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1. INTRODUCTION

Let Gk be a split linear algebraic group over a field k. The cohomo-
logical invariant Inv*(Gy; Z/p) is (roughly speaking) the ring of natural
maps H'(F;Gx) — H*(F;Z/p) for finitely generated field F' over k.
For each simple simply connected group, Rost defined the invariant
R(Gg) € Inv3(Gy;Z/p), which is nonzero whenever the corresponding
complex Lie group G has p-torsion.

In this paper, we give a short proof of the existence of the Rost
invariant for an algebraic closed field £ in C, by using motivic coho-
mology and the affirmative answer of the Bloch-Kato conjecture by
Voevodsky.

2. MOTIVIC COHOMOLOGY

Recall that H!(k; Gy) is the first non abelian Galois cohomology set
of G, which represents the set of G,-torsors over k. The cohomology
invariant is defined by

Inv'(Gy, Z/p) = Func(H'(F;Gy) — H'(F;Z/p))

where Func means natural functions for each fields F' over k. (For
accurate definition or properties, see the books [Ga-Me-Se], [Ga].)

Let BGy be the classifying space ([To]) of G. Totaro proved [Ga-
Me-Se] the following theorem in the letter to Serre.

Theorem 2.1. (Totaro) Inv*(Gy;Z/p) = H°(BGy; H;,,)
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Here H*(X, Hi'/p) is the cohomology of the Zarisky sheaf induced
from the presheaf H},(V;Z/p) for open subsets V of X. This sheaf
cohomology is also the Es-term

Ey* = H*(BGy; Hy),) = H*(BGy; Z/p)

of the coniveau spectral sequence by Bloch-Ogus [Bl-Og].

Next we recall the motivic cohomology. Let X be a smooth (quasi
projective) variety over a field ¥ C C. Let H** (X;Z/p) be the mod(p)
motivic cohomology defined by Voevodsky and Suslin ([Vo1-3]). Recall
that the Belinson-Lichtenbaum conjecture holds if

H™™(X;Z/p) = HZ(X; ud") for all m < n.

Recently M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) proved the Bloch-

Kato conjecture. The Bloch-Kato conjecture implies the Beilinson-
Lichtenbaum conjecture.

In this paper, we assume that k contains a primitive p-th root of
unity. Then there is the isomorphism HZ(X;uS") = H}(X;Z/p).
Let 7 be a generator of H%!(Spec(k);Z/p) = Z/p, so that

colim;T"H** (X; Z/p) = H(X;Z/p).

The Beilinson and Lichtenbaum conjecture also implies the exact se-
quences of cohomology theories

Theorem 2.2. ([Or-Vi-Vo], [Vo5]) There is the long ezact sequence
— H™"1(X;Z/p) =+ H™"(X;Z/p)

— H™™(X; Hz,,) — H™'" (X, Z/p) =5 .
In particular, we have
Corollary 2.3. The graded ring grH7., " (X; £/p) s tsomorphic to
H™™(X;Z/p)/ (1) ® Ker ()| H™ " (X;Z/p)
where H™™(X;Z/p)/(t) = H™(X;Z/p)/(tH™""Y(X;Z/p)).
Corollary 2.4. The map x7 : H™™ Y X;Z/p) — H™™(X;Z/p) 1s
injective.
3. LIE GROUPS

In this section, we assume that & is an algebraic closed field in C. Let
GG be the complex Lie group corresponding to Gy for fields k. Suppose
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that G is a simple simply connected Lie group having p-torsion in
H*(G), namely

G27 F47 EG) E7’ E87 Sp’l‘,n’n (n Z 7) fO'r D= 2
(Gap) = F4) EG) E?a E8 fo"'p:37
Eg for p=>5.

It is known that G is 2-connected and there is an element z3(G) €
H3(G;Z/p) = Z/p with Q,z3(G) # 0 for the Milnor operation Q;.
Note that for each inclusion i : G C G’ for above groups, we know
i*(z3(G")) = z3(G). Consider the classifying space BG and its coho-
mology. Denote by z,(G) the transgression of z3(G) in H*(BG,;Z/p),
namely, z4(G) generates H*(BG;Z/p) =2 Z/p and Q:(z4(G)) # 0. We
will write ' the integral lift of z4(G) also by the same letter z4(G).

