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ABSTRACT. This article concems the spectral theory of many classes of oper-
ators defined by means of some inequalities. Particular emphasis is given to
the Fredholm theory and local spectral theory of these classes of operators.

1. INTRODUCTORY REMARKS

It is well-known that the class of normal operators on Hilbert spaces possesses
a very nice spectral theory. Many classes of operators defined on Hilbert spaces,
and studied more recently, are defined by means of some (order) inequalities.
These inequalities may be though obtained by relaxing the condition of normal-
ity. In this expository article we shall consider some of the spectral properties
of these classes of operators, showing that these operators share with the normal
operators on Hilbert spaces, many spectral properties, mostly of them conceming
Flredholm theory and local spectral theory. More precisely, our main interest con-
cerns the isolated points of the spectra of these operators, as well as the isolated
points of the approximate point spectra. These properties lead to the concept of
polaroid operator, and this concept together with SVEP, an important property
in local spectral theory, produce a general framework from which we can state
that the several versions of Weyl type theorems, in the classical form or in the
generalized form, hold for all these operators.

This note is a free-style paraphrase of a presentation at the RIMS conference
Prospects of non-commutative analysis in operator theory held in Kyoto, 28-30
October 2009. I would like to thank the organizer K. Tanahashi, and M. Cho, for
their kind invitation and, overall, for the generous hospitality.

2. LOCAL SPECTRAL THEORY

For many reasons the most satisfactory generalization to the general Banach
space setting of the normal operators on a Hilbert space is the concept of decom-
posable operator. In fact the class of this operators possesses a spectral theorem
and a rich lattice structure for which it is possible to develop what it is called a
local spectral theory, i.e. a local analysis of their spectra. Decomposability may
be defined in several ways, for instance by means of the concept of glocal spectral
subspace. For an arbitrary bounded linear operator on a Banach space $T\in L(X)$

and a closed subset $F$ of $\mathbb{C}$ the glocal spectral subspace $\mathcal{X}_{T}(F)$ defined as the set
of all $x\in X$ such that there is an analytic X-valued function $f$ : $\mathbb{C}\backslash Farrow X$ for
which $(\lambda I-T)f(\lambda)=x$ for all $\lambda\in \mathbb{C}\backslash F$ . A bounded operator $T\in L(X)$ is said
to have the Dunford property $(C)$ if every glocal spectral subspace is closed. A
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bounded operator $T$ is said to be decomposable if $T$ has property both properties
$(C)$ and property $(\delta)$ , where the last property means that for every open covering
$(U, V)$ of $\mathbb{C}$ we have $X=\mathcal{X}_{T}(\overline{U})+\mathcal{X}_{T}(\overline{V})$ . Standard examples of decomposable
operators are normal operators on Hilbert spaces and operators which have to-
tally disconnected spectra, as for instance compact operators. An other important
class of decomposable operator is defined as follows (see [41] for details):

Definition 2.1. An operator $T\in L(X),$ $X$ a Banach space, is said to be general-
ized scalar if there exists a continuous algebra homomorphism $\Psi$ : $C^{\infty}(\mathbb{C})arrow L(X)$

such that $\Psi(1)=I$ and $\Psi(Z)=T$ , where $C^{\infty}(\mathbb{C})$ denote the Frechet algebra of all
infinitely differentiable complex-valued functions on $\mathbb{C}$ , and $Z$ denotes the identity
function on $\mathbb{C}$ .

Two important properties in local spectral theory related to property $(C)$ are
the so-called property $(\beta)$ and the single valued extension property. Property
$(\beta)$ has been introduced by Bishop ([17]) and is defined as follows. Let $U$ be
an open subset of $\mathbb{C}$ and denote by $\mathcal{H}(U, X)$ the Frechet space of all analytic
functions $f$ : $Uarrow X$ with respect the pointwise vector space operations and the
topology of locally uniform convergence. $T\in L(X)$ has Bishop’s property $(\beta)$ if for
every open $U\subseteq \mathbb{C}$ and every sequence $(f_{n})\subseteq \mathcal{H}(U, X)$ for which $(\lambda I-T)f_{n}(\lambda)$

converges to $0$ uniformly on every compact subset of $U$ , then also $f_{n}arrow 0$ in
$\mathcal{H}(U, X)$ . Let $T$‘ denote the dual of $T$ . Property $(\beta)$ and property $(\delta)$ are dual
each other, i.e. $T\in L(X)$ satisfies $(\beta)$ (respectively $(\delta)$ ) if and only if $T’$ satisfies
$(\delta)$ (respectively, $(\beta)$ ), see [41]. Examples of operators satisfying property $(\beta)$ but
not decomposable may be found among multipliers of semi-simple commutative
Banach algebras, see [41]. Other examples will be given in this note.

An operator $T\in L(X)$ is said to have the single valued extension property at
$\lambda_{0}\in \mathbb{C}$ (abbreviated SVEP at $\lambda_{0}$ ), if for every open neighborhood $U$ of $\lambda_{0}$ , the
only analytic function $f$ : $Uarrow X$ which satisfies the equation $(\lambda I-T)f(\lambda)=0$

for all $\lambda\in U$ is the function $f\equiv 0$ . The operator $T$ is said to have SVEP if it has
SVEP at every $\lambda\in \mathbb{C}$ .

Two important subspaces in local spectral theory, as well as in Fredholm theory,
are $\mathcal{X}_{T}(\{\lambda\})$ , the glocal spectral subspace associated with the singleton set $\{\lambda\}$

and $\mathcal{X}_{T}(\mathbb{C}\backslash \{\lambda\})$ . The subspace $\mathcal{X}_{T}(\{\lambda\})$ coincides with the quasi-nilpotent part
of $\lambda I-T$ , defined as

$H(\lambda I-T)$ $:= \{x\in X : \lim_{narrow\infty}\Vert(\lambda I-T)^{n}x\Vert^{\frac{1}{n}}=0\}$ ,

while $\mathcal{X}_{T}(\mathbb{C}\backslash \{\lambda\})$ coincides with the analytic core defined as the set $K(\lambda I-T)$

of all $x\in X$ such that there exist $c>0$ and a sequence $(x_{n})$ in $X$ for which

$(\lambda I-T)x_{1}=x,$ $(\lambda I-T)x_{n+1}=x_{n}$ and $||x_{n}||\leq c^{n}||x||$ for all $n\in N$ ,

see [1]. Note that $H(\lambda I-T)$ and $K(\lambda I-T)$ are in general not closed. Moreover,
$H_{0}(\lambda I-T)$ contains the kernels $ker(\lambda I-T)^{n}$ for all $n\in \mathbb{N}$ , while $K(\lambda I-T)\subseteq$

$(\lambda I-T)^{n}(X)$ for all $n\in N$ and $(\lambda I-T)(K(\lambda I-T)=K(\lambda I-T)$ . We also have

(1) $H(\lambda I-T)$ closed $\Rightarrow T$ has SVEP at $\lambda$ .

Definition 2.2. A bounded operator $T\in L(X)$ is said to have property $(Q)$ if
$\mathcal{X}_{T}(\{\lambda\})=H(\lambda I-T)$ is closed for all $\lambda\in \mathbb{C}$ .
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We have,

property $(\beta)\Rightarrow$ property $(C)\Rightarrow$ property $(Q)\Rightarrow$ SVEP,

see [41]. Although the condition $(Q)$ seems to be rather strong, the class of op-
erators having property $(Q)$ is considerably large. A first example of operators
which satisfy this property is given by convolution operators of the group algebra
$L_{1}(G),$ $G$ an Abelian locally compact group, see Theorem 1.8 of [5]. Another
example is given by transaloid operators on Banach spaces, i.e. the operators for
which the spectral radius $r(\lambda I-T)$ is equal to $\Vert\lambda I-T\Vert$ for every $\lambda\in \mathbb{C}$ , see [25].

