
ON THE LEVELS OF SPACES

KATSUHIKO KURIBAYASHI

ABSTRACT. The level of a module over a differential graded algebra measures the
number of steps to build the module in an appropriate triangulated category. We
define the levels for spaces and investigate the invariant of spaces over a K-formal
space. In particular, the level of the total space of a bundle over the 4-dimensional
sphere is computed with the aid of Auslander-Reiten theory over spaces due to
Jrgensen. A general method for computing the level of a space is also described.

1. INTRODUCTION
In this article, we survey the results obtained in [19] and [20].
Categorical representation theory provides important technical tools and ideas

in the study of many areas of mathematics including finite group theory, algebraic
geometry and algebraic topology. Triangles and quivers which appear in Auslander-
Reiten theory are examples of such tools; see, for example, [8], [9] and [12].

Let $A$ be a simply-connected differential graded algebra over a field of charac-
teristic zero and $D(A)$ the derived category of differential graded modules over $A$ .
Recently, $J\emptyset$rgensen [13] has proved that the full subcategory $D^{c}(A)$ of $D(A)$ , which
consists of compact objects, has the Auslander-Reiten triangles if the cohomology
of $A$ is a Poincar\’e duality algebra. It is also proved in [14] that each component of
the Auslander-Reiten quiver is of the form $ZA_{\infty}$ .

Very recently, Schmidt [26] has shown that the result on Auslander-Reiten com-
ponents holds even if the characteristic of the underlying field is positive; see also
[15]. Thus the singular cochain complex functor $C^{*}$ ( ; K) with coefficients in a field $K$

makes an appropriate space over a Poincar\’e space $X$ into an object in $D^{c}(C^{*}(X;K))$

in which Auslander-Reiten theory is applicable; see Section 4 for more details.
The notion of levels of differential graded modules over a differential graded al-

gebra $A$ was introduced by Avramov, Buchweitz, Iyengar and Miller in [1]. For an
object $M$ of $D(A)$ , the level of $M$ counts the number of steps required to build $M$

out of $A$ via triangles in $D(A)$ . We then define the level of a space $Y$ over a space
$X$ to be that of C’ (X; K)-module $C^{*}(Y;K)$ in $D(C^{*}(X;K))$ .

2. THE LEVEL OF A SPACE

To define the level of a space precisely, we begin by recalling from [1] thickenings
which are full subcategories of a triangulated category $\mathcal{T}$ . For a given object $G$ of $\mathcal{T}$ ,
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we first define the Oth thickening by $thick_{\tau}^{0}(G)=\{0\}$ and $thick_{\tau}^{1}(G)$ by the smallest
strict full subcategory which contains $G$ and is closed under taking finite coproducts,
retracts and all shifts. Moreover for $n>1$ define inductively the nth thickening
$thick_{\tau}^{n}(G)$ by the smallest strict full subcategory of $\mathcal{T}$ which is closed under retracts
and contains objects $M$ admitting a distinguished triangle $M_{1}arrow Marrow M_{2}arrow\Sigma M_{1}$

in $\mathcal{T}$ for which $M_{1}$ and $M_{2}$ are in $thick_{\mathcal{T}}^{n-1}(G)$ and $thick_{\tau}^{1}(G)$ , respectively. For an
object $M$ in $\mathcal{T}$ , we define a numerical invariant $1eve1_{\mathcal{T}}^{G}(M)$ , which is called the level
of $M$ with respect to $G$ in $\mathcal{T}$ , by

$1eve1_{\tau}^{G}(M)$ $:= \inf\{n\in \mathbb{N}\cup\{0\}|M\in thick_{\tau}^{n}(G)\}$ .

The dimension $\dim \mathcal{T}$ of a triangulated category $\mathcal{T}[3],$ $[25]$ is defined by
$\dim \mathcal{T}=\inf$ { $n\in N$ there exists an object $G\in \mathcal{T}$ with $thick_{\tau}^{n+1}(G)=\mathcal{T}$}.

Thus the levels of modules are closely related to the dimension of a triangulated
category and to the ghost lengths of modules; see [16] and [11].

Let $A$ be a differential graded algebra (abbreviated DGA henceforth) over a field
$K$ , with differential decreasing degree by 1. Let $D(A)$ denote the derived category
of differential graded right A-modules, which is viewed as a distinguished triangu-
lated category. Observe that a distinguished triangle in $D(A)$ comes from a cofibre
sequence of the form $Marrow fNarrow C_{f}arrow\Sigma M$ in the homotopy category of differential
graded modules (abbreviated DG modules) over $A$ , where $C_{f}$ is the mapping cone
and $\Sigma M$ is the suspension of $M$ defined by $(\Sigma M)^{n}=M^{m+1}$ . In what follows, we
denote by $1eve1_{D(A)}(M)$ the invariant $1eve1_{D(A)}^{A}(M)$ for any object $M$ in $D(A)$ .

