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0. Introduction

Let M (resp. M™) be the n x n (complex) matrices (resp. positive definite
matrices). Throughout this paper, a path v(t) in M* means a smooth curve for
t € [0,1] and ||| ||| stands for any unitarily invariant norm for M. For A, B € M*,
the path of the geometric operator means in the sense of Kubo-Ando [14] is defined
as

A#.B = A} (A—%BA—%)t At

The geodesic in the CPR (Corach-Porta-Recht) geometry is A#;B and the in-

duced distance by their Finéler metric (which is the length of this geodesic) is related

to the relative operator entropy (3, 5, 6]:
1 1 1 1
S(A|B) = A% log (AwBAw) A%

As I rephrase their result in [8], the distance is now called the Thompson (part)

metric for a unitarily invariant norm ||| |||:
d(A, B) = [|log A= BA¥||.

Recently Hiai and Petz [11] introduced a new geometry parametrized by each real
number 7 with a pull-back metric for a diffeomorphism A — In, A to the Euclidian

space where In, is an extended logarithm

o) = {5 A0
’ logx (r=20).

In this geometry, the geodesic is a chaotic quasi-arithmetic mean (7]

Am. B =1In-'((1 = t)In(A) + tIn,(B)) = ((1 — t)A" + tB")"



and the distance with respect to their metric is
((Am,;B) = ||In, B — In, Al| = d(A, B).

Here a chaotic mean in [7] means the binary operation AmB on positive (invertible)
operators A and B satisfying the following conditions:
monotonicity: A< C and B < D imply AmB < CmD.
semi-continuity: A, | Aand B, | B imply A, mB, || AmB.
normalization: AmA = A,
where A <« B is the chaotic order log A < log B and A, || A is the monotone
convergence in the chaotic order. In fact, if r € [—1,1], then Am, ;B is a chaotic
mean. Though the above means do not have monotonicity any longer for |r| > 1,
we use the same symbols for the sake of convenience in this paper.
Hiai-Petz [11, Theorem 3.3] also introduced another parametrized geometry for
a > 0 whose geodesic is (A%#;,B*)=, which is an extension of CPR geometry and

the distance is

)= L v

In these geometry, their interests mainly in metrics and distances for the geodesics.

As in [8], like the CPR geometry, we discuss an upper structure of their geometry
and obtain the geodesic as the autoparallel curve, that is, a unique solution ~ of the
geodesic differential equation V1% = O, which does not depen’d on metrics. After
this, we confirm that the Hiai-Petz geometry has the Finsler metric induced by each

unitarily invariant norm and real number r (positive number «).

1. Hiai-Kosaki-Petz linear transform

To see a structure for the Hiai-Petz geometry, we need a certain linear transform
® 4 on M" assigned to each A € M™, which is introduced below. First we note the
following key lemma in the Hiai-Petz geometry which is expressed by the Hadamard
product o. This is closely related to the Hiai-Kosaki mean [10]: Let L,(resp. R4)
be the multiplication operator from the left (resp. right) for a selfadjoint matrix A.
Then the Hiai-Kosaki mean on X for a mean function ¢ is a kind of meta—opérator

mean defined by
B(La,Rp)X = U((6(dis ;) o U XV )V*

for any diagonalization diag (d;) = U* AU and diag (e;) = V*BYV for some unitaries
U and V where o means the Hadamard product. Here we use such a formula for

the case A = B. Though it is also known in the theory of quantum information
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geometry. we give a proof for the reader’s convenience (see [10] for the infinite-

dimensional version):
Basic Lemma. For a continuous function ¢(x,y).
AL, RA)X = U((qﬁ(dﬁdj)) o U*XU) U*.
Proof. In the case of a monomial ¢(z,y) = x™y", we have
O(La.RA)X = A"XA" = UD™U* XUD"U* = U(L’;RgU*XU) U*
= U((drdy) o UXU)U" = U((#(dirdy)) o UXU)U".
Approximating a general ¢ by polynomials, we have the required result. O
This lemma shows that the linear map on the tangent vector space Tq(M™)
PA(X) =U((¢(di; dj)) o U"XU) U”