The following class of operators has been introduced by Oudghiri [45].

Definition 2.3. A bounded operator $T\in L(X)$ is said to belong to the class $H(p)$

if there exists a natural $p:=p(\lambda)$ such that:

(2) $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ for all $\lambda\in \mathbb{C}$ .

Clearly, every operator $T$ which belongs to the class $H(p)$ has property $(Q)$ .
In the case that $p=p(\lambda)=1$ for every $\lambda\in \mathbb{C}$ we shall say that $T$ belongs to the
class $H(1)$ . Every convolution operator of the group algebra $L^{1}(G)$ is $H(1)$ . In
the sequel we see that other important classes of operators are $H(1)[9]$ .

In the sequel, if $T\in L(H),$ $H$ a Hilbert space, we denote by $T^{*}$ the adjoint of
$T$ .

(a) Paranormal operators. Recall that $T\in L(X)$ is said paranormal if
$\Vert Tx\Vert\leq\Vert T^{2}x\Vert\Vert x\Vert$ for all $x\in X$ . The property of being paranormal is not
translation-invariant. $T\in L(X)$ is called totally pamnormal if $\lambda I-T$ is paranor-
mal for all $\lambda\in \mathbb{C}$ . Every totally paranormal operator has property $H(1)$ ([40]). In
fact, if $x\in H_{0}(\lambda I-T)$ then $\Vert(\lambda I-T)^{n}x\Vert^{1/n}arrow 0$ and since $T$ is totally paranor-
mal then $(\lambda I-T)^{n}x\Vert^{1/n}\geq||$ $(\lambda I-T)x\Vert$ . Therefore, $H_{0}(\lambda I-T)\subseteq ker(\lambda I-T)$ and
since the reverse inclusion holds for every operator then $H_{0}(\lambda I-T)=ker(\lambda I-T)$ .
Recall every paranormal operator $T$ is normaloid, i.e. $\Vert T\Vert$ is equal to the spectral
radius of $T$ .

Clearly, every totally paranormal operator has property $(Q)$ . We can say much
more: every totally paranormal operator has property $(C)$ , see for instance Propo-
sition 4.14 of [40], but it is not known if every totally paranormal operator has
property $(\beta)$ .

(b) Hyponormal operators. A bounded operator $T\in L(H)$ on a Hilbert
space is said to be hyponormal if $\Vert T^{*}x\Vert\leq\Vert Tx\Vert$ for all $x\in H$ , or equivalently
$T^{*}T\geq TT^{*}$ . It is easily seen that every hyponormal operator is totally paranor-
mal, hence $H(1)$ . The class of totally paranormal operators includes also subnor-
mal operators and quasi-normal operators, since these operators are hyponormal,
see [24] or [33].

Two operators $T\in L(X),$ $S\in L(Y),$ $X$ and $Y$ Banach spaces, are said to be
intertwined by $A\in L(X, Y)$ if $SA=AT$ ; and $A$ is said to be a quasi-affinity if it
has a trivial kernel and dense range. If $T$ and $S$ are intertwined by a quasi-affinity
then $T$ is called a quasi-affine transform of $S$ , and we write $T\prec S$ . If both $T\prec S$

and $S\prec T$ hold then $T$ and $S$ are said to be quasi-similar.
The next result shows that property $H(1)$ is preserved by quasi-affine transforms.
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Theorem 2.4. Suppose that $S\in L(Y)$ has property $H(1)$ and $T\prec S.$ Then $T$

has property $H(1)$ . Analogously, if $S\in L(Y)$ has property $H(p)$ and $T\prec S$ , then
$T$ has property $H(p)$

Proof. Suppose $S$ has property $H(1),$ $SA=AT$, with $A$ injective. If $\lambda\in \mathbb{C}$ and
$x\in H_{0}(\lambda I-T)$ then

$\Vert(\lambda I-S)^{n}Ax\Vert^{1/n}=\Vert A(\lambda I-T)^{n}x\Vert^{1/n}\leq\Vert A\Vert^{1/n}\Vert(\lambda I-T)^{n}x\Vert^{1/n}$ ,

from which it follows that $Ax\in H_{0}(\lambda I-S)=ker(\lambda I-S)$ . Hence $A(\lambda I-T)x=$

$(\lambda I-S)Ax=0$ and, since $A$ is injective, this implies that $(\lambda I-T)x=0$ , i.e.
$x\in ker(\lambda I-T)$ . Therefore $H_{0}(\lambda I-T)=ker(\lambda I-T)$ for all $\lambda\in \mathbb{C}$ .
The more general case of $H(p)$-operators is proved by a similar argument. $\blacksquare$

For $T\in L(H)$ let $T=W|T|$ be the polar decomposition of $T$ . Then $R$ $:=$

$|T|^{1/2}W|T|^{1/2}$ is said the Aluthge transforrn of $T$ . If $R=V|R|$ is the polar
decomposition of $R$ , define $\overline{T}:=|R|^{1/2}V|R|^{1/2}$ .

(c) Log-hyponormal operators. An operator $T\in L(H)$ is said to be be
log-hyponormal if $T$ is invertible and satisfies $\log(T^{*}T)-\geq\log(TT^{*})$ . If $T$ is log-
hyponormal then $\overline{T}$ is hyponormal and $T=KTK^{-1}$ , where $K$ $:=|R|^{1/2}|T|^{1/2}$ ,
see ([50], [21]). Hence $T$ is similar to a hyponormal operator and therefore, by
Theorem 2.4, has property $H(1)$ .

(d) p-hyponormal operators. An operator $T\in L(H)$ is said to be be p-
hyponormal, with $0<p\leq 1$ , if $(T^{*}T)^{p}\geq(TT^{*})^{p}$ . Every p-hyponormal operator
is paranormal, see [10] or [19]. In [20] M. Cho and J. I. Lee have given an example
of p-hyponormal operator which is not translation-invariant. Every invertible $p$.
hyponormal $T$ is quasi-similar to a log-hyponormal operator and consequently, by
Theorem 2.4, it has property $H(1)(([12], [27])$ . This is also true for p-hyponormal
operators which are not invertible, see [28]. It is well known that p-hyponormal
operators have property $(\beta)$ , see [18].

Theorem 2.5. [45] For a bounded opemtor $T\in L(X)$ the following assertions
are equivalent:

(i) $T$ has the property $H(p)$ ;
(ii) $f(T)$ has the property $H(p)$ for every $f\in \mathcal{H}(\sigma(T))$ ;

(iii) There exists an analytic function $h$ defined in an open neighborhood $\mathcal{U}$ of
$\sigma(T)$ , non identically constant in any component of $\mathcal{U}$ , such that $h(T)$ has the
property $H(p)$ .

An obvious consequence of Theorem 2.5 is that $T\in L(H)$ is algebrically hy-
ponormal (i.e. there exists a non-trivial polynomial $h$ for which $h(T)$ is hyponor-
mal) then $T$ is $H(p)$ . In [33, \S 2.72] is given an example of a hyponormal operator
$T$ for which $T^{2}$ is not hyponormal. However, $aI1$ important consequence of The-
orem 2.5 is that $T^{2}$ inherits from $T$ the property of being $H(1)$ .

