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1. INTRODUCTION

Let $G$ be a finite group, $p$ a prime. The structure of p-local objects of
$G$ is important when investigating structure or representations of $G$ . In
particular, a fusion system over a Sylow p-subgroup $P$ is crucial. Sometimes
$G$ and the normalizer $N_{G}(P)$ of $P$ in $G$ have the same saturated fusion
systems over $P$ . For example, it is always so if $P$ abelian. From a modular
representation theoretic point of view, it is interesting to know whether,
in general, the principal blocks of two groups having common Sylow $x\succ$

subgroups $P$ and giving the same saturated fusion systems over $P$ have
similar structure. In the case where $P$ is abelian, Brou\’e conjectured that
between the principal blocks of $G$ and $N_{G}(P)$ there is a perfect isometry, [3].
If $P$ is not abelian, we can not expect the existence of such a nice isometry.
However, if two groups with a common Sylow p-subgroup $P$ give the same
saturated fusion systems over $P$ , then their principal blocks have quite often
the same numbers of irreducible characters. In each of these cases, there
exists at least a bijection between the sets of ordinary irreducible characters,
but, usually there is not a perfect isometry between their principal blocks.
However, in [10], we define a new type of isometry, which is a complete
generalization of the perfect isometry defined by Brou\’e, and prove that for
$p=3$ or 5 there exists the new isometry between the principal blocks of
two groups having extra special p-groups of order $p^{3}$ and exponent $p$ as
their Sylow p-subgroups over which they give the same saturated fusion
systems. But, we do not know the relationship between this new isometry
and the structural relationship of their module categories. We hope that
in the future such interesting phenomena will be regarded as shadows of
some equivalences, like perfect isometries are considered as those of derived
equivalences.

In this note we give a brief exposition of our paper [10]. For terminologies
and notions of modular representation theory of finite groups, we refer to
[8].

数理解析研究所講究録
第 1679巻 2010年 61-70 61



2. FUSION SYSTEMS

In this section, we review fusion systems following [12].

Definition 2.1. Let $P$ be a finite p-group. A fusion system $\mathcal{F}$ over $P$

is a category whose objects are the subgroups of $P$ , and the morphism set
$Hom_{\mathcal{F}}(Q_{1}, Q_{2})$ for subgroups $Q_{1}$ and $Q_{2}$ of $P$ satisfies the following.

(i) Elements in the morphism set $Hom_{\mathcal{F}}(Q_{1}, Q_{2})$ are injective group ho-
momorphisms and all the homomorphisms from $Q_{1}$ to $Q_{2}$ given by the con-
jugation by the elements of $P$ lie in $Hom_{\mathcal{F}}(Q_{1}, Q_{2})$ .

(ii) Every element $f$ in $Hom_{F}(Q_{1}, Q_{2})$ can be written as the composition
of the isomorphism $f:Q_{1}arrow f(Q_{1})$ and the inclusion $f(Q_{1})\subseteq Q_{2}$ , and the
both are morphisms of $\mathcal{F}$ .

Let $Q$ be a subgroup of $P$ . Then the set Aut$Q(Q)$ of Q-conjugations on $Q$

is a normal subgroup of $Hom_{\mathcal{F}}(Q, Q)$ . We use $Out_{\mathcal{F}}(Q)$ or simply Out $(Q)$ to
denote $Hom_{\mathcal{F}}(Q, Q)/Aut_{Q}(Q)$ . If there is an isomorphism in $Hom_{\mathcal{F}}(Q_{1}, Q_{2})$ ,
then we say that $Q_{1}$ and $Q_{2}$ are $\mathcal{F}$-conjugate. The centralizer of $Q$ in $P$ is
denoted by $C_{P}(Q)$ .

Definition 2.2. Let $\mathcal{F}$ be a fusion system over $P$ .
(i) A subgroup $Q$ of $P$ is said to be fully centralized in $\mathcal{F},$ $if|C_{P}(Q)|\geq$

$|C_{P}(Q_{1})|$ for all those $Q_{1}\leq P$ that are $\mathcal{F}$-conjugate to $Q$ .
(ii) A subgroup $Q$ of $P$ is said to be fully normalized in $\mathcal{F},$ $if|N_{P}(Q)|\geq$

