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CONCAVE FUNCTIONS OF POSITIVE OPERATORS, SUMS AND
CONGRUENCES

JEAN-CHRISTOPHE BOURIN and EUN-YOUNG LEE

ABSTRACT. Let $A$ , B. $Z$ be positive semidefinite matrices of same size and suppose $Z$

is expansive, i.e., $Z\geq I$ . Two remarkable inequalities are
$\Vert f(A+B)\Vert\leq\Vert f(A)+f(B)\Vert$ and $\Vert f(ZAZ)\Vert\leq\Vert Zf(A)Z\Vert$

for all non-negative concave function $f$ on $[0$ . $\propto)$ and all svmmetric norms $\Vert\cdot||$ (in

particular for all Schatten p-norms). In this paper we survey several related results and
we show that these inequalities are two aspects of a unique theorem. For the operator
norm, our result also bolds for operators on an infiuiite dimensional Hilbert space.

INTRODUCTION

A good part of Matrix Analysis consists in establishing results for Hermitian operators
considered as generalized real numbers or functions. In Section 1 we recall two recent
norm inequalities which are matrix versions of the obvious scalars inequalities

$f(za)\leq zf(a)$ and $f(a+b)\leq f(a)+f(b)$

for non-negative concave functions $f$ on $[0$ . $\infty)$ and scalars $a$ . $b\geq 0$ and $\approx\geq 1$ . In
Section 2 we unif.y and generalize these norm inequalities. The norms considered are the
symmetric (or unitarily invariant) norms. Such norms satisfy $\Vert A\Vert=\Vert UAV\Vert$ for all $A$ and
all unitaries U. $V$ . Here and in the sequel capital letters $A$ , B. . . . , $Z$ mean n-by-n complex
matrices, or operators on an n-dimensional Hilbert space. If $A$ is positive (semi-definite),
resp. positive definite. we write $A\geq 0$ , resp. $A>0$ . If $Z^{*}Z$ dominates the identity $I$ , we
sav that $Z$ is expansive. As a corollary of Section 2 we have:

Theorem 0.1. Let $\{A_{i}\}_{\dot{\iota}=1}^{rn}$ be positive and let $\{Z_{i}\}_{i=1}^{\mathfrak{s}\mathfrak{n}}$ be expansive. Then, for all sym-
metric norms and all $p>1$ ,

$\Vert\sum z;A_{i}^{p}Z_{i}\Vert\leq\Vert(\sum ZfA_{i}Z_{i})^{p}\Vert$ .

The sum is over the first $m$ integers. If $Z_{i}=I$ for all $i$ . this is a famous result of Ando and
Zhan [1] and of Bhatia and Kittaneh [3] in case of integer exponents. The very special
case $Tr(A_{1}^{P}+A_{2}^{p})\leq Tr(A_{1}+A_{2})^{p}$ is Mc-Carthy’s inequalitv [13, p. 20].

1. Two NORM INEQUALITIES

The cone of positive operators is invariant under congruences $Aarrow S^{*}AS$ and there
are several inequalities involving congruences with a contraction $Z$ and concave functions

$1\underline{)}\{K)0$ AMS subject $C^{t}1assific\cdot ation$ : $15A60,47A30$ .
Key words: Hermitian operators, symmetric norms, operator inequalities.

数理解析研究所講究録
第 1678巻 2010年 40-46 40



JEAN-CHRISTOPHE BOURIN and EUN-YOUNG LEE

$f$ : [$0_{1}\infty)arrow[0, \infty)$ . Brown-Kosaki’s trace inequality states

$Trf(Z^{*}AZ)\geq TrZ^{*}f(A)Z$ (1.1)

Actually a stronger result holds [8] (see also [4]), there exists a unitary $V$ such that

$f(Z^{*}AZ)\geq VZ^{*}f(A)ZV^{*}$ . (1.2)

This means that the eigenvalues of $f(Z^{*}AZ)$ dominate those of $Z^{*}f(A)Z$ . Further, if $f$

operator concave (equivalently operator monotone [10]), then Hansen’s operator inequality
holds [9, 10],

$f(Z^{*}AZ)\geq Z^{*}f(A)Z^{*}$ . (1.3)

What happens to (1.1), (1.2), (1.3) when $Z$ is no longer contractive but, in a opposite way,
is expansive ? It is obvious that (1.3) is reversed, meanwhile (1.2) can not be reversed
though a non-trivial proof [4] shows that (1.1) is reversed:

$Trf(Z^{*}AZ)\leq TrZ^{*}f(A)Z$. (1.4)