Lemma 3.1. The element pz4(G) € H*(BG)y) is represented by the
Chern class c3(€) of some complex representation £ : G — U(N).

Proof. We only need to prove for G = Spin,,p = 2 and G = Fj for
odd primes. Because when p = 2, there is the inclusion 7 : G C Spiny
for some N so that i*(z4(Spiny)) = z4(G). For odd prime cases, there
is the inlusion i : G C Eg, such that i*(z4(Es)) = z4(G).

The complex representation ring is known for N = 2n + 1

R(Spiny) 2 Z[A1, ..., An—1, Ac),

where )\; is the i-th elementary symmetric function in variables 22 +
272, 224+ 272 in R(T) = Z]z, 271, ..., 2n, 25, 1] for the maximal torus

T in Spiny. Let T? be the first factor of T and n : T* C Spiny. Then
it is proved (page 1052 in [Sc-Yal) that

n*ca(A) = 4u, n*z4(Spiny) = 2u

where u is the generator of H?(BT"';Z) = Z. This implies 2z4(Spiny) =
C2(/\1).

Let o : Fg — S0O(248) be the adjoint representation of Eg. By the
construction of the exceptional Lie group Fg in [Ad], there exists a
homomorphism § : Spin(16) — Fg such that the induced represen-
tation of o o B is the direct sum of A% : Spin(16) — SO(120) and
A} : Spin(16) — SO(128). Let T® be the maximal torus of Spin(16).
Let T? be the first factor of 7% and n : T* — Spin(16) the inclusion
of T! into Spin(16). Then it is proved ([Ka-Ya]) that the total Chern
class of the complexification of « o fon is

1—120u® +--- € Z[u] & H*(BT"; Z).
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Since 120 = 2% . 3.5, the Chern class co(a) represents ypz4(Es) for
p = 3,5 in H*(BEs; Z(,)), where v is a unit in Z,). g

Let tc : H**(X;Z/p) — H*(X(C);Z/p) be the realization map
([Vol]) for the inclusion k C C. Voevodsky defines the Milnor opera-
tion @; also in the mod p motivic cohomology

Qi : H*’*/(-—; Z/p) S H*+2p"-—1,*'+pi—1(_; Z/p)
which are compatible with the usual (topological) cohomology opera-
tions by the realization map t¢c. For smooth X, the oparation
Qi H**(X;Z/p) = CH*(X)/p — H** "' =+ "1 (X;Z/p) = 0
is zero since 2(x +p* — 1) — (2% +2p* — 1) = =1 < 0.

Theorem 3.2. There is the nonzero element y3(Gy) € Inv?(Gk; Z/p)
which is natural for the embedding Gy C G of the groups.

Proof. From Corollary 2.3, we see

Ker(1)|H**(BGy; Z/p) C HO(BGk;H%/p) =~ Inv®(Gk; Z/p).
Hence we only need to see the existence of a nonzero element ¢ €
H*2(BGy; Z/p) with Tc = 0.

Since Q:1(z4(G)) # 0, there is no element z in H*?(BGy; Z/p) such
that tc(z) = z4(G), while there exists in H**(BGy;Z/p) from the
Beilinson-Lichtenbaum conjecture.

On the other hand, c;(¢§) € CH?(BGy), in fact Chow rings have
Chern classes. Since tc(ca(€)) = pz4(G), we see that c(€) is an addi-
tive generator of H*2(BGy)(p), so is nonzero in H**(BGy; Z/p).

Consider the element

72(c2(§)) = pr =0 € H**(BGy;Z/p) = H*(BG;Z/p) = L/p.
From Corollary 2.4, the map x7 : H*3(BGy; Z/p) — H**(BGx; Z/p)

is injective. Hence 7cy(€) = 0 in H**(BGy; Z/p). a
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