is well-defined for any diagonalization U*AU and the inverse map is

o (X)=U ((m) ° U*XU) U

if ¢(d;,d;) # 0 for all ¢,j. Let v(¢) be a path of selfadjoint matrices. From now
on, U (resp. U) is assumed to be any unitary such that U*AU (resp. U;~(t)U,)
is a diagonal matrix D (resp. D;) with entries d; (resp. d;(t)). For a continuously
differentiable function f, define

fo)=fy)
f[l](Ty) — { , Ty (-73 # y)
f'(x) (z =y).
Then, putting f,(z) = z", we have fi(z.y) = %}yﬂ =Sk lynk (nznlif

x = y) and then

U ((f(di(t). d;(8))) o UFA()U,) U = FII(L,, RS (1) = (1(8)™)

So, for general f, we have a well-known derivative formula, see [1, p.124] and [12,
6.6.30] (it is also called the Deletskii-Krein formula):

%(%t(—@ = U, ((fM(di(t), d;(t))) o UA(OU) Uy

(Note that f(~(t)) is differentiable though each U, is not always so).
Now we define the Hiai-Petz action by the extended logarithmic function In,.
Here we mention that lnl)l](:r,, y) = 1/€(x,y) where ¢ is the logarithmic mean. Since

ln[rl](:r,, y) > 0 for all z.y > 0, we define the invertible linear map

D4 (X)= Papm (X)=U ((mfr”(d,, dj)) o U*XU) U
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In this case, note that

o Al o
7 ! (1 g(y(t) ) (r:O)_

For r € [—1,1], the function In, is operator monotone and the Lowner matrix
(ln[rl](di,dj)) is positive semidefinite. In general, though it is not always positive
semidefinite, it is selfadjoint and so is ® 4 ,.(B) for B € M*. Moreover the map ® 4,
leaves M" invariant.

This map is well-behaved under uﬁitary conjugation:
Lemma 1.1. IfV is a unitary matriz, then
Byav-,(VXV") = V4, (X)V* and k. (VXV) =VE(X)V*
Proof. Under diagonalization D = U*AU = U*V*(VAV*)VU, we have
Dy ay- (VXV*) = VU ((m[,”(di, dj)) o U*V*(VXV*)VU) UtV
= VU ((hﬂ)l (di,dj)) o U*XU) UV* = V4, (X)V*.

The latter formula follows immediately from this. O

2. Chaotic mean type geometry

Now we observe the upper structure of one of the Hiai-Petz geometries whose
geodesic is Am,;B. Here it is called the chatic mean type geometry. For
each real number r, consider the trivial principal bundle P, = M* x U for Mt
with the trivial projection 7((A,V)) = A. We may define the parametrized action
¥, ((A, V)X =&, (VXV*) of P, on TyM™* = M". Here we observe the associated
tangent vector bundle

PTxMh/lePrith
with the fiber M" with the right action (A, V)W = (A, VW) of W € U on n~1(A) C
P, and the left action p(W)X = W XW* on the tangent space TyM™ = M". We
remark that it can be identified with M" by ((A,V), X) — ¥.((A,V))(X) since

T (A, VIYW)p tW)X = V(A VW))W XW = & (VIWW* XWW*V™)
= &L (VXV*) = T, ((A,V))(X).

This identification shows that we can determine the parallel displacement of tan-
gent vectors along the curve v by the connection of P, and a horizontal lift of v
as in the below, see also [13]. The horizontality (hence connection) in the tangent

space of P, is naturally given by a common unitary entry (it is called the canonical
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flat connection). So the horizontal lift I' of a path v is ['(t) = (7(¢), V) for any fixed
V' € U. Recall that the notion of the connection of the principal bundle is equivalent
to that of covariant derivative (hence parallel displacement) of the associated vector
bundle. So we give the latter to obtain the geodesic for this connection. Since a
tangent vector Y € M™" also belongs to the associated bundle M" of P, and

T, (A, V)Y = V', (Y)V.

we have that the parallel displacement P, = P,° from 0 to t along a path v of a
tangent vector X on +(0) is obtained by

PX =W, ((v(t),V)) (¥+((7(0). V)) ' X)
=0 (VV 0 (X)VV) = @) (D100) (X))

y(t)r
Then the covariant derivative for a vector field X(t) is

P X(t+¢e)— X(t)

V:YX = lim
e—0 £
B - ((I) (t+e)r (X (E+ 5))) - X(t)
L MU ot (0 0.