Lemma 2.6. Let $T\in L(X)$ be a bounded opemtor on a Banach space X. If $T$

has the property $H(p)$ and $Y$ is a closed T-invariant subspace of $X$ then $T|Y$ has
the property $H(p)$ .
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Proof. If $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ then
$H_{0}((\lambda I-T)|Y)\subseteq ker(\lambda I-T)^{p}\cap Y=ker((\lambda I-T)|Y)^{p}$,

from which we obtain $H_{0}((\lambda I-T)|Y)=ker((\lambda I-T)|Y)^{p}$ . $\blacksquare$

An operator similar to a restriction of a generalized scalar operator to one
of its closed invariant subspaces is called subscalar. The interested reader can
find a well organized study of these operators in the Laursen and Neumann book
[41]. Note that every quasi-nilpotent generalized scalar operator is nilpotent, [41,
Proposition 1.5.10].

Theorem 2.7. Every subscalar opemtor $T\in L(X)$ is $H(p)$ .

Proof. By Lemma 2.6 and Theorem 2.4 we may assume that $T$ is generalized
scalar. Consider a continuous algebra homomorphism $\Psi$ : $C^{\infty}(\mathbb{C})arrow L(X)$ such
that $\Psi(1)=I$ and $\Psi(Z)=T$ . Let $\lambda\in \mathbb{C}$ . Since every generalized scalar operator
is decomposable and hence has the property $(C)$ , then $H_{0}(\lambda I-T)=\mathcal{X}_{T}(\{\lambda\})$ is
closed. On the other hand, $*$ if $f\in C^{\infty}(\mathbb{C})$ then $\Psi(f)(H_{0}(\lambda I-T))\subseteq H_{0}(\lambda I-T)$

because $T=\Psi(Z)$ commutes with $\Psi(f)$ . Define $\tilde{\Psi}$ : $C^{\infty}(\mathbb{C})arrow L(H_{0}(\lambda I-T))$ by

$\tilde{\Psi}(f)=\Psi(f)|H_{0}(\lambda I-T)$ for every $f\in C^{\infty}(\mathbb{C})$ .
Clearly, $T|H_{0}(\lambda I-T)$ is generalized scalar and quasi-nilpotent, so it is nilpotent.
Thus there exists $p\geq 1$ for which $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ . $\blacksquare$

Therefore, we have

subscalarity $\Rightarrow$ property $H(p)\Rightarrow$ property $(Q)\Rightarrow$ SVEP.

Classical example of subscalar operators are hyponormal operators. Theorem 2.7
implies that some other important classes of operators are $H(p)$ .

(e) M-hyponormal operators. Recall that $T\in L(H)$ is said to be M-
hyponormal if there exists $M>0$ such that $TT^{*}\leq MT^{*}T$ . Every M-hyponormal
operator is subscalar ([41, Proposition 2.4.9]) and hence $H(p)$ .

(f) w-hyponormal operators. If $T\in L(H)$ and $T=U|T|$ is the polar de-
composition, define $\hat{T}$ $:=|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ . $T\in L(H)$ is said to be w-hyponormal if
$|\hat{T}|\geq|T|\geq|\hat{T}$“ $|$ . Examples of w-hyponormal operators are p-hyponormal oper-
ators and log-hyponormal operators. All w-hyponormal operators are subscalar
(together with its Aluthge transformation, see [44]), and hence $H(p)$ . In [37,
Theorem 2.5] it is shown that for every isolated point $\lambda$ of the spectrum of a
w-hyponormal operator $T$ we have $H_{0}(\lambda I-T)=ker(\lambda I-T)$ and hence $\lambda$ is a
simple pole of the resolvent.

(g) jp-quasihyponormal operators. A Hilbert space operator $T\in L(H)$ is
said to be p-quasihypono7mal for some $0<p\leq 1$ if

$T^{*}$ I $T^{*}|^{2p}T\leq T*|T|^{2p}T$.

Every p-quasi-hyponormal is paranormal [42].
Let us denote by $p_{*}-QH$ the class of all p-quasihyponormal operators $T$ for

which $kerT\subseteq kerT*$ . Decompose $T$ into its normal and pure parts $T=T_{n}\oplus T_{p}$ ,
with respect to some decomposition $H=H_{n}\oplus H_{p}$ . Since non-zero eigenvalues of
$T$ are normal, see [51, Lemma 3], then $T_{p}$ has no eigenvalues from which it follows

9



PIETRO AIENA

that $ker(\lambda I-T)\subseteq ker(\overline{\lambda}I-T^{*})$ and $p(\lambda I-T)\leq 1$ for all $\lambda\in \mathbb{C}$ . The following
result is due to Duggal and Jeon ([30, Theorem 2.2 and Theorem 2.12]).
Theorem 2.8. Every $p_{*}-QH$ opemtor is $H(1)$ and has property $(\beta)$

Pmof. Let $T=T_{n}\oplus T_{p}$ be the decomposition of $T$ into its normal and pure
parts, where $H=H_{n}\oplus H_{p},$ $T_{n}=T|H_{n}$ and $T_{p}=T|H_{p}$ . Clearly, $H_{0}(\lambda I-T)=$

$H_{0}(\lambda I-T_{n})\oplus H_{0}(\lambda I-T_{p})$ and $T_{n}$ is $H(1)$ , since is normal, hence $H_{0}(\lambda I-T_{n})=$

$ker(\lambda I-T_{n})$ . Let $x\in H_{0}(\lambda I-T)$ and write $=x=x_{1}\oplus x_{2}$ with $x_{1}\in H_{0}(\lambda I-T_{n})$

and $x_{2}\in H_{0}(\lambda I-T_{p})$ . If $A_{p}$ $:=U_{p}|T_{p}|$ is the polar decomposition of $T_{p}$ , then
$|T_{p}|T_{p}=B_{p}|T_{p}|$ where $B_{p};=|T_{p}|U_{p}$ and since $T_{p}$ is injective then $|T_{p}|$ is a quasi-
affinity. The operator $B_{p}$ is p-hyponormal, hence $H(1)$ from which we conclude,
by Theorem 2.4, that $T_{p}$ is $H(1)$ , i.e $H_{(}\lambda I-T_{p})=ker(\lambda I-T_{p})$ . Therefore,
$x\in ker(\lambda I-T_{n})\oplus ker(\lambda I-T_{p})=ker(\lambda I-T)$ , thus $T$ is $H(1)$ .

To show property $(\beta)$ , observe first that in the decomposition $T=T_{n}\oplus T_{p}$ the
property $(\beta)$ for $T$ is equivalent to the property $(\beta)$ for $T_{p}$ . As observed $B_{p}$ is
p-hyponormal, hence satisfies property $(\beta)$ . Since $|A_{p}|$ and $U_{p}$ are injective, by
[18, Theorem 5] then $A_{p}=U_{p}|A_{p}|$ has property $(\beta)$ . $\blacksquare$

3. POLAROID OPERATORS

It is well-known that every isolated point of the spectrum of a normal operator
on a Hilbert space is a (simple) pole of the resolvent. In this section we extend
this property to some other classes of operators.

