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§1 Introduction

An operator T is said to be positive semidefinite (denoted by T > 0) if (Tz,z) > 0 for
all z € H. Lowner-Heinz inequality (denoted by (LH) briefly) states if A > B > 0 holds,

then A* > B* for any a € [0,1]. Unfortunately AP > B? does not always hold for p > 1.
The following result has been obtained from this point of view.

Theorem A (1987).
If A> B >0, then for each r > 0,

()  (BiAPBi)s > (BiBPBi)i
and

(i)  (AZAPA%)7 > (AFBPA%)q

hold forp >0 andq > 1 with (1 +r)g>p+r. 0 (1,0) q

FIGURE 1

The original proof of Theorem A is shown in [4], an elementary one-page proof is in [5]

and alternative ones are in [3],[8] and [6]. It is shown in [11] that the conditions p, g and r
in FIGURE 1 are best possible. On the other hand we have the following result.

Theorem B [2]. Let A be a positive definite matriz and B a positive semidefinite matriz
The solution X of the following matriz equation is always positive semidefinite:

A’X + XA? = AB + BA. (1.1)

In [2] the following question was posed associated with Theorem B: How can one char-
acterize all the functions f such that the solution of the matriz equation

f(AX+Xf(A)=AB+ BA (1.2)
is positive semidefinite?

We shall discuss the solutions of the following operator equation related to (1.1) and (1.2):
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> AIXAT =B
j=1
where B is of special type.

The proofs and related results in this paper are found in [7].

§2 Operator equations Z A" I X A’ = B via Theorem A

i=1

As an application of Theorem A we shall obtain the following operator equation.

Theorem 2.1 [7].Let A be positive definite operator and B be positive semidefinite operator. Let m
and n be natural numbers. There exists positive semidefinite operator solution X of the following
operator equation:

S Arix A = A%(Z AT B A",S:::’) AT (2.1)
J=1

=1

r>0 fn>m (i)
for r such that m—n
>

— ifm>n>2 (ii).

Theorem 2.1 easily implies the following result.

Corollary 2.2 [7]. Let A be positive definite operator and B be positive semidefinite operator.
There ezists positive semidefinite operator solution X of the following operator equation (i),(ii),

(iii), (iv) and (v) respectively:

(i) A% X + XA = A3(AB+ BA)A:? forr > 0.

() ATEX + A XAW + XA®S® = A5(AB + BA)AS forr > 0.

(i) ASFEX + A XA 4 XA = A3(A2B + ABA + BA?) A% forr > 0.
(iv) A% X+ XA% = A5(A’B+ ABA+ BA?)Az forr > 1.

(v) ATX +XAT = A3(A*B + A3BA + A’BA? + ABA® + BA%)A: forr > 3.
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§3 Concrete examples of positive semidefinite matrices

Proposition 3.1 [7]. Let the diagonal matriz A = diag(ay, as,--- ,a;) with each a; > 0 and B be

the | x | matriz all of whose entries are 1. Let m and n be natural numbers. There exists positive

semidefinite matriz solution X of the following matriz equation:

ZA(nm)(n J)XA(""+")(J D _ — 45 (ZAm—JBAJ 1>A§
j=1
r>0 ifn>m (i)
for r such that m—n
TZn n ifm>n>2 (ii).

The poisitive semidefinite matriz solution X of (2.1) can be expressed as:

b (Ser)
x (s )
4,j=1,2,...,l

(m+r)(n—k) (m+'}(k 1)

E a n . n

(2.1)

(3.1)

Let the diagonal matriz A = (a1,az,- -+ ,a,) with each a; > 0 and B be n X n matriz all
of whose entries are 1. Then the positive semidefinite solutions X; of (i),(ii),(iii),(iv) and

(v) of Corollary 2.2 are given by:

ata?(a; + a;)
X1 = (_ET;JT'LEL]— forr > 0.
a;* +a;* J=1,2
a aj (a,+aJ)
X2=( R J_ e Tpr forr >0.
3 aj3 +a] 3 J 12, yn
a; a"’(a + a;a; + a?)
X3=< plere J__ e e forr > 0.
aj3 +a] 3 ,7=1,2,....n
a; az(a +aa + a?)
Xy = ( '3_; J forr > 1.
j2 1,7=1,2
aa(a + ala; + a2a? + a.al + a)
X5 = ( §_-1Ji m e J forr > 3.
a; > + aj i,j=1,2,...,n

2
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We would like to state that we can obtain many concrete examples of positive semidefinite

matrices as stated in §3 by applying Theorem 2.1.

We remark that many types of useful operator equations related to Lyapunov equation
are discussed in [9] and [10].

Also we can find the following example quite similar to our Example X5 in §3:

Let a1, aa, ....,a, be positive numbers, —1 <r <1, and -2 <t < 2. Then n X n matrix

T T
W a; +a;
2 e 2
a; +ta;a; + aj
3,j=1,2,,n

is positive semidefinite. [12, Lemma 4.23 ].

Other ueseful examples of positive semidefinite matrices are found in [13, page 197,

Problem 21]. The following more general type operator equation is discussed in [1]:

> AIXBITl =Y.
=1
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