This implies that the efficient set $E$ is not a convex set.
Since it can be represented as the difference of two convex sets, we refer to this kind of set as
a $d.c$ . set (difference of convex sets) [8, 16].

3 Target problem and its properties

Our target problem is not (1) itself but a single criterion optimization problem associated with
(1):

maximize dx
(4)

subject to $x\in E$ ,

where $d\in \mathbb{R}^{\prime\ddagger}$ and $E\subset \mathbb{R}^{n}$ is the efficient set of (1). This is a special class of d.c. optimization
problems, and usually involves multiple locally optimal solutions different from the global
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one because the feasible set $E$ is not convex. The first appearance of (4) in the literature is due
to Philip in 72 [11]. In an interactive approach to (1), hc considered the following instance of
(4) to show the decision maker an approximate size of the efficient set $E$ ,

maximize $-c^{j}x$

subject to $x\in E$ .

The most common application of (4) is a problem

maximize $\lambda^{T}Cx$

subject to $x\in E$ ,

where $\lambda\in \mathbb{R}^{p}$ is a positive vector. This problem is, however, equivalent to a linear program-
ming problem

maximize $\lambda^{T}Cx$

(5)
subject to $x\in F$.

Actually, we can prove the following from Definition 2.1 via theorems of the altemative (see

e.g., [14] for proof).

Theorem 3.1. A vector $x’\in \mathbb{R}$“ is an efficient solution of(1) ifand onlv if there exists a vector
$\lambda>0$ such that $x’$ solves (5).

For more general cases of (4), there are a variety of algorithms developed so far, i.e., adja-
cent vertex search algorithms [4, 6, 11], nonadjacent vertex search algorithms [1], face search
algorithms [12, 13], branch-and-bound algorithms [7, 15], and so on. For a comprehensive
survey of algorithms, the reader is referred to Yamamoto [17].

4 , $\prime V_{\llcorner}^{0}\nearrow$-hardness of (4)

In [3, 5], it is pointed out that (4) is equivalent to the bilevel linear programming problem

$maximize_{X}$ $c^{1}x+d^{1}y$

subject to $y$ solves
$maximize_{y}$ $d^{2}y$ (6)

subject to Ax $+$ By $\leq b$ ,

which is known to be $r^{\prime V}$ -hard [2]. This naturally implies that (4) is also an $r$-hard
problem, but strangely enough [5] has not yet been published anywhere, and [3] provides only
an excerpt from this unpublished paper.

We will try here to prove the $r-$ hardness of (4) in a different way, without using
the equivalence between (4) and (6). For this purpose, let us consider a well-known $,$

$/V-$

complete problem:
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0-1 knapsack.

Input: $a_{j}\in Zarrow’(\}1\in Zarrow(j=1, \ldots,n),$ $b\in$ Z. and, $\in z_{+}$ .

Question: Is there a subset $N\subset\{1, \ldots, n\}$ satisfying the following?

$\sum_{j\in N}a_{j}\leq b$
and

$\sum_{j\in N}c_{j}\geq\tilde{.}$

Note that 0-1 knapsack can be solved by checking if the following set is empty or not:

$\{x\in\{0,1\}^{n}| ax\leq b_{\} cx\geq\sim\}$ ,

where $a=[a_{1}\ldots.,a_{n}]$ , and $c=[c_{1},$ $\ldots.(_{n}]$ . Associated with 0-1 knapsack, consider a multi-
criteria optimization problem:

‘maximize” $[-XXI_{y}^{y}]$

$sub.|ect$ to ax $\leq b$ , $x+2y\leq e$ (7)

cx $\leq\overline,$ $x-2y\geq 0$

$0\leq x\leq e$ , $y\geq 0$ .

where “maximize” means vector maximize, and $e\in \mathbb{R}^{n}$ is the all-ones vector.

Lemma 4.1. If $(x’,y’)$ is an efficient solution of (7), then

$!’j= \min\{x_{i}’, 1-x_{j}’\}/2$ , $j=1,$ $\ldots,n$ .

Proof. If $1_{j}’< \min\{\chi_{j}’, 1-x_{j}^{!}\}/2$ for some $j$ , then we can improve the jth and $(n+j)$ th objec-
tives by replacing $J_{j}’$ with $\min\{x_{j}’, 1-x_{j}’\}/2$ , without reducing the values of the other objec-
tives. $\square$

Lemma 4.2. Assume that $x’\in\{x\in \mathbb{R}^{n}| ax\leq b, cx\geq\backslash -. 0\leq x\leq e\}$ . Let

$\backslash ’j=\min\{x_{/}’\cdot. 1-x_{j}’\}/2$ , $j=1,$ $\ldots,n$ .

Then $(x’,y’)$ is an efficient solution of (7).

Proof. It is obvious that $(x’,y’)$ is feasible for (7). Let $J$ be a subset of $\{$ 1, $\ldots$ , $n\}$ such that
$x_{j}^{!}+2\}’j=1$ . Then we see from Theorem 2.1 that $(x’.y’)$ is efficient if there is no $(u, v)$
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satisfying
$u_{j}+2v_{j}\leq 0$ , $n_{j}\leq 0$ , $v_{j}\geq 0$ , $j\in J$

$u_{j}-2\iota_{j}\geq 0$ , $u_{j}\geq 0$ , $v_{j}\geq 0$ , $j\not\in J$

$u+v\geq 0$ , $-u+v\geq 0$

$u+v\neq 0$ , $-u+v\neq 0$ .