Recall that the ascent of an operator $T\in L(X)$ is defined as the smallest non-
negative integer $p:=p(T)$ such that $kerT^{p}=kerT^{p+1}$ . If such integer does not
exist we put $p(T)=\infty$ . Analogously, the descent of $T$ is defined as the smallest
non-negative integer $q$ $:=q(T)$ such that $T^{q}(X)=T^{q+1}(X)$ , and if such integer
does not exist we put $q(T)=\infty$ . It is well-known that if $p(T)$ and $q(T)$ are
both finite then $p(T)=q(T)$ , see [1, Theorem 3.3]. Moreover, if $\lambda\in \mathbb{C}$ then
$0<p(\lambda I-T)=q(\lambda I-T)<\infty$ if and only if $\lambda$ is a pole of the resolvent of $T$ .
In this case $\lambda$ is an eigenvalue of $T$ and an isolated point of the spectrum $\sigma(T)$ ,
see [38, Prop. 50.2]. We also have (see [1, Theorem 3.8])
(3) $p(\lambda I-T)<\infty\Rightarrow T$ has SVEP at $\lambda$ ,
and dually
(4) $q(\lambda I-T)<\infty\Rightarrow T^{*}$ has SVEP at $\lambda$ .

The converse of these implications holds if $\lambda I-T$ is semi-Redholm.
Definition 3.1. An opemtor $T\in L(X)$ is said to be polaroid if every isolated
point of the spectrum $\sigma(T)$ is a pole of the resolvent of $T$ .

Note that
$T$ is polaroid $\Leftrightarrow T’$ is polaroid,

and in the case of Hilbert space operators
$T$ is polaroid $\Leftrightarrow T^{*}$ is polaroid,

see [3]. In the sequel by iso $K$ we denote the set of all isolated points of $K\subseteq \mathbb{C}$ .
The condition of being polaroid may be characterized by means of the quasi-
nilpotent part:
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Theorem 3.2. $T\in L(X)$ is polamid if and only if there exists $p:=p(\lambda I-T)\in N$

such that

(5) $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ for all $\lambda\in iso\sigma(T)$ .

Proof. Suppose $T$ satisfies (5) and that $\lambda$ is an isolated point of $\sigma(T)$ . Since $\lambda$

is isolated in $\sigma(T)$ then, by [1, Theorem 3.74],
$X=H_{0}(\lambda I-T)\oplus K(\lambda I-T)=ker(\lambda I-T)^{p}\oplus K(\lambda I-T)$ ,

from which we obtain
$(\lambda I-T)^{p}(X)=(\lambda I-T)^{p}(K(\lambda I-T))=K(\lambda I-T)$ .

So $X=ker(\lambda I-T)^{p}\oplus(\lambda I-T)^{p}(X)$ , which implies, by [1, Theorem 3.6], that
$p(\lambda I-T)=q(\lambda I-T)\leq p$ , hence A is a pole of the resolvent, so that $T$ is polaroid.

Conversely, suppose that $T$ is polaroid and $\lambda$ is an isolated point of $\sigma(T)$ . Then
$\lambda$ is a pole, and if $p$ is its order then $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ , see Theorem
3.74 of [1]. $\blacksquare$

Let $\mathcal{H}_{nc}(\sigma(T))$ denote the set of all analytic functions, defined on an open
neighborhood of $\sigma(T)$ , such that $f$ is non constant on each of the components
of its domain. Define, by the classical functional calculus, $f(T)$ for every $f\in$

$\mathcal{H}_{nc}(\sigma(T))$ .

Theorem 3.3. Let $f\in \mathcal{H}_{nc}(\sigma(T))$ . If $T$ is polamid then $f(T)$ is polamid.

Proof. Let $\lambda_{0}\in$ iso $\sigma(f(T))$ . The spectral mapping theorem implies $\lambda_{0}\in$

iso $f(\sigma(T))$ . Let us show that $\lambda_{0}\in f$(iso $\sigma(T)$ ).
Select $\mu_{0}\in\sigma(T)$ such that $f(\mu_{0})=\lambda_{0}$ . Denote by $\Omega$ the connected component

of the domain of $f$ which contains $\mu_{0}$ and suppose that $\mu 0$ is not isolated in $\sigma(T)$ .
Then there exists a sequence $(\mu_{n})\subset\sigma(T)\cap\Omega$ of distinct scalars such that $\mu_{n}arrow\mu 0$ .
Since $K$ $:=\{\mu 0, \mu_{1}, \mu_{2}, \ldots\}$ is a compact subset of $\Omega$ , the principle of isolated zeros
of analytic functions says to us that $f$ may assume the value $\lambda_{0}=f(\mu_{0})$ only
a finite number of points of $K$ ; so for $n$ sufficiently large $f(\mu_{n})\neq f(\mu_{0})=\lambda_{0}$ ,
and since $f(\mu_{n})arrow f(\mu_{0})=\lambda_{0}$ it then follows that $\lambda_{0}$ is not an isolated point
of $f(\sigma(T))$ , a contradiction. Hence $\lambda_{0}=f(\mu_{0})$ , with $\mu_{0}\in$ iso $\sigma(T)$ . Since $T$ is
polaroid, $\mu_{0}$ is a pole of $T$ and by [8, Theorem 2.9]; hence $\lambda_{0}$ is a pole for $f(T)$ ,
which proves that $f(T)$ is polaroid. $\blacksquare$

In the sequel the part of an operator $T$ means the restriction of $T$ to a closed
T-invariant subspace.

Definition 3.4. An opemtor $T\in L(X)$ is said to be hereditarily polaroid if every
part of $T$ is polaroid.

It is easily seen that the property of being hereditarily polaroid is similarity
invariant, but is not preserved by a quasi-affinity. Every hereditarily polaroid
operator has SVEP, see [31, Theorem 2.8]

Corollary 3.5. Every $H(p)$ opemtor $T$ is hereditarily polaroid. If $T$ is $H(1)$ then
every isolated point of the spectrum is a simple pole of the resolvent.

Proof. Evidently, every $H(p)$ operator is polaroid and hence by Theorem 2.6
is hereditarily polaroid. If $T$ is $H(1)$ and $\lambda\in$ iso $\sigma(T)$ then $ker(\lambda I-T)^{2}\subseteq$

$H_{0}(\lambda I-T)=ker(\lambda I-T)$ , so $p(\lambda I-T)=1$ . $\blacksquare$
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A paranormal operator need not to be $H(p)$ :

Example 3.6. For instance if $T\in L(\ell_{2}(N))$ is defined by

$T(x_{1}, x_{2}, ..):=(x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots, x_{n}+x_{n+1}+x_{n+2}, \ldots)$ for all $(x_{n})\in\ell_{2}(N)$ ,

then $T$ is paranormal, while the operator
$(I-T)(x_{1}, x_{2}, ..)$ $:=(x_{2}, x_{1}+x_{3}, \ldots, x_{n}+x_{n+2}, \ldots)$ for all $(x_{n})\in\ell_{2}(N)$ ,

has ascent $p(I-T)=\infty$ . Consequently, $H_{0}(I-T)$ properly contains $ker(I-T)^{n}$

for all $n\in N$ .

However, the next result shows every paranormal operator is polaroid. Recall
first that given a class of operators $L$ , an operator $T$ is said to be algebmically $L$

if there exists a non-trivial polynomial $h$ for which $h(T)$ belongs to L.

Theorem 3.7. Every algebmically $pamno7malT\in L(H)$ is polaroid. Fuerther-
more, $T$ has SVEP.