$|N_{P}(Q_{1})|$ for all those $Q_{1}\leq P$ that are $\mathcal{F}$-conjugate to $Q$ .
(iii) We say that $\mathcal{F}$ is a saturated fusion system if the following are sat-

isfied.
(a) Every fully normalized subgroup $Q$ of $P$ is fully centralized and

Autp $(Q)$ is a Sylow p-subgroup of $Hom_{F}(Q, Q)$ .
(b) For $Q\leq P$ and $\varphi\in Hom_{\mathcal{F}}(Q, P)$ with $\varphi(Q)$ is fully centralized, let

$N=\{g\in N_{P}(Q)|\varphi c_{g}\varphi^{-1}\in$ Autp $(\varphi(Q))\}$ , where $c_{g}$ is the conjugation by
$g$ . Then, there is $\varphi’\in Hom_{F}(N, P)$ such that the restriction of $\varphi’$ to $Q$ is
equal to $\varphi$ .

Suppose that $P$ is a Sylow p-subgroup of a finite group $G$ . We indicate
this situation by $P\in Sy1_{p}(G)$ . Then $G$ gives rise to a saturated fusion
system $\mathcal{F}_{P}(G)$ over $P$ (Proposition 1.3 of [2]). This is given by defining
$Hom_{\mathcal{F}_{P}(G)}(Q_{1}, Q_{2})$ for subgroups $Q_{1}$ and $Q_{2}$ of $P$ as the set of conjugation
maps from $Q_{1}$ to $Q_{2}$ given by the elements of $G$ .

Example 2.3. Suppose that $P$ is abelian. Then saturated fusion systems
over $P$ are in one-to-one correspondence with representatives of conjugacy
classes of $p’$ -subgroups of Out $(P)$ . Moreover, if $P\in Sy1_{p}(G)$ , then $\mathcal{F}_{P}(G)=$

$\mathcal{F}_{P}(N_{G}(P))$ .
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Example 2.4. For an odd prime $p$ , let

$p_{+}^{1+2}=\{\{\begin{array}{lll}1 a b0 1 c0 0 1\end{array}\}$ $\in GL(3,p)|a,$ $b,$ $c\in F_{p}\}$ .

This $p_{+}^{1+2}$ is called an extm special p-group of order $p^{3}$ and exponent $p$ .
Saturated fusion systems over $p_{+}^{1+2}$ are classified by [12].

In particular, for $p=3$ , there are fifteen saturated fusion systems over
$3_{+}^{1+2}$ . Finite groups with a Sylow p-subgroup $p_{+}^{1+2}$ and without non-trivial
normal p’-subgroups can be classified by using the classification theorem of
finite simple groups. For example the following holds.

Let $J_{4}$ be the largest sporadic simple group of Janko. We know that
$P=3_{+}^{1+2}\in Sy1_{3}(J_{4})$ . Suppose that a finite group $G$ satisfies $3_{+}^{1+2}\in Sy1_{3}(G)$ ,
$\mathcal{F}_{P}(J_{4})=\mathcal{F}_{P}(G)$ and that $G$ does not have a non-trivial norma13’-subgroup.
Then $G$ satisfies one of the following. Here $Ru$ is the sporadic simple group
of Rudvalis and $2F_{4}(q^{2})$ is the twisted Chevalley group of type $F_{4}$ .

$G=Ru$ , $2F_{4}(q^{2})\leq G\leq Aut(2F_{4}(q^{2}))$ ( $q^{2}\equiv 2$ or 5 mod9), $G=J_{4}$ .

3. PRINCIPAL BLOCKS

In this section, we explain blocks of finite groups. However, since we
treat only principal blocks and characters, instead of giving a definition of
general blocks, we give only that of the principal blocks by using values of
irreducible characters.

Let $G$ be a finite group and $\chi$ an irreducible (complex) character of $G$ .
Let $p$ be a prime.

Definition 3.1. We say that $\chi$ belongs to the principal block of $G$ if
$\frac{\chi(g)|G|}{\chi(1)|C_{G}(g)|}\equiv\frac{|G|}{|C_{G}(g)|}$ $mod p\forall g\in G$

The above definition needs some explanations. First of all, the left hand
side of the congruence is known to be an algebraic integer, whereas the right
hand side is of course a rational integer. Thus “ $mod p$” means modulo a
certain prime ideal, lying over $pZ$ , of the ring of integers in a finite extension
field of $\mathbb{Q}$ . Moreover, the above condition of congruence does not depend on
the choice of such a prime ideal. We write $\chi\in B_{0}(G)$ , if $\chi$ belongs to the
principal block of $G$ .
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Example 3.2. The following give the character tables of the symmetric
groups $\mathfrak{S}_{3},$ $\mathfrak{S}_{4}$ and $\mathfrak{S}_{5}$ . As is well known, irreducible characters of $(S5_{n}$ are
labeled by partitions of $n$ . For a partition $\lambda$ of $n$ , the corresponding character
is denoted by $\chi_{\lambda}$ .