However a quite unexpected phenomena occurs: (1.1) can be extended to all Hermitians
$A$ and all concave functions $f$ on the real line with $f(O)\geq 0$ , but in (1.4) the assumption
$A\geq 0$ can not be dropped. The good statement for expansive congruences requires
positivity and involves symmetric (or unitarily invariant) norms $\Vert\cdot\Vert$ . We have [5]:

Theorem 1.1. Let $f$ : $[0, \infty)arrow[0, \infty)$ be a concave function. Let $A\geq 0$ and let $Z$ be
expansive. Then, for all symmetric norms,

$\Vert f(Z^{*}AZ)\Vert\leq\Vert Z^{*}f(A)Z\Vert$ .

Besides these inequalities for congruences, there are nice subadditivity results for con-
cave functions $f$ : $[0, \infty)arrow[0, \infty)$ and sums of positive operators. The most elementary
one is a trace inequality companion to (1.1) credited to Rotfel’d [12]: For $A,$ $B\geq 0$ ,

$Trf(A+B)\leq Trf(A)+f(B)$ . (1.5)

The operator inequality $f(A+B)\leq f(A)+f(B)$ may not hold even if $f$ is operator
concave. However, a remarkable subadditivity inequality related to (1.2) is shown in [2]:
There exist unitaries $U,$ $V$ such that

$f(A+B)\leq Uf(A)U^{*}+Vf(B)V^{*}$ . (1.6)

From this, it follows that the map

$xarrow\Vert f(|X|)\Vert$

is subadditive, see [7]. This was first noted by Uchiyama [14]. In case of the trace norm,
this extension of (1.5) is Rotfel’d’s theorem [12]. Of course (1.6) considerably strenghtens
(1.5). Another improvement of (1.5), companion to Theorem 0.1, is shown in [7]:

Theorem 1.2. Let $A,$ $B\geq 0$ and let $f$ : $[0, \infty)arrow[0, \infty)$ be a concave function. Then,

for all symmetric norms,

$\Vert f(A+B)\Vert\leq\Vert f(A)+f(B)\Vert$ .
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In case of the operator norm, Kosem [11] gave a short proof. The general case is consid-
erably more difficult: When $f$ is operator $conc\cdot ave$ , Theorem 1.3 had first $|)een$ proved by
Ando and Zhan [1] by using integral representation of operator concave functions and a
delicate process. The proof given in [7] is much more elementary.

2. COMBINED RESULT AND PROOF

We can naturally embodied Theorem 1.1 and Theorem 1.2 (and its version for sums of
several operators) in a unique statement:

Theorem 2.1. Let $\{A_{i}\}_{i=1}^{m}$ be positive, let $\{Z_{i}\}_{i=1}^{m}$ be expansive and let $f(t)$ be a non-
negative concave function on $[0, \infty)$ . Then, for all symmetrt $c$ norms,

$\Vert f(\sum Z_{i}^{*}A_{i}Z_{i})\Vert\leq\Vert\sum Z_{i}^{*}f(A_{i})Z_{i}\Vert$ .

Of course the sum is over the first $m$ integers. For $m=1$ we get Theorem 1.1 and if
$Z_{i}=I$ for all $i$ we get Theorem 1.2. There is no obvious way to derive Theorem 2.1
from Theorems 1.1, 1.2. However our proof is adapted from the proof of Theorem 1.1
which is itself partially based on the proof of Theorem 1.2. Therefore our proof is rather
elementary. We use Hansen’s inequality (1.3) for a quite elementary case equivalent to
the fact that $tarrow 1/t$ is operator convex on $(0, \infty)$ . We also use some basic facts about
symmetric norms. In particular we need the following two facts for arbitrary $X,$ $Y\geq 0$ .
1 $)$ If $\Vert X\Vert\leq\Vert Y\Vert$ for all symmetric norms, then we also have $\Vert g(X)\Vert\leq\Vert g(Y)\Vert$ for all
symmetric norms and all increasing convex functions $g:[0, \infty)arrow[0, \infty)$ .

2 $)$ If $\Vert X\Vert_{k}\leq\Vert Y\Vert_{k}$ for all Ky Fan k-norms, then we also have $\Vert X$ I $\leq\Vert Y\Vert$ for all symmetric
norms (Ky Fan’s principle). Recall that the Ky Fan k-norms are the sum of the $k$ largest
singular values.
For this background we refer to any expository text such as [13].

