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1. INTRODUCTION

Let $G_{k}$ be a split linear algebraic group over a field $k$ . The cohomo-
logical invariant $Inv^{*}(G_{k};Z/p)$ is (roughly speaking) the ring of natural
maps $H^{1}(F;G_{k})arrow H^{*}(F;Z/p)$ for finitely generated field $F$ over $k$ .
For each simple simply connected group, Rost defined the invariant
$R(G_{k})\in Inv^{3}(G_{k};Z/p)$ , which is nonzero whenever the corresponding
complex Lie group $G$ has p-torsion.

In this paper, we give a short proof of the existence of the Rost
invariant for an algebraic closed field $k$ in $\mathbb{C}$ , by using motivic coho-
mology and the affirmative answer of the Bloch-Kato conjecture by
Voevodsky.

2. MOTIVIC COHOMOLOGY

Recall that $H^{1}(k;G_{k})$ is the first non abelian Galois cohomology set
of $G_{k}$ , which represents the set of $G_{k}$ -torsors over $k$ . The cohomology
invariant is defined by

$In$$v^{i}$ $(G_{k}, Z/p)=Func(H^{1}(F;G_{k})arrow H^{i}(F;Z/p))$

where Func means natural functions for each fields $F$ over $k$ . (For
accurate definition or properties, see the books [Ga-Me-Se], [Ga]. $)$

Let $BG_{k}$ be the classifying space ([To]) of $G$ . Totaro proved [Ga-
Me-Se] the following theorem in the letter to Serre.

Theorem 2.1. (Totaro) $Inv^{*}(G_{k};Z/p)\cong H^{0}(BG_{k};H_{Z/p}^{*})$ .
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Here $H^{*}(X;H_{Z/p}^{*’})$ is the cohomology of the Zarisky sheaf induced
from the presheaf $H_{et}^{*}(V;Z/p)$ for open subsets $V$ of $X$ . This sheaf
cohomology is also the $E_{2}$-term

$E_{2}^{**’}\cong H^{*}(BG_{k};H_{Z/p}^{*’})\Rightarrow H^{*}(BG_{k};Z/p)$

of the coniveau spectral sequence by Bloch-Ogus [Bl-Og].
Next we recall the motivic cohomology. Let $X$ be a smooth (quasi

projective) variety over a field $k\subset \mathbb{C}$ . Let $H^{**’}(X;Z/p)$ be the mod$(p)$

motivic cohomology defined by Voevodsky and Suslin ([Vol-3]). Recall
that the Belinson-Lichtenbaum conjecture holds if

$H^{m,n}(X;Z/p)\cong H_{et}^{m}(X;\mu_{p}^{\otimes n})$ for all $m\leq n$ .

Recently M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) proved the Bloch-
Kato conjecture. The Bloch-Kato conjecture implies the Beilinson-
Lichtenbaum conjecture.

In this paper, we assume that $k$ contains a primitive p-th root of
unity. Then there is the isomorphism $H_{et}^{m}(X;\mu_{p}^{\otimes n})\cong H_{et}^{m}(X;Z/p)$ .
Let $\tau$ be a generator of $H^{0,1}(Spec(k))Z/p)\cong Z/p$ , so that

$co \lim_{i}\tau^{i}H^{**’}(X;Z/p)\cong H_{et}^{*}(X;Z/p)$ .

The Beilinson and Lichtenbaum conjecture also implies the exact se-
quences of cohomology theories

Theorem 2.2. $([Or- Vi- Vo]_{f}[Vo5])$ There is the long exact sequence

$arrow H^{m_{2}n-1}(X;\mathbb{Z}/p)arrow^{\mathcal{T}}\cross H^{m_{2}n}(X;Z/p)$

$arrow H^{m-n}(X;H_{z/p}^{n})arrow H^{m+1,n-1}(X;Z/p)arrow\cross\tau$ .

