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EXTENSION OF OPERATORS WITH SEPARABLE RANGE

MANUEL GONZALEZ

ABSTRACT. A Banach space F is injective if it satisfies the following extension
property: for every space X and every subspace Y of X, each operatorT : Y — E
admits an extension T : X — E. Many people have investigated these spaces,
but it remains unknown whether every injective Banach space is isomorphic to a
space of continuous functions C(K) with K a Stonian compact.

We consider two weaker forms of injectivity: E is separably injective if it satisfies
the extension property when X is separable; it is universally separably injective
if it satisfies the extension property when Y is separable. Obviously, injective =
universally separably injective = separably injective, but the converse implications
fail. We show that the corresponding classes of Banach spaces are much richer in
examples and structural properties than injectivity.

1. INTRODUCTION

A Banach space E is said to be A-injective (A > 1) if it satisfies the following
extension property:
for every Banach space X and every subspace Y of X, each operator
T :Y — E admits an extension T : X — E satisfying ||T|| < AT

The space FE is injective if it is A-injective for some A > 1.

Nachbin, Goodner, Kelley and Hasumi [21, 10, 15, 12] characterized the 1-injective
spaces as those Banach spaces linearly isometrically isomorphic to a C(K) space,
with K a Stonian compact. However, despite the deep investigations of Argyros
(1, 2, 3, 4], Haydon [13], Rosenthal [23, 24] and other authors, finding a description
of the class of injective Banach spaces seems to be an unmanageable problem. It is
not even known if every injective space is isomorphic to a 1-injective space or to a
C(K) space.

We deal with two weaker forms of injectivity which admit a similar definition.
Namely, we say that E is A-separably injective (and write E € T,) if it satisfies
the previously described extension property, but only for X separable. Also, we say
that E is A-universally separably injective (and write E € TY™) if it satisfies the
extension property when Y is separable. Obviously, T4V C T,.

The space E is separably injective if E € T := |J,5; Tx; and it is universally
separably injective if E € T =, T{y™.

Our aim is to show that the classes T and T*™* are much richer in examples and
structure than the class of injective spaces. Here we include only a few proofs. For
a detailed account, we refer to [5].

Among other results, we give several characterizations of spaces in T, and prove
some basic properties of these spaces: they are L »-spaces and have Pelczyiiski’s
property (V). The space cg is in T3 and every (infinite dimensional) separable Banach
space in Y is isomorphic to ¢y. A C(K) space belongs to T, if and only if the compact
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K is an F-space; we also give some other characterizations. We also show some
stability properties of the classes T and Y“™?: both have the three-space property;
and if (E,) C T,, then ¢(FE,) € T. Moreover, if Y is a subspace of X, then
Y, X € T implies X/Y € T, and X € T*" and Y € T imply X/Y € T*; thus
ls/co € YUV, The stability properties allow us to construct many new examples
of spaces in T or T, Among them, we show spaces in T“*¥ which are not
isomorphic to any complemented subspace of any C'(K) space. We also show that
an ultraproduct of Banach spaces (following a countably incomplete ultrafilter) is
injective only in the trivial case in which it is finite dimensional. However, if an
ultraproduct is a £, space, then it is universally separably injective.

Notations and Conventions. Throughout the paper the ground field is R. Of
course, most of our results can be adapted to the complex setting. The Banach-
Mazur distance between the Banach spaces X and Y is

distgar(X,Y) = inf{||T|| - ||| : T is an isomorphism between X and Y}.

A Banach space X is a L, y-space (with 1 < A < 00) if every finite dimensional
subspace F' of X is contained in another finite dimensional subspace of X whose
Banach-Mazur distance to the corresponding £2 is at most A. A space X is a Lo-
space if it is a L y-space for some A > 1; and it is a L r+-space when it is a
Lo a-space for all A > A.

We write C'(K) for the Banach space of all continuous functions on the compact
space K, with the sup norm. Topological spaces are assumed to be Hausdorff. We
write |S| for the cardinality of a set S.

Let I" be a set. We denote by ¢.(I') the space of all bounded scalar functions on
I', endowed with the sup norm. Moreover, ¢o(I") is the closed subspace spanned by
the characteristic functions of the singletons of I'.

