Positive Definite Kernels and Majorization 内山充 島根大学総合理工学部

Mitsuru Uchiyama Department of Mathematics
Interdischiplinary Faculty of Science and Eigineering
Shimane University

1 Introduction

Definition 1.1 Let f(t) be a real continuous function defined on I, and consider the functional calculus f(X) for a Hermitian matrix X with eigenvalues in I.

- f is called an operator monotone function on I if $f(A) \leq f(B)$ whenever $A \leq B$ (of any order n).
- f is said to be operator decreasing if -f is operator monotone.
- f is called an operator convex function on I if $f(sA + (1 s)B) \le sf(A) + (1 s)f(B)$ (0 < s < 1)

 for every pair of bounded Hermitian operators A and B whose spectra are both in I.
- An operator concave function is likewise defined.

Definition 1.2 Let K(t,s) be a real, continuous and **symmetric** function defined on $I \times I$.

• K(t,s) is called a positive semi-definite kernel on I if

$$\iint_{I \times I} K(t, s)\phi(t)\phi(s)dt \ ds \ge 0 \tag{1}$$

for all real continuous functions ϕ with compact support in I.

Remark It is evident that K(t, s) is positive semi-definite on I if and only if for each n and for all n points $t_i \in I$ the $n \times n$ matrices

$$\left(K(t_i,t_j)\right)_{i,j=1}^n$$

are positive semi-definite.

• Suppose $K(t,s) \ge 0$ for every t,s in I. Then the kernel K(t,s) is said to be infinitely divisible on I if $K(t,s)^r$ is a positive semi-definite kernel for every r > 0, i.e.,

$$\iint\limits_{I\times I} K(t,s)^r \phi(t)\phi(s)dt \ ds \ge 0$$

- A kernel K(t,s) is said to be conditionally positive semi-definite on I if $\iint_{I\times I} K(t,s)\phi(t)\phi(s)dt\ ds \ge 0$ for ϕ such that the support of ϕ is compact and $\int_I \phi(t)dt = 0$.
- A kernel K(t, s) is said to be conditionally negative semi-definite on I if -K(t, s) is conditionally positive semi-definite on I.

(**Löwner**) C^1 function f is operator monotone on I if and only if the Löwner kernel $K_f(t,s)$ defined by

$$K_f(t,s) = \frac{f(t) - f(s)}{t - s}$$
 $(t \neq s), K_f(t,t) = f'(t),$

is positive semi-definite on I. (**F. Krauss, J. Bendat- S. Shermann**) g(t) is an operator convex function on I if and only if g(t) is of class $C^2(I)$ and for each $t_0 \in I$, the function f(t) defined by

$$f(t) = \frac{g(t) - g(t_0)}{t - t_0}$$
 $(t \neq t_0), \quad f(t_0) = g'(t_0)$

is operator monotone on I.

2 Operator convex functions

Proposition 2.1 Let f(t) be an operator monotone (or decreasing) function on I. Then the indefinite integral $\int f(t)dt$ is an operator convex (or concave) function on I.

Example 2.1 $\int \log t dt = t \log t - t$, hence $t \log t$ and $\log \Gamma(t) = \int \frac{\Gamma'(t)}{\Gamma(t)} dt$ are both operator convex on $(0, \infty)$

But the converse is not true; $\frac{1}{t}$ on $(0, \infty)$ is a counter example.

Proposition 2.2 Let g(t) be an operator convex function on $(0, \infty)$. Then $g'(\sqrt{t})$ is operator monotone there.

(Well-known) Let $f(t) \ge 0$ be defined on $[0, \infty)$. Then f is operator monotone $\Leftrightarrow f(t)$ is operator concave.

Theorem 2.3 Let f(t) be defined on (a, ∞) with $a \ge -\infty$. Then

(i) f(t) is operator decreasing $\Leftrightarrow f(t)$ is operator convex and $f(\infty) = \lim_{t \to \infty} f(t) < \infty$;

(ii) f(t) is operator monotone $\Leftrightarrow f(t)$ is operator concave and $f(\infty) > -\infty$.

In (ii) the condition " $f(\infty) > -\infty$ " is indispensable; for instance, $f(t) = -t^2$ is operator concave on $(0, \infty)$ but not operator monotone there.

