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ABSTRACT. A Banach space $E$ is injective if it satisfies the following extension
propeny: for every space $X$ and every subspace $Y$ of $X$ , each operator $T:Yarrow E$
admits an extension $\hat{T}$ : $Xarrow E$ . Many people have investigated these spaces,
but it remains unknown whether every injective Banach space is isomorphic to a
space of continuous functions $C(K)$ with $K$ a Stonian compact.

We consider two weaker forms of injectivity: $E$ is separably injective if it satisfies
the extension property when $X$ is separable; it is universally separably injective
if it satisfies the extension property when $Y$ is separable. Obviously, injective $\Rightarrow$

universally separably injective $\Rightarrow$ separably injective, but the converse implications
fail. We show that the corresponding classes of Banach spaces are much richer in
examples and structural properties than injectivity.

1. INTRODUCTION

A Banach space $E$ is said to be $\lambda$ -injective $(\lambda\geq 1)$ if it satisfies the following
extension property;

for every Banach space $X$ and every subspace $Y$ of $X$ , each operator
$T:Yarrow E$ admits an extension $\hat{T}$ : $Xarrow E$ satisfying $\Vert\hat{T}\Vert\leq\lambda\Vert T\Vert$ .

The space $E$ is injective if it is $\lambda$-injective for some $\lambda\geq 1$ .
Nachbin, Goodner, Kelley and Hasumi [21, 10, 15, 12] characterized the l-injective

spaces as those Banach spaces linearly isometrically isomorphic to a $C(K)$ space,
with $K$ a Stonian compact. However, despite the deep investigations of Argyros
[1, 2, 3, 4], Haydon [13], Rosenthal [23, 24] and other authors, finding a description
of the class of injective Banach spaces seems to be an unmanageable problem. It is
not even known if every injective space is isomorphic to a l-injective space or to a
$C(K)$ space.

We deal with two weaker forms of injectivity which admit a similar definition.
Namely, we say that $E$ is $\lambda$ -separably injective (and write $E\in\prime r_{\lambda}$ ) if it satisfies
the previously described extension property, but only for $X$ separable. Also, we say
that $E$ is $\lambda$ -universally separably injective (and write $E\in\wedge f_{\lambda}^{univ}$ ) if it satisfies the
extension property when $Y$ is separable. $Obviously,$ $\prime r_{\lambda}^{univ}\subset tr_{\lambda}$ .

The space $E$ is separably injective if $E\in\prime r$ $:= \bigcup_{\lambda\geq 1’}r_{\lambda}$ ; and it is universally
separably injective if $E\in\wedge r^{univ}$ $:= \bigcup_{\lambda>1^{\wedge}}f_{\lambda}^{univ}$ .

Our aim is to show that the classes $-\prime r$ and $\wedge f^{univ}$ are much richer in examples and
structure than the class of injective spaces. Here we include only a few proofs. For
a detailed account, we refer to [5].

Among other results, we give several characterizations of spaces in $\prime r_{\lambda}$ and prove
some basic properties of these spaces: they are $\mathcal{L}_{\infty,\lambda+}$-spaces and have Pelczy\’{n}ski’s
property (V). The space $c_{0}$ is in $lr_{2}$ and every (infinite dimensional) separable Banach
space in $\prime r$ is isomorphic to $c_{0}$ . A $C(K)$ space belongs to $\prime r_{1}$ if and only if the compact
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$K$ is an F-space; we also give some other characterizations. We also show some
stability properties of the classes $\prime r$ and $rr^{univ}$ : both have the three-space property;
and if $(E_{n})\subset/r_{\lambda}$ , then $c_{0}(E_{n})\in\prime r$ . Moreover, if $Y$ is a subspace of $X$ , then
$Y,$ $X\in\prime r$ implies $X/Y\in\prime r$ , and $X\in\wedge f^{univ}$ and $Y\in Y^{\}$ imply $X/Y\in\wedge f^{univ}$ ; thus
$p_{\infty}/c_{0}\in\wedge f^{univ}$ . The stability properties allow us to construct many new examples
of spaces in $\wedge f$ or $\wedge r^{univ}$ . Among them, we show spaces in $\wedge f^{univ}$ which are not
isomorphic to any complemented subspace of any $C(K)$ space. We also show that
an ultraproduct of Banach spaces (following a countably incomplete ultrafilter) is
injective only in the trivial case in which it is finite dimensional. However, if an
ultraproduct is a $\mathcal{L}_{\infty}$ space, then it is universally separably injective.