The density character dens(X) of a Banach space X is the least cardinal m for
which X has a dense subset of cardinality m. Observe that dens(/. (")) = 2/T'.

This paper describes joint work with Antonio Avilés, Félix Cabello, Jesis M.F.
Castillo and Yolanda Moreno [5]. It was presented during the R.I.LM.S. Conference
Prospects of non-commutative analysis in operator theory at Kyoto University, Oc-
tober 28-30, 2009. The author thanks Profesors Muneo Cho and Kotaro Tanahashi
for their attentions during this Conference.

2. INJECTIVE SPACES
A Banach space E is injective if for every Banach space X and every subspace Y
of X, each operator T: Y — E admits an extension 7: X — E.
The space E is 1-injective if we can always get T with ||T|| = ||T||.

Remark 1. It is not difficult to show that E is injective if and only if every subspace
of a Banach space isomorphic to E is complemented.

The first examples of injective Banach spaces are obtained as a direct consequence
of the Hahn-Banach Theorem:
(1) K is 1-injective.
(2) € (I) is l-injective. Indeed, for each T:Y — ¢, (I) there exists a family
(y7)ier C Y™ so that Ty = (y;(y)) and ||T|| = supierllz; |-
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Remark 2. Every Banach space X can be embedded as a subspace of a € (I') space
with |T'| = dens(X). Indeed, let {x; : i € '} be a dense subset of X and choose,
for each i € T, a norm-one f; € X* such that fi(x;) = ||lx;|]|. Then the operator
T:X — { () defined by T(x) := (fi(x)) is an isometric embedding.

As a consequence, a Banach space E is injective if and only if it is isomorphic to
a complemented subspace of € (I") for some set I'.

In the period 1950- 58, a characterization of the l-injective Banach spaces was
obtained in several steps by Nachbin, Goodner, Kelley and Hasumi. Recall that a
topological space is said to be Stonian if the closure of each open subset is open.

Theorem 3. 21, 10, 15, 12]
Every 1-injective space is isometrically isomorphic to some C(K) space, where K
s a Stonian compact.

However, the following problems have remained open:

(1) Is every injective space isomorphic to a l-injective space?
(2) Is every injective space isomorphic to a C(K’) space?

(3) Which is the structure of an injective space?

Other examples of 1-injective spaces.

(1) Let I be a non-empty set endowed with the discrete topology. Denoting by
BI the Stone-Cech compactification of I, C(BI) = €o(I) = co(I)**, a second
dual space.

It was proved by Haydon [13] that every injective space isomorphic to a
second dual is isomorphic to £,,(I) for some set I.

(2) Let u be a finite measure for which L;(u) non-separable. Then Lo (u) =
L,(p)* is 1-injective, but it is not isomorphic to a second dual space.

(3) Rosenthal [23] proved that there exists a Stonian compact Kg such that
C(K¢) is not isomorphic to any dual space.

The following result of Rosenthal is helpful to show that some Banach spaces are
not injective.

Proposition 4. [24]

(a) Every infinite dimensional injective Banach space contains a subspace isomor-
phic to {.

(b) If an injective space contains a subspace isomorphic to cq(I), then it also
contains a subspace isomorphic to € (I).

Corollary 5. The quotient space ¢ /cq is not injective.

Proof. Let {A; : 7 € I} be an uncountable family of infinite subsets of N such that
A, N Aj is finite for ¢ # j. The characteristic function of each A; corresponds to an
element x; € ¢,,. Let z; denote the image of z; in £, /cy.

The subspace generated by {z; : ¢ € I'} in /¢y is isomorphic to ¢o(I). However,
¢ /co does not contain subspaces isomorphic to €. (7). O
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3. SEPARABLY INJECTIVE SPACES

Let X be a Banach space and let Y be a subspace of X. We say that a Banach
space E satisfies the A-extension property for (X,Y) if each operator T: Y — F has
an extension T: X — E with ||T|] < \||T|.

Definition 6. Let 1 < )\ < 0.