Corollary 2.4 Let f(t) be defined on $(-\infty, b)$, where $b \leq \infty$. Then

- (i) f(t) is operator monotone on $(-\infty, b) \Leftrightarrow f(t)$ is operator convex on $(-\infty, b)$ and $f(-\infty) < \infty$
- (ii) f(t) is operator decreasing on $(-\infty, b) \Leftrightarrow f(t)$ is operator concave on $(-\infty, b)$ and $f(-\infty) > -\infty$.

Corollary 2.5 (Well-known) Let f(t) be defined on $(-\infty, \infty)$. Then f(t) is operator monotone on $(-\infty, \infty)$ $\Leftrightarrow f(t) = at + b \ (a \ge 0)$.

How about the case of finite intervals? $\tan t$ is operator monotone on $(-\pi/2, \pi/2)$.

Proposition 2.6 Let f(t) be an operator monotone function on a finite interval (a, b). Then there is a decomposition of f(t) such that

$$f(t) = f_{+}(t) + f_{-}(t) \quad (a < t < b)$$

where $f_{+}(t)$ and $f_{-}(t)$ are operator monotone on (a, ∞) and $(-\infty, b)$ respectively.

3 Löwner kernels

(Bhatia and Sano) Let f(t) be a C^2 function on $[0, \infty)$ such that $f(t) \geq 0$ and f(0) = f'(0) = 0. Then f is operator convex on $[0, \infty)$ \Leftrightarrow the Löwner kernel $K_f(t, s)$ is conditionally negative semi-definite on $[0, \infty)$, where

$$K_f(t,s) = \frac{f(t) - f(s)}{t - s}$$
 $(t \neq s), K_f(t,t) = f'(t),$

Proposition 3.1 Let f(t) be a C^1 function on (a, ∞) . Then

- (i) f(t) is operator convex on $(a, \infty) \Leftrightarrow$ the Löwner kernel $K_f(t, s)$ is conditionally negative semi-definite and $\lim_{t\to\infty} \frac{f(t)}{t} > -\infty$;
- (ii) f(t) is operator concave on $(a, \infty) \Leftrightarrow$ the Löwner kernel $K_f(t, s)$ is conditionally positive semi-definite and $\lim_{t\to\infty} \frac{f(t)}{t} < \infty$.
- In (i) the condition " $\lim_{t\to\infty} \frac{f(t)}{t} > -\infty$ " is indispensible: in fact, the Löwner kernel $K_f(t,s) = -(t^2 + st + s^2)$ of $f(t) = -t^3$ is conditionally negative on $(0,\infty)$, but f(t) is not operator convex there.

Theorem 3.2 Let f(t) be C^1 function on (a, ∞) . Then the following hold:

(i) the Löwner kernel $K_f(t,s)$ is positive semi-definite on (a,∞) if and only if $K_f(t,s)$ is conditionally positive semi-definite on (a,∞) , $\lim_{t\to\infty}\frac{f(t)}{t}<\infty$, and $f(\infty)>-\infty$;

(ii) $K_f(t,s)$ is negative semi-definite on (a,∞) if and only if $K_f(t,s)$ is conditionally negative semi-definite on (a,∞) , $\lim_{t\to\infty}\frac{f(t)}{t}>-\infty$, and $f(\infty)<\infty$.

Corollary 3.3 Let f(t) be a C^1 function on $(-\infty, b)$. Then

- (i) f(t) is operator convex on $(-\infty, b)$ if and only if the Löwner kernel $K_f(t, s)$ is conditionally positive semi-definite; $\lim_{t \to -\infty} \frac{f(t)}{t} < \infty$.
- (ii) f(t) is operator concave on $(-\infty, b)$ if and only if the Löwner kernel $K_f(t, s)$ is conditionally negative semi-definite, and $\lim_{t \to -\infty} \frac{f(t)}{t} > -\infty$.