Proof of Theorem 2.1. The proof for an arbitrary $m$ is the same than the proof for $m=2$ ,
so we consider the case of two expansive operators $X,$ $Y$ and two positive operators $A$ ,
$B$ . The proof is divided in four steps.

Step 1. If $f$ is operator concave, the proof immediately follows from Theorem 1.1 and
(1.3):

$\Vert f(X^{*}AX+Y^{*}BY)$ $\Vert\leq\Vert f(X^{*}AX)+f(Y^{*}BY)$ $\Vert$

$\leq\Vert X^{*}f(A)X+Y^{*}f(B)Y\Vert$ . (2.1)

Step 2. Now consider a one to one convex function $g:[0, \infty)arrow[0, \infty)$ whose inverse
function $f$ is operator concave. Since $g$ is onto there exist $A’,$ $B’\geq 0$ such that $A=g(A’)$
and $B=g(B’)$ ; moreover $A’$ and $B’$ can be chosen arbitrarily so that (2.1) can be read as

$\Vert f(X^{*}g(A)X+Y^{*}g(B)Y)\Vert\leq\Vert X^{*}AX+Y^{*}BY\Vert$ .
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Since $g$ is convex increasing we infer

$\Vert X^{*}g(A)X+Y^{*}g(B)Y\Vert\leq\Vert g(X^{*}AX+Y^{*}BY)\Vert$ . (2.2)

Step 3. Now we extend (2.2) to the class of all non-negative convex functions on $[0, \infty)$

vanishing at $0$ . It suffices to consider the Ky Fan k-norms $\Vert\cdot\Vert_{k}$ . Suppose that $g_{1}$ and
$g_{2}$ both satisfy (2.2). Using the triangle inequality and the fact that $g_{1}$ and $g_{2}$ are non-
decreasing,

$\Vert X^{*}(g_{1}+g_{2})(A)X+Y^{*}(g_{1}+g_{2})(B)Y\Vert_{k}$

$\leq\Vert X^{*}g_{1}(A)X+Y^{*}g_{1}(B)Y\Vert_{k}+\Vert X^{*}g_{2}(A)X+Y^{*}g_{2}(B)Y\Vert_{k}$

$\leq\Vert g_{1}(X^{*}AX+Y^{*}BY)\Vert_{k}+\Vert g_{2}(X^{*}AX+Y^{*}BY)$ $\Vert_{k}$

$=\Vert(g_{1}+g_{2})(X^{*}AX+Y^{*}BY)\Vert_{k}$ ,

hence the set of functions satisfying to (2.2) is a cone. It is also closed for point-wise
convergence. Since any positive convex function vanishing at $0$ can be approached by a
positive combination of angle functions at $a>0$ ,

$\gamma(t)=\frac{1}{2}\{|t-a|+t-a\}$ ,

it suffices to prove (2.2) for such a $\gamma$ . By Step 2 it suffices to approach $\gamma$ by functions
whose inverses are operator concave. We take (with $r>0$ )

$h_{r}(t)= \frac{1}{2}\{\sqrt{(t-a)^{2}+r}+t-\sqrt{a^{2}+r}\}$ ,

whose inverse

$t- \frac{r/2}{2t+\sqrt{a^{2}+r}-a}+\frac{\sqrt{a^{2}+r}+a}{2}$

is operator concave since $1/t$ is operator convex on the positive half-line. Clearly, as
$rarrow 0,$ $h_{r}(t)$ converges uniformly to $\gamma$ .

Step 4. Proof for any concave function $f$ : $[0, \infty)arrow[0, \infty)$ . Again, it suffices
to consider the Ky Fan k-norms. This shows that we may and do assume $f(O)=0$ .
Note that $f$ is necessarily non-decreasing. Hence, there exists a rank $k$ spectral pro-
jection $E$ for $X^{*}AX+Y^{*}BY,$ corresponding to the k-largest eigenvalues $\lambda_{1}(X^{*}AX+$

$Y^{*}BY),$
$\ldots,$ $\lambda_{k}(X^{*}AX+Y^{*}BY)$ of $X^{*}AX+Y^{*}BY$ , such that

$\Vert f(X^{*}AX+Y^{*}BY)$ $\Vert_{k}=\sum_{j=1}^{k}\lambda_{j}(f(X^{*}AX+Y^{*}BY))=$ Tr $Ef(X^{*}AX+Y^{*}BY)E$ .

Therefore, using a well-known property of Ky Fan norms, it suffices to show that

Tr $Ef(X^{*}AX+Y^{*}BY)E\leq$ Tr $E(X^{*}f(A)X+Y^{*}f(B)Y)E$ .