Let M} be the manifold M™* with the principal bundle P, and the actions above.
Then we have geodesics in M:

Theorem 2.1. The geodesic v from A to B in M} is Am,;B.

Proof. Suppose r # 0. Then the geodesic equation V.4 = O implies

. . 4 1 r "
O = @, (V47) = (P (7)) = ;(’Y(f) )

So there exist a selfadjoint C; and Cy € M* with y(t)" = tC; + C,. Since
A"=~(0)"=Cy and B =~(1) = C; + C>,

we have U, = A" and C, = B" — A", so that 7(t) = Am,;B. For r = 0, we also
have 7(t) = exp ((1 — t)log A + tlog B) considering (log w(t))” = 0. O

Thus the Hiai-Petz geometry M. has the above structure induced by P,.

Now we show the Hiai-Petz metric defines a Finsler one in the sense of Cartan
(15, 16]:

Theorem 2.2. For any unitarily invariant norm || ||, the norm of X € M" defined
as

L(X:A) = Loy y(X: 4) = ||@ar(X)|| = ||| (0l (i, d,)) 0 U= x0 ||
is a Finsler metric, that is. it is equivalent to the original norm and satisfies the
Finsler condition L.(X;v(0)) = L.(P,X;~(t)) for all path ~.
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Here we observe that this Finsler metric is not homogeneous in the preceding

sense, but it is invariant under unitary conjugation.
Theorem 2.3. For any unitarily invariant norm || |||. if V is a unitary, then

L(VXV*VAV*) = L.(X: A).

3. CPR type geometry

Next, we discuss structure of another Hiai-Petz parametrized geometry for o > 0
in [11, Theorem 3.3] whose geodesic is (Aa#tB"‘)%, which is a generalization of the
CPR geometry and the Bhatia-Holbrook one [2].

Let P = {G, M, U, 7o) } be a principal bundle where m(G) = (GG*)= with
a natural right action of V € U: G — GV. Like the CPR geometry, the connection
is defined by the horizontal subspace {GY|Y = Y*} of the tangent space TzG. Let
I’ be a horizontal lift of a path 7. Then the horizontality shows I'"'I' = (I "1I')* =
I*(I*)~!. Since y = (') = (I'T*)%, we have

(v*)y ™ = (CT* + TT*)(IT*) ' = IT~' + ITT*(*)~'T !
=TT '+ IT'IT ' =27,

so that we have the transport equation which defines I': I = %(7“)’7*“1‘. Based on

an action by each function f,(z) = z®
®a(X) = 25/(X) = U [(f(di, d)) o U"XU] U

for a diagonalization U*AU = D = diag (d;), we define an action of G on the
tangent vector X at A by

O(G)X = 0,(G)X =0 (GXG™),
and consequently the inverse action is
O(G) ' X = Gl (X)(G*) L.

Consider the associated bundle Pl x M" /U with the natural left action p(V)X =
VXV* of V € U on the tangent vector X at A. As in the former case, we can
identify it with the tangent bundle M" by the map (G, X) — ©(G)X since

O(GVIV*XV = o1 (GV(V*XV)V*G*) = ®,(GXG") = ©(G)X.

So we can discuss the parallel displacement of X from the structure of Plq)-



80

Then the parallel displacement (from 0 to t) of the tangent vector field X along ~
is
PX = P°X(t) = ©(T'(t)) (6(I'(0))~' X (0))
= 23, (D(OT(0) 2,0/ (X (O)(P(0))'T(1))

and hence the covariant derivative is obtained by

O x = i P X+ e) - X(1)
JX =

e—0 €
= o(r() ([er) ' (x(1)])
=" (0(1) [T(6) @, (X ()T (1)) ] T(1)")
= @1 ((@,(X)) = T 710, (X) = &, (X)(I") ')

= ¢! (((IA,(X))’ _ (7‘0),7%‘1’7()() ; ¢7(X)7—“(70)’) .