Corollary 3.4 Let f(t) be C^1 function on $(-\infty, b)$. Then the following hold:

- (i) the Löwner kernel $K_f(t,s)$ is positive semi-definite on $(-\infty,b)$ if and only if $K_f(t,s)$ is conditionally positive semi-definite on $(-\infty,b)$, $\lim_{t\to -\infty} \frac{f(t)}{t} < \infty, \text{ and } f(-\infty) < \infty;$
- (ii) the Löwner kernel $K_f(t,s)$ is negative semi-definite on $(-\infty,b)$ if and only if $K_f(t,s)$ is conditionally negative semi-definite on $(-\infty,b)$, $\lim_{t\to -\infty} \frac{f(t)}{t} > -\infty, \text{ and } f(-\infty) > -\infty.$

4 Majorization and kernel functions

Definition 4.1 Let h(t) and g(t) be C^1 functions on I, and suppose that g(t) is increasing. Then h is said to be majorized by g and denoted by

 $h \leq g$ on I if

 $h(A) \leq h(B)$ whenever $g(A) \leq g(B)$ for A, B whose spectra are both in I.

• $f(t) \leq t$ on $I \iff f(t)$ is operator monotone on I.

Definition 4.2 Let h(t) and g(t) be C^1 functions on I, and suppose that g(t) is increasing. Then the kernel $K_{h,g}(t,s)$ defined by

$$K_{h,g}(t,s) = \frac{h(t) - h(s)}{g(t) - g(s)}$$
 $(s \neq t), K_{h,g}(t,t) = \frac{h'(t)}{g'(t)}.$

is continuous and symmetric.

• A Löwner kernel $K_f(t,s)$ can be written as $K_{f,t}(t,s)$.

Proposition 4.1 The following statements are equivalent:

- (i) The kernel $K_{h,g}(t,s)$ is positive semi-definite on I.
- (ii) There is an operator monotone function φ defined on g(I) such that

$$h(t) = (\varphi \circ g)(t) \quad (t \in I).$$

(iii) $h \leq g$ on I.

Lemma 4.2 Let h(t) and g(t) be positive C^1 functions on an open interval I. Suppose h(t)g(t) is increasing and its range is $(0, \infty)$. Then the kernel $K_{h,hg}$ is positive semi-definite on I if and only if so is the kernel $K_{g,hg}$.

Theorem 4.3 Let h(t) and g(t) be positive C^1 functions defined on I. Suppose g is increasing and its range is $(0, \infty)$. If the kernel $K_{h,g}$ is positive semi-definite on I, then

for
$$0 \le i \le n$$
, $0 \le j \le m$, $1 \le m$, $i + j + 1 \le n + m$

$$K_{h^{i}g^{j}, h^{n}g^{m}}(t, s) = \frac{h^{i}(t)g^{j}(t) - h^{i}(s)g^{j}(s)}{h^{n}(t)g^{m}(t) - h^{n}(s)g^{m}(s)}$$

is infinitely divisible.

Moreover, if f is a (not necessarily positive) C^1 function such that the kernel $K_{f,g}(t,s)$ is positive semi-definite, then the kernel

$$K_{g,e^fg}(t,s)$$

is infinitely divisible.

Example 4.1 (1). For $f(t) \leq t$ on $(0, \infty)$

$$\frac{f(t)^i t^j - f(s)^i s^j}{f(t)^n t^m - f(s)^n s^m},$$

where $0 \le i \le n$, $0 \le j \le m$, $1 \le m$, $i + j + 1 \le n + m$, $1 \le n + 1 \le m$,

$$\frac{1}{t+s}$$
 (Cauchy kernel), $\frac{t-s}{te^{-1/t}-se^{-1/s}}$

are all infinitely divisible kernels on $(0, \infty)$.

(2). Consider a polynomial

 $p(t) := \prod_{i=1}^{n} (t - a_i)$ with $a_1 \ge a_2 \ge \cdots \ge a_n$. Then the kernel

$$K_{t,p(t)}(t,s) = \frac{t-s}{p(t) - p(s)}$$

is infinitely divisible on (a_1, ∞)

Theorem 4.4 Let h(t) and g(t) be positive C^1 functions defined on an open interval (a,b), where $-\infty \leq a < b \leq \infty$. Suppose the range of g is $(0,\infty)$. Then the following are equivalent:

- (i) the kernel $K_{h,g}$ is conditionally negative;
- (ii) there is an operator convex function φ defined on $(0, \infty)$ such that $\varphi(g(t)) = h(t) \text{ for } t \in (a,b).$

(iii)
$$\frac{h(t) - h(a+0)}{g(t)} \preceq g(t) \quad (a < t < b)$$