Select an arbitrary $j\in J$ . Then we have $u_{j}+v_{j}\leq-v_{j}\leq 0$ , and hence $u_{j}+\iota_{j}=0$ . Also

$v_{j}=u_{j}+2v_{j}\leq 0$, and hence we have $u_{j}=v_{j}=0$ . Similarly, $u_{j}=v_{j}=0$ hold for any $j\not\in J$ .
Therefore, no $(u,v)$ satisfies the system. $\square$

Theorem 4.3. Let $E\subset \mathbb{R}^{n}\cross \mathbb{R}^{n}$ and denote by $E$ the efficient set of (7). The answer of 0-1
knapsack is ‘yes’ if and only if the optimal value of the following problem is zero,

maximize $-e^{T}y$
(8)

subject to $(x,y)\in E$ .

Proof. If $x’\in\{x\in\{0,1\}^{n}| ax\leq b, cx\geq\sim\}$ , then $(x’, 0)$ is an efficient solution of (7) by

Lemma 4.2. Since the upper bound of the objective function is zero, $(x’,0)$ is an optimal

solution of (8). Conversely, suppose $(x’,0)$ is an optimal solution of (8). Since $(x’,0)$ is an
efficient solution of (7), we see from Lemma 4.2 that

$\min\{x_{j}’, 1-x_{j}’\}=0$ , $j=1,$ $\ldots,n$ .

Therefore, $x’$ belongs to $\{x\in\{0,1\}^{n}| ax\leq b, cx\geq\tilde{A}\}$ . $\square$

The, $/V$ -hardness of (4) follows immediately from this theorem.

Corollary 4.4. The problem (4) is, $4’$ -hard.

5 Face enumerating algorithm for (4)

In this section, we briefly illustrate an algorithm for solving the problem (4) in a finite steps.

Let us denote the constraint inequalities defining $F$ as

$a^{1}x\leq b_{1}$

:
$a^{m}x\leq b_{m}$ .

The algorithm proposed here is a simple one which enumerates all faces of $F$ . Namely, we
label each constraint inequality $a^{j}x\leq b_{j}$ with either ‘ active’ or ‘inactive’, in the order of indices

from $i=1$ to $m$ . Then we have an enumeration tree with $(\begin{array}{l}mn\end{array})$ leaves, each corresponding to a
face of $F$ . However, some of those are not efficient, nor even feasible, and so we need some
procedures for avoiding such an unnecessary enumeration,
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Suppose at some inteimediatc node in the enumeration tree that $a^{j}x\leq b;,$ $i\in I\subset\{1, \ldots,m\}$ ,

arc labeled ‘activc’. Also let

$I_{I}^{\vee}\neg=F\cap\{x\in \mathbb{R}^{\prime l}|a^{j}x=b;, i\in I\}$ .

Efficiency test. We can check whether $F_{I}$ is an efficient face or not, by solving a linear
programming problem.

Proposition 5.1. The following problem is either unbounded or has an optimal solution with
optimal value $\sim ero$ ,

maximize $e^{T}Cu$

(9)
subject to $A^{I}u\leq 0$ , Cu $\geq 0$ ,

where $A^{I}\in \mathbb{R}^{1I\succ n}/$ and its rows are $a^{j},$ $i\in I$ . In the latter case, any $x\in F_{I}$ is an efficient solution
of (1).

Proof. Since the feasible set of (9) is a polyhedral cone, it is either unbounded or a singleton
$\{0\}$ . In the latter case, the system (3) has no solution. Hence, from Theorem 2.1 we see that
any $x\in F_{I}$ is an efficient solution of (1). $\square$

Solution update. If $F_{I}$ has proven to be an efficient face, we next solve the following to
update the incumbent,

maximize dx
(10)

subject to $x\in F_{I}^{\gamma}$ .

Since $F_{I}$ is a face of the polytope $F$ , this problem is also a linear programming problem. We
may backtrack the enumeration tree from the current node after solving (10).

A globally optimal solution of (4) can be generated using the above two basic procedures
in the framework of branch-and-bound. A detailed description of the algorithm will be given
in a future paper, together with numerical results.

6 Future work

In this paper, we have discussed a typical global optimization problem (4), which optimizes a
linear function over an efficient set associated with a multicriteria linear optimization problem
(1). Then we have proven $;V’\ovalbox{\tt\small REJECT}$ -hardness of this class and outlined a finite algorithm for
generating a globally optimal solution.

Similar to the problem (4) is the linear multiplicative programming problem

maximize $\prod_{i=1}^{p}(c^{j}x+\gamma_{i})$

(11)

subject to $x\in F$,

236



where $\gamma_{i}$ is a scalar. $\Gamma his$ problem can also be thought of as a model for optimizing $p$ objectives
simultaneously. The only difference between (4) and (11) is in the function for evaluating $p$

objectives. In fact, an optimal solution of (11) lies in the efficient set of the multicriteria linear
optiinization problem (1). The simplest subclass is

maximize $(c^{1}x+\gamma_{1})(c^{\gamma}-x+\gamma\underline{\circ})$

(12)
subject to $x\in F$,

which is known to be solved in less than twice the time required to solve two linear program-
ming problems of the same size [9]. Nevertheless, (12) is an $4^{\nearrow}$ -hard problem [10]. In the
light of the resemblance between (4) and (11), we can predict that (4) is still .$4’$-hard even
if it is associated with a bicriteria linear optimization problem

maximize $c^{1}x$

maximize $c^{2}x$

subject to $x\in F$.

We leave proof to this prediction open for the future work.
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