Pmof. Note first that every quasi-nilpotent algebraically paranormal operator $T$

is nilpotent. In fact, suppose that $h$ is a polynomial for which $h(T)$ is paranormal.
Rom the spectral mapping theorem we have $\sigma(h(T))=h(\sigma(T))=\{h(O)\}$ , so
$h(O)I-h(T)$ is quasinilpotent. Since $h(O)I-h(T)$ is paranormal then $h(O)I-$
$h(T)=0$ , and hence there are some $n\in N$ and $\mu\in \mathbb{C}$ , such that

$0=h(0)I-h(T)= \mu T^{m}\prod_{i=1}^{n}(\lambda_{i}I-T)$ with $\lambda_{i}\neq 0$ .

Since all $\lambda_{i}I-T$ are invertible it then follows that $T^{m}=0$ .
We show now that for every isolated point $\lambda$ of $\sigma(T)$ we have $p(\lambda I-T)=$

$q(\lambda I-T)<\infty$ , i.e. $\lambda$ is a pole of the resolvent. If $\lambda\in$ iso $\sigma(T)$ , let $P$ denote
the spectral projection associated with $\{\lambda\},$ $M:=K(\lambda I-T)=kerP$ and $N:=$

$H_{0}(\lambda I-T)=P(X)$ . Then, by the classical spectral decomposition, $(M, N)$ is a
GKD for $\lambda I-T$ . Since $\lambda I-T|N$ is quasi-nilpotent and algebraically paranormal
then $\lambda I-T|N$ is nilpotent and hence $\lambda I-T$ is of Kato type. The SVEP for $T$

and $T^{*}$ at $\lambda$ then implies by Theorem 3.16 and Theorem 3.17 of [1] that both
$p(\lambda I-T)$ and $q(\lambda I-T)$ are finite, hence $\lambda$ is a pole of the resolvent.

To show the SVEP for $T$ has SVEP first we show the SVEP for paranormal
operators. If $\lambda\neq 0$ and $\lambda\neq\mu$ then, by Theorem 2.6 of [22], we have $\Vert x+y\Vert\geq\Vert y||$

whenever $x\in ker(\mu I-T)$ and $y\in ker(\lambda I-T)$ . It then follows that if $U$ is an
open disc and $f$ : $Uarrow X$ is an analityc function such that $0\neq f(z)\in ker$ (zl-T)
for all $z\in U$ , then $f$ fails to be continuous at every $0\neq\lambda\in U$ . Finally, if $T$ is
algebraically paranormal then $h(T)$ is paranormal for some non-trivial polynomial
$h$ , and hence $h(T)$ has SVEP. This implies that $T$ has SVEP, see [1, Theorem
2.40]. $\blacksquare$

(h) Class $A$ operators An operator $T\in L(H)$ is said to be a class $A$ opemtor
if $|T^{2}|\geq|T|^{2}$ . Every log-hyponormal operator is a class $A$ operator [34] but the
converse is no true, see [33, p. 176]. Every class $A$ operator is paranormal (an
example of a paranormal operator which is not a class $A$ operator can be found
in $[$33, p. 177] $)$ . Therefore every class $A$ operator, as well as every algebraically
class $A$ operator is polaroid.
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(i) Quasi-class $A$ operators An operator $T\in L(H)$ is said to be a quasi-
class $A$ opemtor if $T^{*}|T^{2}|T\geq\tau*|T|^{2}T$ . The quasi-class $A$ operators contains
the class of al p-quasinormal operators and the class of all class $A$ operators. In
[29] it is given an example of a quasi-class $A$ operator which is not paranormal.
Every quasi-class $A$ operator has SVEP, since $p(\lambda I-T)\leq 1$ for all $\lambda\in \mathbb{C}$ ,
while every non-zero $\lambda_{0}$ isolated point of the spectrum is a simple pole of $T$ and
$H_{0}(\lambda_{0}I-T)=ker(\lambda_{0}I-T)$ , see [29].

(h) $*$-paranormal operators A bounded operator $T\in L(H)$ is said to be
$*$ -pamnormal if $\Vert T^{*}x\Vert^{2}\leq\Vert T^{2}x\Vert$ for every unit vector $x\in H$ . Paranormality is
independent of $*$-paranormality and, evidently, hyponormal operators are both
paranormal and $*$-paranormal. It is known ([11] that

$T$ is $*-$paranormal $\Leftrightarrow T^{*2}T^{2}-2\lambda TT^{*}+\lambda^{2}\geq 0$ for each $\lambda>0$ .

Every $*$-paranormal operator $T$ is normaloid, in the sense that $\Vert T\Vert$ is equal to
the spectral radius $r(T)$ . Moreover, $ker(\lambda I-T)\subseteq ker(\overline{\lambda}I-T^{*})$ for all $\lambda\in \mathbb{C}$ ,
from which it easily follows that $p(\lambda I-T)<\infty$ for all $\lambda\in \mathbb{C}$ , thus $T$ has SVEP.

The operator $T\in L(H)$ is said to be totally $*$ -pamnormal if $\lambda I-T$ is $*-$

paranormal for every $\lambda\in \mathbb{C}$ . An example of a $*$-paranormal operator which is
not totally $*$-paranormal may be found in [36]. It is not known to the author if
every totally $*$-paranormal operator has property $(C)$ .

Theorem 3.8. [36, Lemma 2.2] Every totally $algebmically*$ -paranormal opemtor
is $H(1)$ and hence hereditarily polaroid.

Pmof. $\mu I-T$ is normaloid for all $\mu\in \mathbb{C}$ , so $\Vert(\lambda I-T)x\Vert\leq\Vert(\lambda I-T)^{n}x\Vert^{\frac{1}{n}}$ for
all $x\in X$ and $\lambda\in \mathbb{C}$ , so that $H_{0}(\lambda I-T)\subseteq ker(\lambda I-T)$ for all $\lambda\in \mathbb{C}$ . $\blacksquare$

The class of p-quasihyponormal may be extended as follows:

(e) (p,k)-quasihyponormal operators. $T\in L(H)$ is said to be $(p,k)-$

quasihyponormal for some $0<p\leq 1$ and $k\in \mathbb{N}$ if

$T^{*k}|T^{*}|^{2p}T^{k}\leq(T^{*k}|T|^{2p}T^{k}$ .

Evidently,
(I) a (1, 1)-quasihyponormal operator is quasihyponormal;
(II) a $(p, 1)$ -quasihyponormal operator is p-quasihyponormal;
(III) a $(p, 0)$ -quasihyponormal operator is p-hyponormal if $0<p<1$ and hy-
ponormal if $p=1$ .

The classes of $(p, k)$-quasihyponormal operators provide examples of hereditar-
ily polaroid operators which are not $H(p)$ :

Theorem 3.9. [51, Theorem 6] Every $(p, k)$ -quasihyponormal opemtor $T\in L(H)$

is hereditarily polamid.

It should be noted that the class of totally $*$ -paranormal operators, as well as
the class of M-hyponormal operators, are independent of the classes $(p, k)$ -quasi-
hyponormal.
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4. WEYL TYPE THEOREMS

In this section we show that the classes of operators defined in the previous
sections have a very nice spectral structure similar to that of a normal operator.