In particular, we have

Corollary 2.3. The graded ring $grH_{Zar}^{m-n}(X;H_{Z/p}^{n})$ is isomorphic to

$H^{mn})(X;Z/p)/(\tau)\oplus Ker(\tau)|H^{m+1,n-1}(X;Z/p)$

where $H^{mn}$) $(X;\mathbb{Z}/p)/(\tau)=H^{m,n}(X;Z/p)/(\tau H^{mn-1})(X;\mathbb{Z}/p))$ .

Corollary 2.4. The map $\cross\tau$ : $H^{mm-1}$} $(X;Z/p)arrow H^{m_{2}m}(X;Z/p)$ is
injective.

3. LIE GROUPS

In this section, we assume that $k$ is an algebraic closed field in $\mathbb{C}$ . Let
$G$ be the complex Lie group corresponding to $G_{k}$ for fields $k$ . Suppose
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that $G$ is a simple simply connected Lie group having p-torsion in
$H^{*}(G)$ , namely

$(G, p)=\{\begin{array}{ll}G_{2}, F_{4}, E_{6}, E_{7}, E_{8}, Spin_{n}(n\geq 7) f or p=2F_{4}, E_{6}, E_{7}, E_{8} f or p=3, E_{8} f or p=5. \end{array}$

It is known that $G$ is 2-connected and there is an element $x_{3}(G)\in$

$H^{3}(G;\mathbb{Z}/p)\cong Z/p$ with $Q_{1}x_{3}(G)\neq 0$ for the Milnor operation $Q_{1}$ .
Note that for each inclusion $i$ : $G\subset G’$ for above groups, we know
$i^{*}(x_{3}(G’))=x_{3}(G)$ . Consider the classifying space $BG$ and its coho-
mology. Denote by $x_{4}(G)$ the transgression of $x_{3}(G)$ in $H^{4}(BG;Z/p)$ ,
namely, $x_{4}(G)$ generates $H^{4}(BG;Z/p)\cong Z/p$ and $Q_{1}(x_{4}(G))\neq 0$ . We
will $writ\dot{e}$ the integral lift of $x_{4}(G)$ also by the same letter $x_{4}(G)$ .

Lemma 3.1. The element $px_{4}(G)\in H^{4}(BG)_{(p)}$ is represented by the
Chem class $c_{2}(\xi)$ of some complex representation $\xi$ : $Garrow U(N)$ .

Proof. We only need to prove for $G=Spin_{n},$ $p=2$ and $G=E_{8}$ for
odd primes. Because when $p=2$ , there is the inclusion $i:G\subset Spin_{N}$

for some $N$ so that $i^{*}(x_{4}(Spin_{N}))=x_{4}(G)$ . For odd prime cases, there
is the inlusion $i:G\subset E_{8}$ , such that $i^{*}(x_{4}(E_{8}))=x_{4}(G)$ .

The complex representation ring is known for $N=2n+1$

$R(Spin_{N})\cong Z[\lambda_{1}, \ldots, \lambda_{n-1}, \triangle_{\mathbb{C}}]$ ,

where $\lambda_{i}$ is the i-th elementary symmetric function in variables $z_{1}^{2}+$

$z_{1}^{-2},\ldots,$ $z_{n}^{2}+z_{n}^{-2}$ in $R(T)\cong Z[z_{1}, z_{1}^{-1}, \ldots, z_{n}, z_{n}^{-1}]$ for the maximal torus
$T$ in $Spin_{N}$ . Let $T^{1}$ be the first factor of $T$ and $\eta$ : $T^{1}\subset Spin_{N}$ . Then
it is proved (page 1052 in [Sc-Ya]) that

$\eta^{*}c_{2}(\lambda_{1})=4u$ , $\eta^{*}x_{4}(Spin_{N})=2u$

where $u$ is the generator of $H^{2}(BT^{1}, Z)=Z$ . This implies $2x_{4}(Spin_{N})=$