Notations and Conventions. Throughout the paper the ground field is $\mathbb{R}$ . Of
course, most of our results can be adapted to the complex setting. The Banach-
Mazur distance between the Banach spaces $X$ and $Y$ is

dist$B t\tau(X, Y)=\inf$ { $\Vert T\Vert\cdot\Vert T^{-1}\Vert$ : $T$ is an isomorphism between $X$ and $Y$ }.
A Banach space $X$ is a $\mathcal{L}_{\infty,\lambda}$ -space $($with $1\leq\lambda<\infty)$ if every finite dimensional

subspace $F$ of $X$ is contained in another finite dimensional subspace of $X$ whose
Banach-Mazur distance to the corresponding $\ell_{\infty}^{n}$ is at most $\lambda$ . A space $X$ is a $\mathcal{L}_{\infty}-$

space if it is a $\mathcal{L}_{\infty,\lambda}$ -space for some $\lambda\geq 1$ ; and it is a $\mathcal{L}_{\infty,\lambda+}$-space when it is a
$\mathcal{L}_{\infty,\lambda’}$ -space for all $\lambda’>\lambda$ .

We write $C(K)$ for the Banach space of all continuous functions on the compact
space $K$ , with the $\sup$ norm. Topological spaces are assumed to be Hausdorff. We
write $|S|$ for the cardinality of a set $S$ .

Let $\Gamma$ be a set. We denote by $l_{\infty}(\Gamma)$ the space of all bounded scalar functions on
$\Gamma$ , endowed with the $\sup$ norm. Moreover, $c_{0}(\Gamma)$ is the closed subspace spanned by
the characteristic functions of the singletons of F.

The density character dens(X) of a Banach space $X$ is the least cardinal $\mathfrak{m}$ for
which $X$ has a dense subset of cardinality $m$ . Observe that dens $(\ell_{\infty}(\Gamma))=2^{|\Gamma|}$ .

This paper describes joint work with Antonio Avil\’es, F\’elix Cabello, Jes\’us M.F.
Castillo and Yolanda Moreno [5]. It was presented during the R.I.M.S. Conference
Prospects of non-commutative analysis in operator theory at Kyoto University, Oc-
tober 28-30, 2009. The author thanks Profesors Muneo Cho and Kotaro Tanahashi
for their attentions during this Conference.

2. INJECTIVE SPACES

A Banach space $E$ is injective if for every Banach space $X$ and every subspace $Y$

of $X$ , each operator $T:Yarrow E$ admits an extension $\hat{T}:Xarrow E$ .

The space $E$ is l-injective if we can always get $T$ with $\Vert\hat{T}\Vert=\Vert T\Vert$ .

Remark 1. It is not diff cult to show that $E$ is injective if and only if every subspace
of a Banach space isomorphic to $E$ is complemented.