Let us before introduce some concepts $hom$ Flredholm theory. If $T\in L(X)$ let
us denote by $\alpha(T)$ the dimension of the kernel $kerT$ and by $\beta(T)$ the codimension
of the range $T(X)$ . Recall that the operator $T\in L(X)$ is said to be upper semi-
Fredholm, $T\in\Phi_{+}(X)$ , if $\alpha(T)<\infty$ and the range $T(X)$ is closed, while $T\in L(X)$

is said to be lower semi-Fredholm, $T\in\Phi_{-}(X)$ , if $\beta(T)<\infty$ . If either $T$ is upper
or lower semi-Flredholm then $T$ is said to be a semi-Fredholm opemtor, while if $T$

is both upper and lower semi-Fredholm then $T$ is said to be a Fredholm opemtor.
If $T$ is semi-Fredholm then the index of $T$ is defined by ind $(T)$ $:=\alpha(T)-\beta(T)$ .
A bounded operator $T\in L(X)$ is said to be a Weyl opemtor, $T\in W(X)$ , if $T$ is
a Fredholm operator having index $0$ . The classes of upper semi-Weyl’s and lower
semi-Weyl’s operators are defined, respectively:

$W_{+}(X)$ $:=\{T\in\Phi_{+}(X)$ : ind $T\leq 0\}$ ,

$W_{-}(X)$ $:=\{T\in\Phi_{-}(X)$ : ind $T\geq 0\}$ .
Clearly, $W(X)=W_{+}(X)\cap W_{-}(X)$ . The Weyl spectrum and the upper semi-Weyl
spectrum are defined, respectively, by

$\sigma_{w}(T):=\{\lambda\in \mathbb{C}:\lambda I-T\not\in W(X)\}$ .
and

$\sigma_{uw}(T):=\{\lambda\in \mathbb{C}:\lambda I-T\not\in W_{+}(X)\}$ .
In the sequel by $\sigma_{a}(T)$ we denote the classical appmximate point spectrum, while
$\sigma_{s}(T)$ denotes the $su7jectivity$ spectrum. It is well known that $\sigma_{a}(T’)=\sigma_{s}(T)$ and
$\sigma_{s}(T’)=\sigma_{a}(T)$ for all $T\in L(X)$ . Define

$\pi_{00}(T):\{\lambda\in$ iso $\sigma(T)$ : $0<\alpha(\lambda I-T)<\infty\}$ ,

and
$\pi_{00}^{a}(T):\{\lambda\in iso\sigma_{a}(T):0<\alpha(\lambda I-T)<\infty\}$ .

Let $p_{00}(T)$ $:=\sigma(T)\backslash \sigma_{b}(T)$ , i.e. $p_{00}(T)$ is the set of all poles of the resolvent of $T$

having finite rank. Clearly, for every $T\in L(X)$ we have
(6) $p_{00}(T)\subseteq\pi_{00}(T)\subseteq\pi_{00}^{a}(T)$ .
It should be noted that the condition $p_{00}(T)=\pi_{00}(T)$ is equivalent to saying that
there exists $p:=p(\lambda I-T)\in N$ such that
(7) $H_{0}(\lambda I-T)=ker(\lambda I-T)^{p}$ for all $\lambda\in\pi_{00}(T)$ ,

see [6, Theorem 2.2] $)$ . By Theorem 3.2 then every polaroid operator satisfies the
equality $p_{00}(T)=\pi_{00}(T)$ .

A classical result of H. Weyl [52] shows that for a normal operator $T$ we have
$\sigma(T)\backslash \sigma_{w}(T)=\pi_{00}(T)$ . For a normal operator $T$ we know that $T$ and $T^{*}$ have
SVEP. The SVEP for $T^{*}$ entails that $\sigma(T)=\sigma_{a}(T)$ , see [1, Corollary 2.45], thus
$\pi_{00}(T)=\pi_{00}^{a}(T)$ . It is easily seen that the SVEP for $T$ and $T^{*}$ entails that
$\sigma_{w}(T)=\sigma_{uw}(T)$ . The inclusion $\sigma_{uw}(T)\subseteq\sigma_{w}(T)$ holds for every operator.

Conversely if $\lambda\not\in\sigma_{uw}(T)$ then $\lambda I-T$ is semi-Fredholm and the SVEP of both
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$T$ and $\tau*$ implies that $p(\lambda I-T)=q(\lambda I-T)<\infty$ , and by [1, Theorem 3.4] this
implies that $\lambda I-T\in W(X)$ , i.e. $\lambda\not\in\sigma_{w}(T)$ . Therefore, for a normal operator
we have:

$\sigma_{a}(T)\backslash \sigma_{uw}(T)=\sigma(T)\backslash \sigma_{w}(T)=\pi_{00}(T)=\pi_{00}^{a}(T)$ .
These equalities motivate the following definitions. The symbols here used could
generate a certain confusion, but these are the most used in literature.

Definition 4.1. A bounded opemtor $T\in L(X)$ is said to satisfy Weyl’s theorem,
in symbol $(W)$ , if $\sigma(T)\backslash \sigma_{w}(T)=\pi_{00}(T)$ . $T\in L(X)$ is said to satisfy a-Weyl’s
theorem, in symbol $(aW)$ , if $\sigma_{a}(T)\backslash \sigma_{uw}(T)=\pi_{00}^{a}(T)$ . $T\in L(X)$ is said to satisfy
property $(w)$ , if $\sigma_{a}(T)\backslash \sigma_{uw}(T)=\pi_{00}(T)$ .

Weyl’s theorem for $T$ entails Bmwder’s theorem for $T$ , i.e. $\sigma_{w}(T)=\sigma_{b}(T)$ .
Note that Browder’s theorem for $T$ and Browder’s theorem for $T^{*}$ are equivalent,
since $\sigma_{w}(T)=\sigma_{w}(T^{*})$ and $\sigma_{b}(T)=\sigma_{b}(T^{*})$ . Furthermore, by [2, Theorem 3.1],

$(W)$ holds for $T\Leftrightarrow$ Browder $s$ theorem holds for $T$ and $p_{00}(T)=\pi_{00}(T)$ .
Either a-Weyl’s theorem or property $(w)$ entails Weyl’s theorem. Property $(w)$

and a-Weyl’s theorem are independent, see [7]. It should be noted that Weyl’s
theorem for $T$ in general does not imply that Weyl’s theorem holds for $f(T)$ . An
example for which Weyl’s theorem holds for $T$ but not for $T^{2}$ may be found in
[48].

The concept of semi-Fredholm operators has been generalized by Berkani ([13],
[14] $)$ in the following way: for every $T\in L(X)$ and a nonnegative integer $n$ let
us denote by $T_{[n]}$ the restriction of $T$ to $T^{n}(X)$ viewed as a map from the space
$T^{n}(X)$ into itself (we set $T_{[0]}=T$). $T\in L(X)$ is said to be semi B-Fredholm
(resp. B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm,) if for some
integer $n\geq 0$ the range $T^{n}(X)$ is closed and $T_{[n]}$ is a $semi- \mathbb{R}edholm$ operator
(resp. Redholm, upper $semi- \mathbb{R}edholm$ , lower semi-Fredholm). In this case $T_{[m]}$

is a $semi- \mathbb{R}edholm$ operator for all $m\geq n$ ([14]). This enables one to define the
index of a semi B-Fredholm as ind $T=$ ind $T_{[n]}$ . A bounded operator $T\in L(X)$

is said to be B-Weyl (respectively, upper semi B-Weyl, lower semi B-Weyl) if for
some integer $n\geq 0T^{n}(X)$ is closed and $T_{[n]}$ is Weyl (respectively, upper semi-
Weyl, lower semi-Weyl). The classes of operators previously defined generate the
B-Weyl spectrum $\sigma_{bw}(T)$ , the upper B-Weyl spectrum $\sigma_{usbw}(T)$ , and the lower
B-Weyl spectrum $\sigma_{1sbw}(T)$ .