We shall say that a graded vector space $M$ is locally finite if $M^{i}$ is of finite
dimension for any $i$ . Unless otherwise explicitly stated, it is assumed that a space
has the homotopy type of a CW complex whose cohomology with coefficients in the
underlying field is locally finite. Let $B$ be a simply-connected space and $\mathcal{T}\mathcal{O}\mathcal{P}/B$

the category of connected spaces over $B$ ; that is, objects are maps with the target
$B$ and morphisms from $\alpha$ : $Xarrow B$ to $\beta$ : $Yarrow B$ are maps $f$ : $Xarrow Y$ such that
$\beta f=\alpha$ . For a given object $\alpha$ : $Xarrow B$ in $\mathcal{T}\mathcal{O}\mathcal{P}/B$ , the singular cochain complex
$C^{*}(X;K)$ is regarded as a differential graded module (abbreviated DG module) over
the DGA $C^{*}(B;K)$ with the morphism of DGA’s induced by $\alpha$ . Thus we have a
contravariant functor
(2.1) $C^{*}$ ( ; K) : $\mathcal{T}\mathcal{O}\mathcal{P}/Barrow D(C^{*}(B;K))$ .

Let $Xarrow B$ be an object in $\mathcal{T}\mathcal{O}\mathcal{P}/B$ . We then write $1eve1_{D(C^{*}(B,K))}(X)$ for the
invariant $1eve1_{D(C^{*}(B,K))}(C^{*}(X;K))$ and refer to it as the level of the space $X$ . Observe
that if there exists a morphism $f$ : $Xarrow Y$ in $\mathcal{T}\mathcal{O}\mathcal{P}/B$ which is a homotopy
equivalence, then

$1eve1_{D(C^{*}(B,K))}(X)=1eve1_{D(C^{*}(B,K))}(Y)$ .

3. RESULTS AND COMPUTATIONAL EXAMPLES

Recall that, a space $X$ is K-formal if it is simply-connected and there exists a
quasi-isomorphism to the cohomology $H^{*}(X;K)$ from a minimal TV-model for $X$
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in the sense of Halperin and Lemaire [7]. Thus, in the case, we have a sequence of
quasi-isomorphisms

$\emptyset x$

$H^{*}(X;K)arrow TV_{X}\simeqarrow\simeq C^{*}(X;K)m_{X}$ ,

where $m_{X}$ : $TV_{X}arrow\simeq C^{*}(X;K)$ denotes a minimal TV-model for $X$ ; that is, $TV_{X}$

is a DGA whose underlying K-algebra is the tensor algebra generated by a graded
vector space $V_{X}$ and, for any element $v\in V_{X}$ , the image of $v$ by the differential is
decomposable; see also Appendix. Observe that spheres $S^{d}$ with $d>1$ are K-formal
for any field $K[4][24]$ and that a simply-connected space whose cohomology with
coefficients in $K$ is a polynomial algebra generated by elements with even degree is
also K-formal; see [22, Section 7].

Definition 3.1. Let $q:Earrow B$ and $f$ : $Xarrow B$ be maps between K-formal spaces.
The pair $(q, f)$ is relatively K-formalizable if there exists a commutative diagram up
to homotopy

$\phi_{E}$

$H^{*}(E;K)\overline{\simeq}TV_{E}arrow\simeq C^{*}(E;K)m_{E}$

$H^{*}(q)\uparrow$ $\{$ $\overline{q}$ $\uparrow q^{*}$

$\phi_{B}$

$H^{*}(B;K)arrow TV_{B}\simeqarrow\sim BC^{*}(B;K)m$

$H^{*}(f)\downarrow$ $\downarrow f^{*}$

$\phi_{X}$

$H^{*}(X;K)\overline{\simeq}TV_{X}\downarrow\tilde{f}arrow\simeq C^{*}(X;K)m_{X}-$

,

in which horizontal arrows are quasi-isomorphisms.

We refer the reader to Appendix for the notion of homotopy in the category of
DGA’s. We here comment on a map between K-formal spaces. In general, for given
quasi-isomorphisms $\phi_{E},$ $m_{E},$ $\phi_{B}$ and $m_{B}$ as in Definition 3.1, there exist DGA maps
$\overline{q}_{1}$ and $\overline{q}_{2}$ which make the right upper square and left that in the definition homotopy
commutative, respectively. However, in general, one cannot choose a map $\overline{q}$ which
makes upper two squares homotopy commutative simultaneously even if the maps
$\phi_{E},$ $m_{E},$ $\phi_{B}$ and $m_{B}$ are replaced by other quasi-isomorphisms; see the comments
following [18, Theorem 1.1].