The first examples of injective Banach spaces are obtained as a direct consequence
of the Hahn-Banach Theorem:

(1) $K$ is l-injective.
(2) $\ell_{\infty}(I)$ is l-injective. Indeed, for each $T:Yarrow\ell_{\infty}(I)$ there exists a family

$(y_{i}^{*})_{i\in I}\subset Y^{*}$ so that $Ty=(y_{i}^{*}(y))$ and $\Vert T\Vert=\sup_{i\in I}\Vert x_{i}^{*}\Vert$ .
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Remark 2. Every Banach space $X$ can be embedded as a subspace of a $\ell_{\infty}(\Gamma)$ space
with $|\Gamma|=dens(X)$ . Indeed, let $\{X_{?}. : i\in\Gamma\}$ be a dense subset of $X$ and choose,
for each $i\in\Gamma$ , a norm-one $f_{i}\in X^{*}$ such that $f_{i}(x_{i})=\Vert x_{i}\Vert$ . Then the operator
$T:Xarrow\ell_{\infty}(\Gamma)$ defined by $T(x):=(f_{i}(x))$ is an isometnc embedding.

As a consequence, a Banach space $E$ is injective if and only if it is $\iota somorphic$ to
a complemented subspace of $\ell_{\infty}(\Gamma)$ for some set $\Gamma$ .

In the period 1950-58, a characterization of the l-injective Banach spaces was
obtained in several steps by Nachbin, Goodner, Kelley and Hasumi. Recall that a
topological space is said to be Stonian if the closure of each open subset is open.

Theorem 3. [21, 10, 15, 12]
Every l-injective space is isometrically isomorphic to some $C(K)$ space, where $K$

is a Stonian compact.

However, the following problems have remained open:

(1) Is every injective space isomorphic to a l-injective space?
(2) Is every injective space isomorphic to a $C(K)$ space?
(3) Which is the structure of an injective space?

Other examples of l-injective spaces.
(1) Let $I$ be a non-empty set endowed with the discrete topology. Denoting by

$\beta I$ the Stone-\v{C}ech compactification of $I,$ $C(\beta I)\equiv P_{\infty}(I)\equiv c_{0}(I)^{**}$ , a second
dual space.

It was proved by Haydon [13] that every injective space isomorphic to a
second dual is isomorphic to $\ell_{\infty}(I)$ for some set $I$ .

(2) Let $\mu$ be a finite measure for which $L_{1}(\mu)$ non-separable. Then $L_{\infty}(\mu)\equiv$

$L_{1}(\mu)^{*}$ is l-injective, but it is not isomorphic to a second dual space.
(3) Rosenthal [23] proved that there exists a Stonian compact $K_{G}$ such that

$C(K_{G})$ is not isomorphic to any dual space.

The following result of Rosenthal is helpful to show that some Banach spaces are
not injective.

Proposition 4. [24]
$(a)$ Every infinite dimensional injective Banach space contains a subspace $\iota somor-$

phic to $\ell_{\infty}$ .
$(b)$ If an injective space contains a subspace isomorphic to $c_{0}(I)$ , then it also

contains a subspace isomorphic to $P_{\infty}(I)$ .

Corollary 5. The quotient space $\ell_{\infty}/c_{0}$ is not injective.

Proof. Let $\{A_{i} : i\in I\}$ be an uncountable family of infinite subsets of $N$ such that
$A_{i}\cap A_{j}$ is finite for $i\neq j$ . The characteristic function of each $A_{i}$ corresponds to an
element $x_{i}\in\ell_{\infty}$ . Let $z_{i}$ denote the image of $x_{i}$ in $p_{\infty}/c_{0}$ .

The subspace generated by $\{z_{i}:i\in I\}$ in $\ell_{\infty}/c_{0}$ is isomorphic to $c_{0}(I)$ . However,
$p_{\infty}/c_{0}$ does not contain subspaces isomorphic to $\ell_{\infty}(I)$ . $\square$
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3. SEPARABLY INJECTIVE SPACES

Let $X$ be a Banach space and let $Y$ be a subspace of $X$ . We say that a Banach
space $E$ satisfies the $\lambda$ -extension property for $(X, Y)$ if each operator $T;Yarrow E$ has
an extension $\hat{T}:Xarrow E$ with $\Vert\hat{T}\Vert\leq\lambda\Vert T\Vert$ .

Definition 6. Let $1\leq\lambda<\infty$ .