Remark 4.2. The implications (3), (4) and (1) are equivalences whenever $\lambda I-T$

is a quasi-Fredholm operator, in particular whenever $\lambda I-T$ is a semi $B- \mathbb{R}edholm$

operator, see [8].

If $T\in L(X)$ define
$E(T):=\{\lambda\in$ iso $\sigma(T):0<\alpha(\lambda I-T)\}$ ,

and
$E^{a}(T)$ $:=\{\lambda\in$ iso $\sigma_{a}(T)$ : $0<\alpha(\lambda I-T)\}$ .

Evidently, $E(T)\subseteq E^{a}(T)$ for every $T\in L(X)$ .
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Definition 4.3. A bounded opemtor $T\in L(X)$ is said to satisfy generalized
Weyl’s theorem, in symbol $(gW)$ , if $\sigma(T)\backslash \sigma_{bw}(T)=E(T)$ . $T\in L(X)$ is said
to satisfy generalized a-Weyl’s theorem, in symbol $(gaW)$ , if $\sigma_{a}(T)\backslash \sigma_{ubw}(T)=$

$E^{a}(T)$ . $T\in L(X)$ is said to satisfy generalized property $(w)$ , in symbol $(gw)$ , if
$\sigma_{a}(T)\backslash \sigma_{ubw}(T)=E(T)$ .

In the following diagram we resume the relationships between all Weyl type
theorems:

$(gw)$ $\Rightarrow(w)\Rightarrow(W)$

$(gaW)$ $\Rightarrow(aW)\Rightarrow(W)$ ,

see [15, Theorem 2.3], [7] and [16]. Generalized property $(w)$ and generalized
a-Weyl’s theorem are also independent, see [15]. $]$furthermore,

$(gw)$ $\Rightarrow(gW)\Rightarrow(W)$

$(gaW)$ $\Rightarrow(gW)\Rightarrow(W)$ ,

see [15] and [16]. The converse of all these implications in general does not hold.

Definition 4.4. A bounded opemtor $T\in L(X)$ is said to be left polaroid if every
isolated point of $\sigma_{a}(T)$ is a left pole of the resolvent of T. $T\in L(X)$ is said to
$be$ right polaroid if every isolated point of $\sigma_{s}(T)$ is a $r^{v}\iota ght$ pole of the resolvent of
T. $T\in L(X)$ is said to be a-polaroid if every isolated point of $\sigma_{a}(T)$ is a pole of
the resolvent of $T$ .

If $T\in L(X)$ is both left and right polaroid then $T$ is polaroid, but the converse
in general does not hold. Clearly, every a-polaroid operator is both left polaroid
and polaroid. Moreover $T$ is left polaroid (respectively, right polaroid) if and only
if $\tau*$ is right polaroid (respectively, left polaroid) ([3]).

Theorem 4.5. ([3]) If $T\in L(X)\rangle X$ a Banach space, the following assertions
hold:

(i) If $T’$ has SVEP then the properties of being polaroid, a-polaroid and left
polaroid for $T$ are all equivalent.

(ii) If $T$ has SVEP then the properties of being polaroid, a-polaroid and left
polaroid for $T’$ are all equivalent.

Weyl type theorems and generalized Weyl type theorem are equivalent under
some conditions:

Theorem 4.6. ([3]) Let $T\in L(X)$ . Then we have
(i) If $T$ is left-polaroid then $(aW)$ and $(gaW)$ for $T$ are equivalent. If $T$ is

right-polaroid then $(aW)$ and $(gaW)$ for $T’$ are equivalent
(ii) If $T$ is polaroid then $(W)$ , and $(gW)$ for $T$ are equivalent. Analogously,

$(W)$ , and $(gW)$ for $T’$ are equivalent.
(iii) If $T\in L(X)$ is a-polaroid then $(aW),$ $(gaW),$ $(w),$ $(gw)$ for $T$ are equiva-

lent.
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The following result gives a very simple and useful framework for establishing
Weyl type theorems for several classes of operators:

Theorem 4.7. If $T\in L(X)$ is polaroid and either $T$ or $T$‘ has SVEP then both
$f(T)$ and $f(T’)$ satisfy Weyl’s theorem for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .

Pmof. We show first that both $T$ and $T’$ satisfy Weyl’s theorem. The SVEP
of either $T$ or $T’$ entails Browder’s theorem for $T$ , or equivalently Browder’s
theorem for $T’$ . The polaroid condition for $T$ entails that $p_{00}(T)=\pi_{00}(T)$ ,
so Weyl’s theorem holds for $T$ . If $T$ is polaroid then $T’$ is polaroid and hence
$p_{00}(T’)=\pi_{00}(T’)$ , so Weyl’s theorem holds also for $T’$ . Let now $f\in \mathcal{H}_{nc}(\sigma(T))$ .
By Theorem 3.3 $f(T)$ and $f(T’)$ are polaroid and by [1, Theorem 2.40] $f(T)$ (or
$f(T’))$ has SVEP, so $f(T)$ and $f(T’)$ satisfy Weyl’theorem by the first part of the
proof. $\blacksquare$

As a consequence of Theorem 4.6 we then obtain:

Theorem 4.8. Let $T\in L(X)$ be polamid an suppose that $f\in \mathcal{H}_{nc}(\sigma(T))$ . Then
we have

(i) If $T’$ has SVEP then $(W),$ $(aW),$ $(w),$ $(gW),$ $(gaW)$ and $(gw)$ hold for
$f(T)$ .

(ii) If $T$ has SVEP then $(W),$ $(aW),$ $(w),$ $(gW),$ $(gaW)$ and $(gw)$ hold for
$f(T’)$ .

Remark 4.9. In the case of Hilbert space operators, in Theorem 4.6, Theorem
4.7 and Theorem 4.8, the condition that $T’$ has SVEP may be replaced by the
SVEP of the Hilbert adjoint $T^{*}$ , while in the assertions concerning Weyl’s type
theorems and generalized Weyl’s theorems for $T’$ and $f(T’)$ may be replaced by
$\tau*$ and $f(T^{*})$ , respectively.

Theorem 4.10. [3] Let $T\in L(X)$ . Then we have
(i) If $T\in L(X)$ is left-polaroid and has SVEP then $(aW)$ holds for $f(T)$ , or

equivalently $(gaW)$ holds for $f(T)$ for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .
(ii) If $T\in L(X)$ is polamid and has SVEP then $(W)$ holds for $f(T)$ , or equiv-

alently $(gW)$ holds for $f(T)$ for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .

Remark 4.11. All Weyl type theorems, in their classical or in their generalized
form, have been studied by a large number of authors. The results of the previous
sections give us an unifying theoretical framework for establishing all Weyl type
theorems for a large number of the commonly considered classes of operators, for
instance all the operators cited in section 2 and section 3 of this note, excepted
the quasi class $A$ operators, for which only the non-zero isolated points of the
spectrum are poles. It should be noted that for all these classes of operators,
Weyl type theorems, or their generalized versions, have been proved, separately,
in different papers.