Therefore we have the geodesic equation
()" =)
because @, (%) = (v*)’ and V44 = O. Putting
£8) = A(0)/2()°(0) 2
for a path v from A to B, we have
O =1, f))=A"2BA™2 and "= fff

The CPR theory shows that f(t) = (A~*/2B*A~2/?)t and consequently the geodesic

is given by
’7‘(t)a — Aa/Q(Afa/2BaA*o/2)tAa/2 — Aa#tBa‘

For each unitarily invariant norm ||| |||, define a metric
1 -2 -2
L(X:A) = Lig(X: A) = || A" $2,(X) A%,
Then the unitary invariance shows that

L(X; 4) = = ||U"A73U [(f(d:, d) e U XU U AU |

Qi 2R |+
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which is the Hiai-Petz metric in [11, Theorem 3.3]. Noting the matrix
V =1(t) 20t (0) 'v(0)F
being unitary and the. relation
Dy (P X) = T()T(0) ™ o0 (X)(T(0)")7'T(1)",
we have it is a Finsler one:
aL(PX;5(8) = () 2@y (BX )y ()" 2

= [lIl7(8) L)L (0) ™ 40y (X)(T(0)*) " T (1) ¥(1)~ |
= [I[VA(0)"E@.0)(X)7(0) V|| = aL(X;7(0)).

Thus we summarize the above facts:

Theorem 3.1. In the above setting, the principal bundle Py = {G, M+, U, 7}
for a > 0 defines a Finsler structure of M™ where the geodesic from A to B is
v(t) = (A°#,B*)% and each metric
1 o o
L(X;4) = ~llA7=Z2a(X)A7=||

is a Finsler metric for each unitarily invariant norm ||| |||.

4. Shortest path

Finally, we discuss whether the geodesic is the unique shortest path between two
matrices. The length ¢(v) of a curve v from A to B under a Finsler metric L is
obtained by

em=Amewwt

The inavariant property under the parallel displacement shows if + is a geodesic,
then

L(3(®);v(1)) = L(¥(0); 7(0))
holds, so that the length of the geodesic is
€(v) = L(7(0);7(0)).
Thereby, in the chaotic mean type geometry, the Finsler metric is
L(X; A) = “! (lny](d,-,dj)) ° U*XU“I,
and then the length is

«Am,,B) = ||In, B — In, A].
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Also in the CPR type geometry, the Finsler metric is

Loy(X;A4) = éIHA%U [(fW(d,.d;)) o U"XU) U A %

and the length is
1 1 —2 ha s-2
U(A°#B)) = ~lllog A # B A F|

It is easy to see that these length are the shortest ones respectively.

Now, recall that a norm ||| ||| is strictly convex if
(A =tz +tylll < 1

holds for t € (0,1) and distinct unit vectors  and y. Then we have ([9]):

Theorem 4.1. If a unitarily invariant norm is strictly convex. the geodesic Am, B
(resp. (A"#tB")%) is the unique shortest path under the Finsler metric L.(X; A)
(resp. Lio)(X; A)).

Typical unitarily invariant norms which are not strongly convex are Ky Fan'’s,
that is ||.X||x) means the sum of singular values for X from the largest to the k-
th. In this case, the shortest Apaths are not uniquely determined for the Hiai-Petz
geometries as in the following example: Let B = (b;) be a diagonal positive-definite
matrix greater than I with b; is (strictly) monotone decreasing. For a path from I to
B, the shortest length is || In, B||x). Then, for two path of distinct means m, # n,,
we have Im,B is different from In,B as paths by the strict monotonicity for b;.

First we give examples in the chaotic mean type geometry. In the case r = 1, let
6(t) = B! which differs from the geodesic (1 — t)I +¢tB. Then 4(t) = Btlog B > O
and z‘logx is monotone increasing for x > 1. Since In(r) = 1, we can verify
that § also attains the shortest length. In the case r =2 0 and r # 1, let (¢t) =
(1-t)I+tB =1+t(B—1I). Then v attains the shortest length. In the case r < 0,
suppose 1 < by < 1 — 1. Then v attains the shortest.

In the CPR type geometry, a path defined by

§(t) = (1 —t +tB*)Ve,
also attains the shortest.
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