$E$ is $\lambda$-separably injective $(E\in\prime r_{\lambda})$ if it satisfies the $\lambda$ -extension property for
$(X, Y)$ when $X$ is separable.

$E$ is $\lambda$-universally separably injective $(E\in\prime r_{\lambda}^{univ})$ if it satisfies the $\lambda$ -extension
property for $(X, Y)$ when $Y$ is separable.

Notations: $\prime r$

$:= \bigcup_{\lambda\geq 1’}T_{\lambda}$ , $\wedge r^{univ}$
$:= \bigcup_{\lambda\geq 1^{\wedge}}f_{\lambda}^{univ}$ .

Proposition 7. The following implications hold:
$E$ injective $\Rightarrow E\in\wedge f^{univ}\Rightarrow E\in\prime r\Rightarrow E\in \mathcal{L}_{\infty}$ .

All the converse implications fail, in general.

If $E$ is isomorphic to a dual space and $E\in \mathcal{L}_{\infty}$ then $E\iota s$ injective.

3.1. Earlier results. Several people have studied separably injective Banach
spaces. Here we describe some of their results.

Proposition 8. The following assertions hold:
(1) Let I be an infinite set. Then $c_{0}(I)\in\prime r_{2}$ (Sobczyk, [25]). However, $c_{0}(I)$ is

not universally separably injective.
(2) If $E\in\prime r\iota s$ infinite dimensional and sepamble then $E$ is isomorphic to $c_{0}$

(Zippin, [26]).
(3) If $E$ is infinite dimensional and $E\in\prime r_{\lambda}$ with $\lambda<2$ then $E$ is non-separable

(Ostrovskii, [22]).

Next we give a good description of the $C(K)$ spaces which are l-separably injective
due to several authors (see [5]). Recall that a compact space is a F-space if disjoint
open $F_{\sigma}$ subsets have disjoint closures.

Theorem 9. For a compact space $K$ , the following assertions are equivalent:

(a) $C(K)$ is l-separably injective;
(b) given $(f_{i})$ and $(g_{j})$ in $C(K)$ with $f_{i}\leq g_{j}$ for each $i,$ $j$ there exists $h\in C(K)$

such that $f_{i}\leq h\leq g_{j}$ for each $i,$ $j$ ;
(c) Every sequence of mutually intersecting balls in $C(K)$ has nonempty inter-

section;

(d) $K$ is a F-space;
(e) Given $f\in C(K)$ there is $u\in C(K)$ such that $f=u|f|$ .

Observe that part (e) in the previous Theorem has several applications:

(1) A closed subset of a compact F-space is a F-space; in particular, $\ell_{\infty}/c_{0}\equiv$

$C(\beta N\backslash N)\in’\Gamma_{1}$ .

(2) The space $B[0,1]$ of bounded Borel functions on $[0,1]$ belongs to $\wedge f_{1}$ .
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3.2. Characterizations and properties. We present several characterizations of
the separably injective Banach spaces and describe some stability properties of the
class $\wedge f$ that allow us to obtain new examples from the previously known ones.
Proposition 10. For a Banach space $E$ , the following assertions are equivalent:

(1) $E\in’r$ ;
(2) if $X/Y$ is separable, every $T:Yarrow E$ extends to $X$ ;
(3) $X\supset\Lambda f\simeq E,$ $X/Mseparable\Rightarrow\Lambda I$ complemented in $X$ ;
(4) if $Y\subset\ell_{1}$ , every $T:Yarrow E$ extends to $p_{1}$ .

Proposition 11. Let $E\in\prime r_{\lambda}$ infinite dimensional. Then;

(i) $E$ is a $\mathcal{L}_{\infty,\lambda}$ -space;
(ii) $E$ contains a copy of $c_{0},\cdot$

(iii) $E$ has Pelczyniski’s property (V): every non-weakly compact $T:Earrow Y$ is
an isomorphism on a subspace of $Ei_{Somo7}phic$ to $c_{0}$ .