This is the same as requiring that

Tr $E(X^{*}g(A)X+Y^{*}g(B)Y)E\leq$ Tr $Eg(X^{*}AX+Y^{*}BY)E$ (2.3)
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for all non-positive convex functions $g$ on $[0, \infty)$ with $g(O)=0$ . Any such function can be
approached by a combination of the type

$g(t)=\lambda t+h(t)$

for a scalar $\lambda<0$ and some non-negative convex function $h$ vanishing at $0$ . Hence, it
suffices to show that (2.3) holds for $h(t)$ . We have

Tr $E(X^{*}h(A)X+Y^{*}h(B)Y)E= \sum_{j=1}^{k}\lambda_{j}(E(X^{*}h(A)X+Y^{*}h(B)Y)E)$

$\leq\sum_{j=1}^{k}\lambda_{j}(X^{*}h(A)X+Y^{*}h(B)Y)$

$\leq\sum_{j=1}^{k}\lambda_{j}(h(X^{*}AX+Y^{*}BY))$ (by Step 3)

$= \sum_{j=1}^{k}\lambda_{j}(Eh(X^{*}AX+Y^{*}BY)E)$

$=$ Tr $Eh(X^{*}AX+Y^{*}BY)E$

where the second equality follows from the fact that $h$ is non-decreasing and hence $E$ is also
a spectral projection of $h(X^{*}AX+Y^{*}BY)$ corresponding to the $k$ largest eigenvalues. $\square$

Corollary 2.2. Let $g:[0, \infty)arrow[0, \infty)$ be a convex function with $g(O)=0$ . Let $\{A_{i}\}_{i=1}^{m}$

be positive and let $\{Z_{i}\}_{i=1}^{m}$ be expansive. Then, for all symmetric norms,

$\Vert\sum Z_{i}^{*}g(A_{i})Z_{i}\Vert\leq\Vert g(\sum Z_{i}^{*}A_{i}Z_{i})\Vert$ .

This corollary is proved in step 3. It can also be derived from Theorem 2.1 by using the
first fact recalled before the proof. When $Z_{i}=I$ for all $i$ this is a remarkable result of
Kosem [11]. Note that Theorem 0.1 is a special case of Corollary 2.2. There are several
well-known results involving sums of congruences. But, in contrast with Theorem 2.1 and
its corollary, these results deal with strong contractive assumptions. We give an example
generalizing (1.2):

Let $\{A_{i}\}_{i=1}^{m}$ be positive and $\{Z_{i}\}_{i=1}^{m}$ such that $\sum Z_{i}^{*}Z_{i}\leq I.$ If $f$ is a monotone concave
function on $[0, \infty),$ $f(O)\geq 0$ , then,

$f( \sum Z_{i}^{*}A_{i}Z_{i})\geq V(\sum Z_{i}^{*}f(A_{i})Z_{i})V^{*}$ .

for some unitary $V$ .

Such an inequality is connected to Jensen type inequalities for compressions or positive
unital linear maps, see [4], [2]. We conclude with a discussion of the extension of our results
for operators on an infinite dimensional Hilbert space $\mathcal{H}$ . In the proof of Theorem 2.1, (2.1)
is derived from a version of Hansen’s inequality (1.3) involving congruences with expansive
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operators $X,$ $Y$ . This Hansen’s inequality remains valid in the infinite dimensional setting
if one requires that $X,$ $Y$ are both expansive and invertible. Consequently we have the
following result for the usual operator norm $\Vert\cdot\Vert_{\infty}$ .

Theorem 2.1 and its corollaries are still valid for $\Vert\cdot\Vert_{\infty}$ and opemtors on $\mathcal{H}$ when $Z$ and
$\{Z_{i}\}_{i=1}^{m}$ are expansive and invertible.

This statement is meaningful. The original proof ([5]) of Theorem 1.1 was unsuccessful to
cover the infinite dimensional setting. Concerning inequality (1.3), the original statement
is in the framework of the spectral order in a semi-finite von Neumann algebra. It is also
possible to give a version for operators on $\mathcal{H}$ by adding a $rI$ term in the RHS with $r>0$
arbitrarily small, see [6] pp. 11-15. By arguing as in [2] we then obtain:

Let $A,$ $B\geq 0$ on $\mathcal{H}$ and let $r>0$ . If $f$ is a monotone concave function on $[0, \infty),$ $f(O)\geq 0$ ,
then,

$f(A+B)\leq Uf(A)U^{*}+Vf(B)V^{*}+rI$

for some unitart,es $U,$ $V$ .
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