Assume that $p=3$ . Then the characters in the principal blocks are those
above the horizontal lines in the individual character tables. In particu-
lar, in each case, three irreducible characters belong to the principal block.
Moreover, it is known that in each case, exactly two equivalence classes of
irreducible representations over an algebraically closed field of characteristic
3 belong to the principal block.

On the other hand, we know that $\mathfrak{S}_{3},$ $\mathfrak{S}_{4}$ and $\mathfrak{S}_{5}$ have the same Sylow
3-subgroup $P$ , that is, a cyclic group $C_{3}$ of order three, and moreover,

$\mathcal{F}_{P}(\mathfrak{S}_{3})=\mathcal{F}_{P}(\mathfrak{S}_{4})=\mathcal{F}_{P}(\mathfrak{S}_{5})$ .

The above may suggest that saturated fusion systems and certain invari-
ants of principal blocks are related.
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4. CONJECTURES

The phenomenon described in the previous section can be observed in
many cases. In fact, there is a conjecture which is due originally to McKay
and Alperin, and later extended by Isaacs and Navarro. Before mentioning
it, we need some notations.

Let $p$ be a prime. For an irreducible character $\chi$ of a finite group $G$ , we
decompose the rational integer $\frac{|G|}{\chi(1)}$ as

$\frac{|G|}{\chi(1)}=p^{d(\chi)}r(\chi)$ ,

where $d(\chi)$ is a non-negative integer and $r(\chi)$ is a positive integer relatively
prime to $p$ .

Conjecture 1. $(McKay-Alperin$-Isaacs-Navarro [7], [1], [6], for principal
blocks) Let $P\in Sy1_{p}(G)$ . Let $r$ be an integer with $1\leq r\leq ti2^{\cdot}$ Then

$\#\{\chi\in B_{0}(G)|p^{d(\chi)}=|P|$ , and $r(\chi)\equiv\pm r$ $mod p\}$

$=\#\{\theta\in B_{0}(N_{G}(P))|p^{d(\theta)}=|P|$ , and $r(\theta)\equiv\pm r$ $mod p\}$ ?

For $\mathfrak{S}_{3},$ $\mathfrak{S}_{4}$ and $\mathfrak{S}_{5}$ and $p=3$ , the above numbers are three as their
character tables in the previous section show. Note that the condition on
$r(\chi)$ is automatically satisfied if $p=2$ or 3.

It may be preferable if there exists a natural bijection between the above
two sets. A conjecture in this nature is raised by Brou\’e. In order to state
Brou\’e’s conjecture, we need the following notion.

Definition 4.1. Let $G$ and $H$ be finite groups. If a genemlized character,
$i.e$ . a Z-linear combination of irreducible characters, $\mu$ of $G\cross H$ satisfies
the following, then we say that $\mu$ is perfect.

(Pl) If $\mu(g, h)\neq 0$ , then either both $g$ and $h$ are p-regular or both are
p-singular.

(P2) $\mu(g, h)/|C_{G}(g)|$ and $\mu(g, h)/|C_{H}(h)|$ are p-local integers.

Here an element $g$ is called p-regular if its order is relatively prime to $p$

and it is p-singular otherwise.

Let $G$ and $H$ be finite groups. For a bijection $I:B_{0}(G)arrow B_{0}(H)$ and a
map $\epsilon$ : $B_{0}(G)arrow\{\pm 1\}$ , we can define a generalized character $\mu$ of $G\cross H$

by

$\mu(g, h)=\sum_{\chi\in B_{0}(G)}\epsilon(\chi)\chi(g)I(\chi)(h)$
, $(g, h)\in G\cross H$ .
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Definition 4.2. Let $G$ and $H$ be finite groups. If there are a bijection
$I$ : $B_{0}(G)arrow B_{0}(H)$ and a map $\epsilon j;B_{0}(G)arrow\{\pm 1\}$ such that $\mu$ defined above
is perfect, then we say that $\mu$ gives a perfect isometry between $B_{0}(G)$ and
$B_{0}(H)$ .

Brou\’e’s conjecture for principal blocks is stated as follows.