We say that a class $C$ of Banach spaces has the three-space property if the following
condition is satisfied:

$Y\subset X$ ; $Y$. $X/Y\in C\Rightarrow X\in C$ .

We refer to [7] for information on classes of Banach spaces with the three-space
property. The following properties allow us to construct examples of separably
injective Banach spaces.

Proposition 12.
(i) The class $\wedge f$ has the three-space property;
(ii) $X\supset M,$ $X,$ $M\in\prime r\Rightarrow X/M\in\prime r,\cdot$

(iii) $(E_{n})\subset rr_{\lambda}\Rightarrow c_{0}(E_{n})\in rr_{\lambda(1+\lambda)}$ .

3.3. On universally separably injective spaces. First we describe a natural
example of universally separably injective Banach space.

Let $\Gamma$ be an uncountable set. We denote
$\ell_{\infty}^{c}(\Gamma):=$ { $(a_{i})\in\ell_{\infty}(\Gamma):supp((a_{i}))$ countable}.

Proposition 13. $p_{\infty}c(\Gamma)\in\wedge f_{1}^{univ}$ , but it is not injective.

Proof. Given an infinite countable subset $J$ of $\Gamma,$ $\{(a_{i})\in p_{\infty}^{c}(\Gamma):supp((a_{i}))\subset J\}$

is a subspace of $p_{\infty}c(\Gamma)$ isometric to $p_{\infty}$ . Therefore, every separable subspace of
$\ell_{\infty}^{c}(\Gamma)$ is contained in a subspace isometric to $\ell_{\infty}$ . From this fact, it follows that
$\ell_{\infty}^{c}(\Gamma)\in^{\wedge}f_{1}^{univ}$ .

The space $\ell_{\infty}^{c}(\Gamma)$ is not injective because it contains a subspace isomorphic to
$c_{0}(\Gamma)$ , but it does not contain subspaces isomorphic to $\ell_{\infty}(\Gamma)$ . $\square$

Surprisingly, the property that allowed us to show that $p_{\infty}^{c}(\Gamma)\in\wedge f^{univ}$ character-
izes the universally separably injective spaces.

Theorem 14 (Structure). $E\in\wedge r^{univ}$ if and only if each separable subspace of $E$ is
contained in another subspace isomorphic to $p_{\infty}$ .

The following result shows that infinite dimensional spaces in $\wedge f^{univ}$ are big.

Proposition 15. If $E\in\prime r^{univ}$ , every non-weakly compact opemtor $T:Earrow Y$ is
an isomorphism on a subspace of $E$ isomorphic to $p_{\infty}$ .
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Recall that two Banach spaces $E$ and $F$ are essentially incompamble if given
operators $T:Earrow F$ and $S:Farrow E,$ $I_{E}-ST$ (equivalently, $I_{F}-TS$ ) is a bijective
isomorphism up to some finite dimensional subspaces [8].

Corollary 16. Every infinite dimensional space $?n^{\prime r^{univ}}$ contains a subspace iso-
morphic to $p_{\infty}$ .

If $E\in\wedge f^{univ}$ and $F$ contains no subspaces isomorphic to $\ell_{\infty}$ then $E$ and $F$ are
essentially incompamble.

The following result describe some stability properties of the class $\wedge f^{univ}$

Proposition 17 (Construction of examples).
(i) The class $\wedge r^{univ}$ has the three-space property:

$Y\subset X$ ; $Y,$ $X/Y\in f^{univ}\Rightarrow X\in\prime r_{;}^{univ}$

(ii) $X\supset\Lambda f,$ $X\in\wedge r^{univ},$ $M\in\prime r\Rightarrow X/M\in l^{univ}$ .

3.4. Special properties of spaces in $\wedge f_{1}$ . Here we present some properties of
the l-separably injective Banach spaces in which special axioms of set theory are
involved.