E is A-separably injective (E € Y,) if it satisfies the A-extension property for
(X,Y) when X is separable.

E is A-universally separably injective (E € YT{™) if it satisfies the A-extension
property for (X,Y) whenY is separable.
Notations: T :=J,,; Ts, T =, T¥™.

Proposition 7. The following implications hold:

E injective = Ee€ T = EFe Y = E¢€ Lo

All the converse implications fail, in general.

If E is isomorphic to a dual space and E € L, then E is injective.
3.1. Earlier results. Several people have studied separably injective Banach
spaces. Here we describe some of their results.

Proposition 8. The following assertions hold:

(1) Let I be an infinite set. Then co(I) € To (Sobezyk, [25]). However, co(I) is
not unwversally separably injective.
(2) If E € T is infinite dimensional and separable then E s isomorphic to co

(Zippin, [26]).
(3) If E is infinite dimensional and E € Y, with A < 2 then E is non-separable
(Ostrovskii, [22]).

Next we give a good description of the C(K') spaces which are 1-separably injective
due to several authors (see [5]). Recall that a compact space is a F-space if disjoint
open F, subsets have disjoint closures.

Theorem 9. For a compact space K, the following assertions are equivalent:

- (a) C(K) is 1-separably injective;
(b) given (f;) and (g;) in C(K) with f; < g; for each i,j there erists h € C(K)
such that f; < h < g; for each i,j;

(c) Every sequence of mutually intersecting balls in C(K) has nonempty inter-
section;

(d) K is a F-space;
(e) Given f € C(K) there is u € C(K) such that f = u|f|.

Observe that part (e) in the previous Theorem has several applications:

(1) A closed subset of a compact F-space is a F-space; in particular, ¢, /co =
C(BN\N) e 71;.
(2) The space BI0, 1] of bounded Borel functions on [0, 1] belongs to T;.
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3.2. Characterizations and properties. We present several characterizations of
the separably injective Banach spaces and describe some stability properties of the
class T that allow us to obtain new examples from the previously known ones.

Proposition 10. For a Banach space E, the following assertions are equivalent:
(1) EeT;
(2) if X/Y is separable, every T : Y — E extends to X;
(3) X DM ~FE, X/M separable = M complemented in X;
(4) f Y C 4y, every T : Y — E extends to ¢;.

Proposition 11. Let E € Ty infinite dimensional. Then:
(i) E is a Lo r-space;
(i) E contains a copy of cy;
(ili) E has Pelczyriski’s property (V): every non-weakly compact T : E — Y is
an isomorphism on a subspace of E isomorphic to cg.

We say that a class C of Banach spaces has the three-space property if the following
condition is satisfied:

YCcX;, Y X/YeC= XeC.

We refer to [7] for information on classes of Banach spaces with the three-space
property. The following properties allow us to construct examples of separably
injective Banach spaces.

Proposition 12.
(i) The class T has the three-space property;
i) XOoOM, X, MeT=X/MeT,
(lll) (En) C T,\ = C()(En) € T)\(1+,\).
3.3. On universally separably injective spaces. First we describe a natural

example of universally separably injective Banach space.
Let I' be an uncountable set. We denote

05, (T) := {(a;) € €o(T) : supp ((a;)) countable}.
Proposition 13. ¢5 (I') € T, but it is not injective.

Proof. Given an infinite countable subset J of I, {(a;) € ¢5,(T) : supp ((a;)) C J}
is a subspace of ¢S (I") isometric to ¢o. Therefore, every separable subspace of
¢5 (I") is contained in a subspace isometric to ¢,,. From this fact, it follows that
¢ () € Tyniv,

The space ¢5_(I') is not injective because it contains a subspace isomorphic to
co(I"), but it does not contain subspaces isomorphic to ¢, (). O

Surprisingly, the property that allowed us to show that ¢ (I') € T*™ character-
izes the universally separably injective spaces.

Theorem 14 (Structure). E € T** if and only if each separable subspace of E is
contained in another subspace isomorphic to {..

The following result shows that infinite dimensional spaces in T%"" are big.