Conjecture 2. (Brou\’e’s perfect isometry conjecture for principal blocks)
Suppose that a finite group $G$ has an abelian Sylow p-subgroup P. Then does
there exist a perfect isometry between $B_{0}(G)$ and $B_{0}(N_{G}(P))$ ?

Remarks. (i) In the case where a Sylow p-subgroup is not abelian, a perfect
isometry does not exist in geneml. The principal block for $p=2$ of Suzuki
group $G=2B_{2}(2^{2n+1})$ gives an example. A Sylow 2-subgroup $P$ of $G$ is
not abelian and there is no perfect isometry between $B_{0}(G)$ and $B_{0}(N_{G}(P))$ .
However, we have $\mathcal{F}_{P}(G)=\mathcal{F}_{P}(N_{G}(P))$ .

(ii) Broue conjectured that if $P$ is abelian, then the derrved categones of
the module categories of the principal blocks of $G$ and $N_{G}(P)$ (as algebars)
over the ring ofp-local integers are equivalent. He also showed that, if this is
the case, then there exists a perfect isometry between $B_{0}(G)$ and $B_{0}(N_{G}(P))$ .

We now consider the group $p_{+}^{1+2}$ for an odd prime $p$ . By using the classifi-
cation theorems of finite simple groups and of saturated fusion systems over
$p_{+}^{1+2}$ , we can determine the numbers of characters in the principal blocks.

For a non-negative integer $d$ and an integer $r$ with $1\leq r\leq 22$ ’ we set
$k_{d,\pm r}(G)=\#\{\chi\in B_{0}(G)|d(\chi)=d$ , and $r(\chi)\equiv\pm r$ $mod p\}$ .

Moreover, we denote by $l(G)$ the number of equivalence classes of irre-
ducible representations over an algebraically closed field of characteristic $p$ ,
which belong to the principal block of $G$ . Namely, irreducible representa-
tions which are obtained as irreducible constituents when reduced modulo
$p$ of irreducible representations over a field of characteristic $0$ belonging to
the principal block.

Let $p=3$ and $P=3_{+}^{1+2}$ . For $G$ with $P\in Sy1_{3}(G)$ , we can obtain
$k_{d,\pm r}(G)$ and $l(G)$ as follows. Recall that there exist fifteen saturated fusion
systems over $P$ . In the following table, the column indicated as $|\mathcal{F}^{e}|$ gives
the number of those subgroups $Q$ of $P$ which have order $3^{2}$ and satisfy
$SL_{2}(3)\leq N_{G}(Q)/C_{G}(Q)$ . In fact, it is known that in general saturated
fusion systems over $p_{+}^{1+2}$ are determined only by Out$\mathcal{F}_{P}(c)(P)$ and $|\mathcal{F}^{e}|,$ $[2]$ .
The symbol $(*)$ means the case where $Z(P)\leq C_{G}(N_{G}(P))$ .
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Here, $D_{8},$ $Q_{8}$ and $SD_{16}$ mean a dihedral group of order eight, a quaternion
group of order eight and a semidihedral group of order sixteen, respectively.
If $d$ is not 2 nor 3, we have $k_{d,\pm 1}(G)=0$ .

A similar thing can be seen for a general $p$ . Namely, if $P=p_{+}^{1+2}\in$

$Sy1_{p}(G)\cap Sy1_{p}(H)$ and $\mathcal{F}_{P}(G)=\mathcal{F}_{P}(H)$ , then we have for all $d$ and $r$ ,

$k_{d,\pm r}(G)=k_{d,\pm r}(H)$ and $l(G)=l(H)$ .

5. SOME INVARIANTS AND A NEW ISOMETRY

To define a new type of isometry, we introduce some invariants for normal
subgroups of p-groups and conjugacy classes of finite groups. For a finite
group $G$ , we denote by ZIrr $(G)$ the set of generalized characters of $G$ .

Let $P$ be a p-group, and let $Q$ be a normal subgroup of $P$ . We set

$X(P;Q)=\{\theta\in ZIrr(P)|\theta(g)=0$ for all $g\in P\backslash Q\}$ ,

and

$V(P;Q)= \{\sum_{\varphi\in Irr(Q)}a_{\varphi}\varphi\uparrow^{P}|a_{\varphi}\in Z\}$
.