We denote by C.H. the continuum hypothests: $\mathfrak{c}=\aleph_{1}$ , and Z.F.C. represents the
Zermelo-Fraenkel axioms, including Choice.
Proposition 18. Let $E$ be a l-separably injective space. Then

(1) $E$ is Grothendieck; i. e., every operator from $E$ into $c_{0}$ is weakly compact;
(2) $E$ is a Lindenstmuss space; i. e., $E^{*}$ is linearly isometric to some $L_{1}(\mu)$ space;
(3) if $E$ is infinite dimensional, then dens$(E)\geq c$ .

The following result is a direct application of an argument of Lindenstrauss [17].

Proposition 19. Under C.H., the classes $rr_{1}$ $and\wedge f_{1}^{univ}$ coincide.

Corollary 20. Under C.H., every $E\in\prime r_{1}$ contains a subspace isomorphic to $\ell_{\infty}$ .

In the following result we show that C.H. is necessary for the coincidence of $\prime r_{1}$

and $\wedge f_{1}^{univ}$ .

Theorem 21. Under Z.F. C. $+\mathfrak{c}=\aleph_{2}$ , there exists a compact space $K_{0}$ such that
$C(K_{0})\in\prime r_{1}$ but $C(K_{0})\not\in\wedge f_{1}^{univ}$ .

We observe that we do not know if the space $C(K_{0})$ in the previous Theorem
belongs to $T^{univ}$ .

Let $\mathcal{K}u$ denote the Banach space of universal disposition for separable spaces
constructed by Kubis [16]. Observe that $\mathcal{K}u$ is not isomorphic to any $C(K)$ space.
Proposition 22. Under C.H., $\mathcal{K}u\in f_{1}^{univ}$ .

3.5. Ideals and M-ideals. Here we give some results for closed ideals of $C(K)$

spaces and the corresponding quotients. We also give some related abstract results
in terms of M-ideals in Banach spaces.

Let $\Lambda f$ be a closed subset of a compact $K$ . Then $L$ $:=K\backslash M$ is locally compact.
Moreover, $C_{0}(L)$ is a closed ideal in $C(K)$ and the quotient space $C(K)/C_{0}(L)$ is
isometric to $C(M)$ . Consequently, we have an exact sequence

$0arrow C_{0}(L)arrow C(K)arrow C(\Lambda I)arrow 0$ .
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Theorem 23. Let $1I$ I be a closed subset of a compact $K$ .

(1) $C(K)\in r\Gamma_{\lambda}^{uni_{L}}\Rightarrow C(\Lambda I)\in\prime r_{\lambda}^{\mu nt_{\iota f}},\cdot$

(2) $C(K)\in/r_{\lambda}\Rightarrow C_{0}(L)\in r\Gamma_{2\lambda}$ .

Recall that a closed subspace $J$ of a Banach space $E$ is a M-ideal if $E^{*}=J^{\perp}\oplus_{1}N$

for some closed subspace $N$ .

Theorem 24. Let $J$ be a M-ideal in $E$ .

(1) $E\in^{\wedge}f_{\lambda}^{univ}\Rightarrow E/J\in’r_{\lambda^{2}}^{univ},\cdot$

(2) $E\in’r_{\lambda}\Rightarrow]\in’r_{2\lambda^{2}}$ .

3.6. Ultraproducts of Banach spaces. Here we give some results involving ul-
traproducts of Banach spaces. First, we recall the concept of ultraproduct. For
additional information, we refer to [14] or [9, A4].

Let $I$ be an infinite set and let $\mathcal{U}$ be a countably incomplete ultrafilter on $I$ . Recall
that $\mathcal{U}$ is countably incomplete if and only if there exists a sequence $(I_{n})$ of subsets
of $I$ in $\mathcal{U}$ such that $\bigcap_{n=1}^{\infty}I_{n}=\emptyset$ .