5. QUASI-AFFINITIES

In the previous section it has been observed that the polaroid condition on $T$

and the single-valued extension property entail Weyl’s theorem for $T$ . Moreover,
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if $T’$ has SVEP (respectively, $T$ has SVEP) then Weyl’s theorem for $T$ (respec-
tively, for $T’$ ) is equivalent to all the other variants of Weyl’s theorem. It is
easily seen that the SVEP is transmitted from $S$ to $T$ , if $T$ and $S$ are intertwined
by an injective map. Therefore, in order to have the transmission of Weyl type
theorems, it is useful to find conditions for which $S$ polaroid implies that $T$ is
polaroid.

If $T\prec S$ a classical result due to Rosenblum shows that $\sigma(S)\cap\sigma(T)\neq\emptyset$

([47]). But quasi-similarity is, in general, not sufficient to preserve the spectrum.
This happens only in some special cases, for instance if $T$ and $S$ are quasi-similar
hyponormal operators [23], or whenever $T$ and $S$ have totally disconnected spec-
tra, see [35, Corollary 2.5]. Therefore, it is not quite surprising that, if $T\prec S$ ,
the preservation of ”certain” spectral properties from $S$ to $T$ requires some other
additional conditions.

Classical examples show that in general the polaroid property is not preserved
if two bounded operators are intertwined by an injective map. For instance by [32]
or [39], there exist bounded linear operators $U,$ $V,$ $B$ on a Hilbert space $H$ such
that $BU=UV,$ $B$ and its Hilbert adjoint $B^{*}$ are injective, $V$ is quasi-nilpotent
and the spectrum of $U$ the unit disc $D(O, 1)$ . Let $T$ $:=V^{*},$ $S$ $:=U^{*}$ and $A$ $:=B^{*}$ .
Then $SA=AT$, so that $T$ and $S$ are intertwined by the injective operator $A,$ $S$

is polaroid, since $\sigma(S)=\overline{\sigma(U)}=D(0,1)$ has no isolated points, while $T$ is also
quasi-nilpotent and hence not polaroid.

Theorem 5.1. [4] Suppose that $T\in L(X),$ $S\in L(Y)$ are intertwined by an
injective map $A\in L(X, Y)$ . If $S$ is polaroid and $iso\sigma(T)\subseteq iso\sigma(S)$ then $T$ is
polaroid.

If we assume that $S$ satisfies property $(C)$ the condition iso $\sigma(T)\subseteq$ iso $\sigma(S)$

may be relaxed into the condition iso $\sigma(T)\subseteq\sigma(S)$ . In fact, in this case, by a
result of Stampli ([49]) we have $\sigma(S)\subseteq$ iso $\sigma(T)$ , and this easily implies that
iso $\sigma(T)\subseteq$ iso $\sigma(S)$ .
Corollary 5.2. Suppose that $T,$ $S\in L(H),$ $S$ totally pamnormal, or $p^{*}-QH$ ,
and $T\prec S$ . If $iso\sigma(T)\subseteq\sigma(S)$ then $T$ is polamid.

Pmof. As observed before, if $T$ is totally paranormal then $T$ is polaroid and has
property $(C)$ . Analogously, if $T$ is $p^{*}-QH$ then $T$ is polaroid and has property
$(\beta)$ . $\blacksquare$

Clearly if $T\prec S$ then $T’A’=A’S’$ , and $A’$ is also injective, since $A$ has dense
range. As an immediate consequence of Theorem 5.1 we then obtain:
Corollary 5.3. Suppose that $T\in L(X)$ and $S\in L(Y)$ are intertwined by a
quasi-affinity $A\in L(X, Y)$ and $iso\sigma(T)=iso\sigma(S)$ . Then $T$ is polaroid if and
only if $S$ is polaroid.

Taking into account the results of the previous section we also have:
Corollary 5.4. Let $T\in L(X),$ $S\in L(Y)$ be intertwined by an injective map
$A\in L(X, Y)$ . Suppose that $S$ is polaroid, has SVEP and $iso\sigma(T)\subseteq iso\sigma(S)$ .
Then we have:

(i) $f(T)$ satisfies $(gW)$ for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .
(ii) $f(T’)$ satisfies all Weyl type theorems for all $f\in H_{nc}(\sigma(T))$ .
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Note that quasi-similar operators may have unequal approximate point spec-
trum, for an example see [23].

Theorem 5.5. [4] Let $T\in L(X))S\in L(Y)$ be intertwined by an injective map
$A\in L(X, Y)$ and suppose that $iso\sigma_{a}(T)\subseteq iso\sigma_{a}(S)$ . If $S$ is left polaroid then $T$

is polaroid.

Again, by Theorem 4.8, we deduce the following result:

Corollary 5.6. Let $T\in L(X),$ $S\in L(Y)$ be intertwined by an injective map
$A\in L(X, Y)$ . Suppose that $S$ is left polaroid opemtor which has SVEP and
$iso\sigma_{a}(T)\subseteq iso\sigma_{a}(S)$ . Then we have:

(i) $f(T)$ satisfies $(W)$ or equivalently $(gW)$ for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .
(ii) $f(T’)$ satisfies all Weyl type theorems for all $f\in \mathcal{H}_{nc}(\sigma(T)).$ .
A dual version of Corollary 5.6 is the following corollary

Corollary 5.7. Let $S\in L(Y)$ and $T\in L(X)$ be intertwined by map $A\in$

$L(Y, X)$ having dense mnge. Suppose that $S$ is right-polaroid, $S’$ has SVEP and
$iso\sigma_{s}(T)\subseteq iso\sigma_{s}(S)$ . Then we have:

(i) $f(T’)$ satisfies $(gW)$ for all $f\in H_{nc}(\sigma(T))$ .
(ii) $f(T)$ satisfies all Weyl type theorems for all $f\in \mathcal{H}_{nc}(\sigma(T))$ .
Under the stronger conditions of quasi-similarity and property $(\beta)$ , the as-

sumption on the isolated points of the spectra of $T$ and $S$ in Theorem 5.1 may
be omitted:

Theorem 5.8. Let $T\in L(X),$ $S\in L(Y)$ be quasi-similar.
(i) If both $T$ and $S$ have property $(\beta)$ then $T$ is polaroid if and only if $S$ is

polamid. In this case, $T’$ is a-polamid.
(ii) If both $T$ and $S$ are Hilbert spaces opemtors for which property $(C)$ holds

then $T$ is polaroid if and only if $S$ is polaroid. In this case, $T’$ is a-polaroid.
Consequently, under the assumptions (i) or (ii) on $S$ and $T_{f}f(T)$ satisfies

$(gW)$ , while $f(T’)$ satisfies all Weyl type theorems for all $f\in H_{nc}(\sigma(T))$ .

Pmof. (i) By a result of Putinar [46] we have $\sigma(S)=\sigma(T)$ , hence iso $\sigma(T)=$

iso $\sigma(S)$ . By Corollary 5.3 we then obtain that $T$ is polaroid exactly when $S$ is
polaroid. Evidently, in this case $T’$ is polaroid. Now, property $(\beta)$ implies that $S$

has SVEP and hence also $T$ has SVEP. The SVEP for $T$ , always by [1, Corollary
2.45], entails that $\sigma(T’)=\sigma_{a}(T’)$ , and hence $T’$ is a-polaroid.

(ii) Also in this case, by a result of Stampfli [49], we have $\sigma(S)=\sigma(T)$ , and
property $(C)$ entails SVEP, so the assertion follows by using the same argument
of part (i).

The last assertion is clear from Corollary 5.4. $\blacksquare$
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