Namely, $V(P;Q)$ is the image of the induction map from ZIrr $(Q)$ to ZIrr $(P)$ .
Then, $X(P;Q)$ and $V(P;Q)$ are Z-submodules of ZIrr $(P)$ . Moreover, we
have $V(P;Q)\subseteq X(P;Q)$ . Furthermore, Lemma 3.3 (ii) in [11] shows that
there exists a non-negative integer $c$ such that $p^{c}X(P;Q)\subseteq V(P;Q)$ . Now
we define $c(P;Q)$ as follows.
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Definition 5.1. Let $P$ be a p-group and $Q$ a normal subgroup of P. $We$

denote by $c(P;Q)$ the non-negative integer $c$ smallest among those $c$ which
satisfy $p^{c}X(P;Q)\subseteq V(P;Q)$ .

Remarks. (i) We have $c(P;\{1\})=0$ , since $X(P;\{1\})$ and $V(P;\{1\})$ are
both generated by the regular chamcter of $P$ over Z. In particular, if $P$ is
abelian, then we have $c(P;[P, P])=0$ .

(ii) Suppose that $P=p_{+}^{1+2}$ . Then it is easy to see that $c(P;[P, P])=1$ .
In fact, we can describe $X(P;[P, P])$ and $V(P;[P, P])$ as follows. Let $\psi=$

$1_{[P,P]}\uparrow^{P}$ , and let $\chi_{1},$ $\chi_{2},$ $\cdots,$ $\chi_{p-1}$ be distinct irreducible chamcters of $P$

with degree $p$ . Then, $X(P;[P, P])$ is genemted by $\psi,$ $\chi_{1},$ $\chi_{2},$ $\cdots,$ $\chi_{p-1}$ over
$Z$ , whereas $V(P;[P, P])$ is generated by $\psi,$ $p\chi_{1},$ $p\chi_{2},$ $\cdots,$ $p\chi_{p-1}$ over Z.

Next, we let $G$ be a finite group and fix a p-subgroup $Q$ of $G$ . Let
Tr $GQ$ : $(ZG)^{Q}arrow(ZG)^{G}=Z(ZG)$

be the trace map, where $(ZG)^{Q}$ is the set of Q-invariant elements in $ZG$

under the conjugate action. Thus $(ZG)^{G}$ is the center $Z(ZG)$ of $ZG$ . Let
$g\in G$ and $C$ the G-conjugacy class of $g$ . Then the sum $\hat{C}$ of all the elements
in $C$ lies in $Z(ZG)$ .

Definition 5.2. With the above notation, we denote by $s(g)=s_{Q}(g)$ the
non-negative integer $s$ smallest among those $s$ such that there exists a posi-
tive integer $m$ relatively prime to $p$ with $mp^{s}\hat{C}\in ImTr_{Q}^{G}$ .

Remarks. (i) If $g’\in G$ is G-conjugate to $g$ , then $s_{Q}(g)=s_{Q}(g’)$ .
(ii) Since $Tr_{\{1\}}^{G}(g)=|C_{G}(g)|\hat{C}$ , it follows that $p^{s_{\{1\}}(g)}$ is the order of a

Sylow p-subgroup of $C_{G}(g)$ .
(iii) The invariant $sQ(g)$ is related to relatively projective modules. Green

showed that, if $\mu$ is the character of a Q-projective G-module, then the value
$\mu(g)/p^{s(g)}Q$ is a p-local integer. See IV. Theorem 2.3 of [4].

We apply the above notion to the direct product $G\cross H$ of two finite
groups $G$ and $H$ having a common Sylow p-subgroup $P$ . Let $Q$ be a normal
subgroup of $P$ . Consider the subgroup $(Q\cross Q)\triangle(P)$ of $P\cross P$ , where
$\triangle(P)=\{(u, u^{-1})|u\in P\}$ . For $(g, h)\in G\cross H$ , we denote $s_{(Q\cross Q)\triangle(P)}((g, h))$

simply by $s_{Q}(g, h)$ .

Remark. In the above situation we can show for any such a $Q$ that
$\max(sQ(g), sQ(h))\leq s_{Q}(g, h)\leq s_{\{1\}}(g)+s_{\{1\}}(h)=s_{\{1\}}(g, h)$ .