Let $(X_{i})_{?\in I}$ be a family of Banach spaces. Then

$l_{\infty}(X_{i}):= \{(x_{i}):x_{i}\in X_{i}. \sup_{i}\Vert x_{i}\Vert<\infty\}$ ,

endowed with the supremum norm, is a Banach space, and
$c_{0}^{\mathcal{U}}(X_{i})$ $:= \{(x_{i})\in\ell_{\infty}(X_{i}) : \lim_{iarrow \mathcal{U}}\Vert x_{i}\Vert=0\}$

is a closed subspace of $\ell_{\infty}(X_{i})$ .

The ultraproduct of $(X_{i})_{i\in I}$ following $\mathcal{U}$ is defined as the quotient

$(X_{i})_{\mathcal{U}}:= \frac{\ell_{\infty}(X_{i})}{c_{0}^{\mathcal{U}}(X_{i})}$ .

If $[x_{i}]$ is the element of $(X_{i})_{\mathcal{U}}$ which has $(x_{i})$ as a representative then
$\Vert[x_{i}]\Vert=\lim_{iarrow \mathcal{U}}\Vert x_{i}\Vert$ .

In the case $X_{i}=X$ for all $i$ , we denote the ultraproduct bv $X_{\mathcal{U}}$ , and call it the
ultrapower of $X$ following $\mathcal{U}$ .

3.7. Ultraproducts which are $\mathcal{L}_{\infty}$-spaces. Recall that $X$ is a $\mathcal{L}_{\infty}$ space if there
exists $\lambda(1\leq\lambda<\infty)$ such that every finite dimensional subspace of $X$ is contained
in another finite dimensional subspace $F$ so that dist $BtI$ $(F. \ell_{\infty}^{\dim F})\leq\lambda$ . We refer to
[6, 19] for information on $\mathcal{L}_{\infty}$-spaces.

Our first result savs that non-trivial ultraproducts are never injective.

Theorem 25. $(X_{i})_{l4}$ is injective if and only if it is finite dimensional.

Our second results says that ultraproducts which are $\mathcal{L}_{\infty}$-spaces belong to $\wedge f^{uni\iota}’$ .

Theorem 26. $(X_{\gamma})_{\mathcal{U}}\mathcal{L}_{\infty}- space\Rightarrow(X_{i})_{\mathcal{U}}\in\wedge f^{univ}$ .

Let us state some consequences:

(1) $(X_{\tau})\subset \mathcal{L}_{\infty\lambda+}\Rightarrow(X_{i})_{\mathcal{U}}\in^{\wedge}f_{\lambda}^{uni\uparrow}’$ .

(2) $(X_{j})$ Lindenstrauss spaces (e.g., $C(K)$ spaces) $\Rightarrow(X_{j})_{\mathcal{U}}\in\prime r_{1}^{uni\iota}\cdot$ .
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Let $\mathcal{G}u$ denote the Banach space of universal disposition for finite dimensional
spaces constructed by Gurarii [11].

Theorem 27. The ultrapower $(\mathcal{G}u)_{\mathcal{U}}$ belongs $to\wedge f_{1}^{univ}$ , but it is not isomorphic to a
complemented subspace of any $C(K)$ space.

It was proved by Kubis [16] that, under C.H., there is only one Banach space of
universal disposition for separable spaces with density character $\aleph_{1}$ . As a conse-
quence, we derive the following result.
Proposition 28. Under C. H., for each non-trivial ultrafilter $\mathcal{U}$ on $N_{f}\mathcal{K}u=(\mathcal{G}u)_{\mathcal{U}}$ .

3.8. Automorphic character. Let $C$ be a class of Banach spaces.
We say that a Banach space $E$ is automorphic for $C$ if, given subspaces $M_{1}$ and

$M_{2}$ of $E$ with $\Lambda I_{1}\simeq M_{2}\in C$ and dens $(E/M_{1})=$ dens $(E/M_{2})\geq\aleph_{0}$ , each bijective
isomorphism $j:M_{1}arrow M_{2}$ extends to an automorphism of $E$ .