Proposition 15. If E € T every non-weakly compact operator T : E — Y s
an isomorphism on a subspace of E isomorphic to €.
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Recall that two Banach spaces E and F are essentially incomparable if given
operators T': F — Fand S : F — E, Ig — ST (equivalently, Ir — T'S) is a bijective
isomorphism up to some finite dimensional subspaces [8].

Corollary 16. Every infinite dimensional space in T contains a subspace iso-
morphic to {.

If E € YY" and F contains no subspaces isomorphic to fo then E and F are
essentially incomparable.

The following result describe some stability properties of the class Tu"

Proposition 17 (Construction of examples).

(i) The class Y™ has the three-space property:

YCX; Y, X/YeTwmv = X GVT”""”;

(i) XOM, XeXT"™ MeY = X/Me Y,
3.4. Special properties of spaces in T;. Here we present some properties of
the 1-separably injective Banach spaces in which special axioms of set theory are
involved.

We denote by C.H. the continuum hypothesis: ¢ = N;, and Z.F.C. represents the

Zermelo-Fraenkel azioms, including Choice.
Proposition 18. Let E be a 1-separably injective space. Then

(1) E is Grothendieck; i.e., every operator from E into co is weakly compact;
(2) E is a Lindenstrauss space; i.e., E* is linearly isometric to some L1(1) space;
(3) if E is infinite dimenstonal, then dens(E) > .

The following result is a direct application of an argument of Lindenstrauss [17].
Proposition 19. Under C.H., the classes T, and T¥™ coincide.
Corollary 20. Under C.H., every E € T contains a subspace isomorphic to {.

In the following result we show that C.H. is necessary for the coincidence of T;
and YTy,
Theorem 21. Under Z.F.C. + ¢ = N,, there exists a compact space K, such that
C(Ko) e T, but C(Ko) ¢ T}‘nw.

We observe that we do not know if the space C(Kj) in the previous Theorem
belongs to Tu™v,

Let Ku denote the Banach space of universal disposition for separable spaces
constructed by Kubis [16]. Observe that Ku is not isomorphic to any C(K) space.

Proposition 22. Under C.H., Ku € T,

3.5. Ideals and M -ideals. Here we give some results for closed ideals of C(K)
spaces and the corresponding quotients. We also give some related abstract results
in terms of M-ideals in Banach spaces.

Let M be a closed subset of a compact K. Then L := K\ M is locally compact.
Moreover, Cy(L) is a closed ideal in C(K) and the quotient space C(K)/Co(L) is
isometric to C(M). Consequently, we have an exact sequence

0 — Co(L) — C(K) — C(M) — 0.
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Theorem 23. Let Al be a closed subset of a compact K.
(1) C([\') € Tgniv = C(A[) c Txniv’,
(2) C(K) € Ty = Co(L) € Ta.

Recall that a closed subspace J of a Banach space E is a M-ideal if E* = J*@®&; N
for some closed subspace N.

Theorem 24. Let J be a M-ideal in E.
(1) E e T',("i” = FE/J e T;f;””;
(2) EG T,\ => J E Tz)\'z.

3.6. Ultraproducts of Banach spaces. Here we give some results involving ul-
traproducts of Banach spaces. First, we recall the concept of ultraproduct. For
additional information, we refer to [14] or [9, A4].

Let I be an infinite set and let U be a countably incomplete ultrafilter on /. Recall
that U is countably incomplete if and only if there exists a sequence (/7,,) of subsets
of I in U such that N>, I, = 0.

Let (X;);c; be a family of Banach spaces. Then

loo(Xi) = {(:) 1 7 € X, sup ||z;]| < o0},
endowed with the supremum norm, is a Banach ;pace, and

co (Xi) := {(z:) € loo(Xy) : lim |lz;]| = O}
is a closed subspace of ¢, (X;).
The ultraproduct of (X;)ic; following U is defined as the quotient

If [z;] is the element of (X;)y which has (z;) as a representative then

Il = lim .

In the case X; = X for all i, we denote the ultraproduct by X;,, and call it the
ultrapower of X following U.