In particular, the orders of Sylow p-subgroups of $C_{G}(g)$ and $C_{H}(h)$ are
smaller than or equal to $p^{s_{\{1\}}(g,h)}$ .
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Using the invariants given above, we introduce the notion of Q-perfectness.
Every element $g$ of a finite group $G$ can be written uniquely as the product
$g=g_{p}g_{p’}$ of two elements $g_{p}$ and $g_{p’}$ of $G$ with $g_{p}g_{p’}=g_{p’}g_{p}$ , such that the
order of $g_{p}$ is a power of $p$ and that of $g_{p’}$ is relatively prime to $p$ . Note that
$g$ is p-regular if $g_{p}=1$ and is p-singular if $g_{p}\neq 1$ . For an elernent $g$ of $G$

and a subgroup $H$ of $G$ , we write $g\in cH$ to mean that some G-conjugate
of $g$ lies in $H$ .

Definition 5.3. Assume that $P\in Sy1_{p}(G)\cap Sy1_{p}(H)$ , and let $Q$ be a normal
subgroup of P. If a generalized character $\mu$ of $G\cross H$ satisfies the following
for every $(g, h)\in G\cross H$ , then we say that $\mu$ is $(P;Q)$ -perfect or simply
Q-perfect.

(RPl) If $\mu(g, h)\neq 0$ , then $(g_{p}, h_{p})\in c\cross H(Q\cross Q)\Delta(P)$ .
(RP2) $p^{c(P;Q)-s(g,h)}Q\mu(g, h)$ is a p-local integer.

It is easy to see the following.

Proposition 5.4. Suppose that $\mu$ is {1}-perfect. Then, it is perfect and is
Q-perfect for any normal subgroup $Q$ of $P$ .

The Q-perfect isometry is defined as follows.

Definition 5.5. Assume that $P\in Sy1_{p}(G)\cap Sy1_{p}(H)$ , and let $Q$ be a normal
subgroup of P. If there exist a bijection $I$ : $B_{0}(G)arrow B_{0}(H)$ and a map
6: $B_{0}(G)arrow\{\pm 1\}$ such that they give a Q-perfect generalized character $\mu$

of $G\cross H$ , then we say that $\mu$ is a Q-perfect isometry between $B_{0}(G)$ and
$B_{0}(H)$ .

Now, we ask the following question.

Conjecture 3. Assume that $P\in Sy1_{p}(G)\cap Sy1_{p}(H)$ and $\mathcal{F}_{P}(G)=\mathcal{F}_{P}(H)$ .
Then does there exist a normal subgmup $Q$ of $P$ with $Q\leq[P, P]$ such that
there exists a Q-perfect isometry between $B_{0}(G)$ and $B_{0}(H)$ ? Moreover,
can we take a bijection $I:B_{0}(G)arrow B_{0}(H)$ such that $d(\chi)=d(I(\chi))$ and
$r(\chi)\equiv\pm r(I(\chi))mod p$ for all $\chi\in B_{0}(G)$ ? Furthermore, $l(G)=l(H)$ ?

Remarks. (i) Suppose that $P\in Sy1_{p}(G)\cap Sy1_{p}(H)$ , and $N_{G}(P)/PC_{G}(P)$

and $N_{H}(P)/PC_{H}(P)$ are conjugate in Out $(P)$ . Then, in many cases there
is a $[P, P]$ -perfect isometry between $B_{0}(G)$ and $B_{0}(H)$ , even if $\mathcal{F}_{P}(G)\neq$

$\mathcal{F}_{P}(H)$ . However, perhaps it is not true in geneml and we can ask only
whether $k_{d,\pm r}(G)=k_{d,\pm r}(H)$ for $d$ with $p^{d}=|P|$ and all $r$ . This is nothing
but the McKay-Alperin-Isaacs-Navarro conjecture.
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(ii) Broue gives a notion of isotypic. It can also be generalized by using Q-
perfectness. In fact, in the situation of Conjecture 3, we ask in [10] whether
or not the principal blocks of $G$ and $H$ are $[P, P]$ -isotypic.

In [10] the following is proved. Proof uses the arguments concerning
splendid equivalence for the existence of {1}-perfect isometries, and GAP
[13], CHEVIE [5] and MAPLE for the existence of $[P, P]$ -perfect isometries.

Theorem 5.6. Assume that $p=3$ or 5 and let $P$ be an extm special p-group
of order $p^{3}$ and exponent $p$ . Then Conjecture 3 is true.

Remarks. (i) In [10], not only the existence of a $[P, P]$ -perfect isometry but
also $[P, P]$ -isotypic is shown.

(ii) For $p\geq 7$ , most cases are treated in [9], where the existence of $[P, P]-$

$pe$rfect isometry is pmved.
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