The following list contains all known examples of Banach spaces which are auto-
morphic for all their subspaces:

(1) $\ell_{2}(I)$ (trivial);
(2) $c_{0}$ (Lindenstrauss-Rosenthal [18]);
(3) $c_{0}(I)$ (Moreno-Plichko [20]).

Remark 29. It would be interesting to know if $c_{0}$ and $p_{2}$ are the only infinite di-
mensional separable spaces which are automorphic for all their subspaces.

Let us see the relations between the automorphic character of a space and its
extension properties.
Proposition 30. Let $E$ be a Banach space automorphic for separable spaces.

(1) If $E$ contains a subspace $\iota somorphic$ to $\ell_{1}$ then $E\in\prime r$ .
(2) If $E$ contains a subspace isomorphic to $\ell_{\infty}$ then $E\in\wedge f^{univ}$ .

3.9. Automorphic character of Banach spaces in $f^{univ}$ . Recall that an oper-
ator $U$ : $Xarrow Y$ is Fredholm if the kemel $ker(U)$ and the cokemel $Y/U(X)$ are
finite dimensional (hence $U(X)$ is closed). In this case, we define the index of $U$ by

ind $(U)$ $:=$ dim ker$(U)-\dim Y/U(X)$ .

The following two Propositions were proved by Lindenstrauss and Rosenthal [18]
for $E=\ell_{\infty}$ .

Proposition 31. Let $\Lambda I$ be a subspace of $E\in\prime r^{univ}$ .

If $j$ : $Marrow E$ is an isomorphism and $E/M$ and $E/j(M)$ are reflexive, then there
are extensions $U$ : $Earrow E$ of $j$ .

All the extensions are Fredholm opemtors with the same index.
Proposition 32. Each $E\in\wedge f^{univ}$ is automorphic for separable spaces.

We say that a subspace $M$ of a Banach space $E$ is $c_{0}(I)$ -supplemented if there
exists another subspace $N$ of $E$ isomorphic to $c_{0}(I)$ such that $M\cap N=\{0\}$ and
$M+N$ closed.
Proposition 33. Every $E\in\prime r^{univ}$ is automorphic for subspaces of $P_{\infty}(I)$ which are
$c_{0}(I)$ -supplemented; i. e., if $M_{1}$ and $\lrcorner \mathfrak{h}\prime l_{2}$ are $c_{0}(I)$ -supplemented subspaces of $E$ and
$\Lambda I_{1}\simeq M_{2}\simeq N\subset P_{\infty}(I)$ , then each $\iota somorphism$ from $M_{1}$ onto $M_{2}$ extends to an
automorphism of $E$ .
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4. OPEN PROBLEMS

Here we describe some questions which remain unsolved.

(1) $X,$ $Y\in\prime r\Rightarrow X\otimes_{\in}Y\wedge\in\prime r$? ( $\otimes_{\epsilon}:\wedge$ injective tensor product)

We have a positive aiiswer to (1) in a special case: $Y\in\prime r\Rightarrow c_{0}(Y)\equiv c_{0}\otimes_{\epsilon}Y\wedge\in\prime r$ .
The corresponding implication for $\wedge f^{univ}$ fails because $X\supset c_{0}$ and $\dim Y=\infty$

imply $X\otimes_{\epsilon}Y\wedge\supset c_{0}$ complemented.
We do not know the answer in the case $X=Y=\ell_{\infty}$ .

(2) Characterize the compact spaces $K$ for which $C(K)\in\prime r^{univ}$ .

We conjecture that $K\sigma- Stonian\Rightarrow C(K)\in\prime r^{univ}$ , where $K$ is $\sigma$ -Stonian if the
closure of each open $F_{\sigma}$-set is open.

(3) Is $\ell_{\infty}/C[0,1]$ separably injective?
Note that, since $\ell_{\infty}$ is automorphic for separable spaces, the quotient $P_{\infty}/C[0,1]$

does not depend on the way we embed $C[0,1]$ into $\ell_{\infty}$ .
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