3.7. Ultraproducts which are L_-spaces. Recall that X is a £, space if there
exists A (1 < A < oco) such that every finite dimensional subspace of X is contained
in another finite dimensional subspace F so that distga;(F. ég;mf‘ ) < A. We refer to
[6, 19] for information on L..-spaces.

Our first result says that non-trivial ultraproducts are never injective.

Theorem 25. (X;)y is injective if and only if it is finite dimensional.
Our second results says that ultraproducts which are £..-spaces belong to Tu™,
Theorem 26. (X;)y Lo-space = (X;)y € T,
Let us state some consequences:
(1) (X3) T Loony = (XiJu € TR
(2) (X;) Lindenstrauss spaces (e.g.. C(K) spaces) = (X;)y € Ty™".
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Let Gu denote the Banach space of universal disposition for finite dimensional
spaces constructed by Gurarii [11].

Theorem 27. The ultrapower (Gu)y belongs to Y™, but it is not isomorphic to a
complemented subspace of any C(K) space.

It was proved by Kubis [16] that, under C.H., there is only one Banach space of
universal disposition for separable spaces with density character N;. As a conse-
quence, we derive the following result.

Proposition 28. Under C.H., for each non-trivial ultrafilter U on N, Ku = (Gu)y.-

3.8. Automorphic character. Let C be a class of Banach spaces. ,

We say that a Banach space E is automorphic for C if, given subspaces M; and
M, of E with M, ~ M, € C and dens(E/M;) = dens(E/M,) > Ny, each bijective
isomorphism j : M; — M, extends to an automorphism of E.

The following list contains all known examples of Banach spaces which are auto-
morphic for all their subspaces:
(1) 42(I) (trivial);
(2) co (Lindenstrauss-Rosenthal [18]);
(3) co(I) (Moreno-Plichko [20]).

Remark 29. It would be interesting to know if co and ¢y are the only infinite di-
mensional separable spaces which are automorphic for all their subspaces.

Let us see the relations between the automorphic character of a space and its
extension properties.

Proposition 30. Let E be a Banach space automorphic for separable spaces.
(1) If E contains a subspace isomorphic to £, then E € T.
(2) If E contains a subspace isomorphic to {s then E € YU,

3.9. Automorphic character of Banach spaces in T“". Recall that an oper-
ator U : X — Y is Fredholm if the kernel ker(U) and the cokernel Y/U(X) are
finite dimensional (hence U(X) is closed). In this case, we define the indezx of U by

ind(U) := dimker(U) — dimY/U(X).

The following two Propositions were proved by Lindenstrauss and Rosenthal [18]
for E = V.

Proposition 31. Let M be a subspace of E € T,

If 7 : M — E is an isomorphism and E/M and E/j(M) are reflerive, then there
are extensions U : E — FE of j.

All the extensions are Fredholm operators with the same indez.

Proposition 32. Each E € Y™ is automorphic for separable spaces.

We say that a subspace M of a Banach space E is co(I)-supplemented if there
exists another subspace N of E isomorphic to co(/) such that M N N = {0} and
M + N closed.

Proposition 33. Every E € T“"V is automorphic for subspaces of €x(I) which are
co(I)-supplemented; i.e., if My and M, are co(I)-supplemented subspaces of E and
M; ~ My ~ N C £ (I), then each isomorphism from M, onto M, extends to an
automorphism of E.
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4. OPEN PROBLEMS

Here we describe some questions which remain unsolved.

(1) X, Y €T = X®.Y € Y? (®,: injective tensor product)

We have a positive answer to (1) in a special case: Y € T = ¢4(Y) = co®.Y € T.

The corresponding implication for YT¥* fails because X D ¢g and dimY = oo
imply X®.Y D ¢y complemented.

We do not know the answer in the case X =Y = ¢.

(2) Characterize the compact spaces K for which C(K) € T,

We conjecture that K o-Stonian = C(K) € T“"* where K is o-Stonian if the
closure of each open F-set is open.

(3) Is £5/C|0, 1] separably injective?
Note that, since ¢, is automorphic for separable spaces, the quotient ¢.,/C|0, 1]
does not depend on the way we embed C[0, 1] into /.
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