$c_{2}(\lambda_{1})$ .
Let a : $E_{8}arrow SO(248)$ be the adjoint representation of $E_{8}$ . By the

construction of the exceptional Lie group $E_{8}$ in [Ad], there exists a
homomorphism $\beta$ : Spin(16) $arrow E_{8}$ such that the induced represen-
tation of $\alpha\circ\beta$ is the direct sum of $\lambda_{16}^{2}$ : Spin(16) $arrow SO(120)$ and
$\triangle_{16}^{+}$ : Spin(16) $arrow SO(128)$ . Let $T^{8}$ be the maximal torus of Spin(16).
Let $T^{1}$ be the first factor of $T^{8}$ and $\eta$ : $T^{1}arrow$ Spin(16) the inclusion
of $T^{1}$ into Spin(16). Then it is proved ([Ka-Ya]) that the total Chcrn
class of the complexification of $\alpha\circ\beta\circ\eta$ is

$1-120u^{2}+\cdots\in Z[u]\cong H^{*}(BT^{1};Z)$ .
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Since $120=2^{3}\cdot 3\cdot 5$ , the Chern class $c_{2}(\alpha)$ represents $\gamma px_{4}(E_{8})$ for
$p=3,5$ in $H^{4}(BE_{8};Z_{(p)})$ , where $\gamma$ is a unit in $Z_{(p)}$ . $\square$

Let $t_{\mathbb{C}}$ : $H^{**’}(X;Z/p)arrow H^{*}(X(\mathbb{C});Z/p)$ be the realization map
([Vol]) for the inclusion $k\subset \mathbb{C}$ . Voevodsky defines the Milnor opera-
tion $Q_{i}$ also in the $mod p$ motivic cohomology

$Q_{i}:H^{**’}(-;Z/p)arrow H^{*+2p^{i}-1,*’+p^{\iota}-1}(-;Z/p)$

which are compatible with the usual (topological) cohomology opera-
tions by the realization map $t_{\mathbb{C}}$ . For smooth $X$ , the oparation

$Q_{i}:H^{2*,*}(X)Z/p)=CH^{*}(X)/parrow H^{2*+2p^{i}-1,*+p^{i}-}1$ $(X; Z/p)=0$

is zero since $2(*+p^{i}-1)-(2*+2p^{i}-1)=-1<0$ .

Theorem 3.2. There is the nonzero element $y_{3}(G_{k})\in Inv^{3}(G_{k};Z/p)$

which is natural for the embedding $G_{k}\subseteq G_{k}’$ of the groups.

Proof. From Corollary 2.3, we see
$Ker(\tau)|H^{4,2}(BG_{k};\mathbb{Z}/p)\subset H^{0}(BG_{k};H_{Z/p}^{3})\cong Inv^{3}(G_{k};Z/p)$ .

Hence we only need to see the existence of a nonzero element $c\in$

$H^{4,2}(BG_{k};Z/p)$ with $\tau c=0$ .
Since $Q_{1}(x_{4}(G))\neq 0$ , there is no element $x$ in $H^{4,2}(BG_{k};\mathbb{Z}/p)$ such

that $t_{\mathbb{C}}(x)=x_{4}(G)$ , while there exists in $H^{4,4}(BG_{k};\mathbb{Z}/p)$ from the
Beilinson-Lichtenbaum conjecture.

On the other hand, $c_{2}(\xi)\in CH^{2}(BG_{k})$ , in fact Chow rings have
Chern classes. Since $t_{\mathbb{C}}(c_{2}(\xi))=px_{4}(G)$ , we see that $c_{2}(\xi)$ is an addi-
tive generator of $H^{4,2}(BG_{k})_{(p)}$ , so is nonzero in $H^{4,2}(BG_{k)}\cdot Z/p)$ .

Consider the element
$\tau^{2}(c_{2}(\xi))=px=0\in H^{4,4}(BG_{k\}}Z/p)\cong H^{4}(BG;Z/p)\cong Z/p$.

From Corollary 2.4, the map $\cross\tau$ : $H^{4,3}(BG_{k};Z/p)arrow H^{4,4}(BG_{k};Z/p)$

is injective. Hence $\tau c_{2}(\xi)=0$ in $H^{4,3}(BG_{k};\mathbb{Z}/p)$ . $\square$
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