The following proposition, which are deduced from the proof of [18, Theorem 1.1],
gives examples of relatively K-formalizable pairs of maps.

Proposition 3.2. A pair $(q, f)$ of maps between K-formal spaces with the same
target is relatively K-formalizable if the two maps $q$ and $f$ satisfy any of the following
three conditions concerning a map $\pi$ : $Sarrow T$ , respectively.

(P) $H^{*}(S;K)$ and $H^{*}(T;K)$ are polynomial algebras with at most countably many
generators in which the operation $Sq_{1}$ vanishes when the characteristic of the field
$K$ is 2. Here $Sq_{1}x=Sq^{n-1}x$ for $x$ with degree $n$ ; see [22, 4.9].
(P) The homomorphism $BH^{*}(\pi;K)$ : $BH^{*}(T;K)arrow BH^{*}(S;K)$ defined by $H^{*}(\pi;K)$

between the bar complexes induces an $\underline{in}jective$ homomorphism on the homology.
(P3) $\overline{H}^{i}(S;K)=0$ for any $i$ with $\dim H^{i-1}(\Omega T;K)-\dim(QH^{*}(T;K))^{i}\neq 0$ .
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Example 3.3. (i) Let $G$ be a connected compact Lie group and $K$ a connected
closed subgroup. Suppose that $H_{*}(G;Z)$ and $H_{*}(K;Z)$ are p-torsion free. Then
the map $Bi$ : $BKarrow BG$ between classifying spaces induced by the inclusion $i$ :
$Karrow G$ satisfies the condition $(P_{1})$ with respect to the field $F_{p}$ . Assume further
that rank $G=$ rank $K$ . Let $M$ be the homogeneous space $G/K$ and autl $(M)$ the
connected component of function space of all self-maps on $M$ containing the identity
map. Then the universal fibration $\pi$ : $M_{aut_{1}(M)}arrow B_{aut_{1}(M)}$ with fibre $M$ satisfies
the condition $(P_{1})$ with respect to the field $\mathbb{Q}$ ; see [10] and [21].
(ii) Let $q$ : $Earrow B$ be a map between K-formal spaces with a section. Then $q$ satisfies
the condition $(P_{2})$ . This follows from the naturality of the bar construction.
(iii) Consider a map $f$ : $S^{4}arrow BG$ for which $G$ is a simply-connected Lie group and
$H_{*}(G;Z)$ is p-torsion free. Suppose that $\overline{H}^{i}(S^{4};F_{p})\neq 0$ , then $i=4$ . One obtains
$\dim\overline{H}^{4-1}(\Omega BG;F_{p})-\dim(QH^{*}(BG;F_{p}))^{4}=0$ . Thus the map $f$ : $S^{4}arrow BG$ satisfies
the condition $(P_{3})$ .

Let $q:Earrow X$ be a fibration over a space $X$ and $f$ : $Barrow X$ a map. Let $\mathcal{F}$

denote the pullback diagram

$Ex_{X}Barrow E$

$\downarrow$ $\downarrow q$

$Barrow Xf$.

Our main theorem concerning the level of a space is stated as follows.

Theorem 3.4. [19] Suppose that the spaces $X,$ $B$ and $E$ in the diagmm $\mathcal{F}$ are
K-formal and the pair $(q, f)$ is relatively $K- fo7\gamma nalizable$ . Then

$1eve1_{D(C^{*}(B;K))}(Ex_{X}B)=1eve1_{D(H^{*}(B,K))}(H^{*}(E;K)\otimes_{H^{*}(X}^{L},{}_{K)}H^{*}(B;K))$ .

In general, the equality in Theorem 3.4 does not hold even if the spaces $X,$ $B$ and
$E$ in $\mathcal{F}$ are K-formal; see [19, Example 3.2].

By virtue of Theorem 3.4 and Proposition 3.2, we have

Proposition 3.5. [19] Let $G$ be a simply-connected Lie group and $Garrow E_{f}arrow S^{4}$

a G-bundle with the classifying map $f$ : $S^{4}arrow BG$ . Suppose that $H^{*}(BG;K)$ is a
polynomial algebm on generators with even degree. Then

$1eve1_{D(C^{*}(S^{4},K))}(E_{f})=\{\begin{array}{l}2 if H^{4}(f;K)\neq 0,1 otherwise.\end{array}$

Proposition 3.6. [19] Let $G$ be a simply-connected Lie group and $H$ a maximal $mnk$

subgroup. Let $G/Harrow E_{g}arrow S^{4}$ be the pullback of the fibration $G/Harrow BHarrow\pi BG$

by a map $g$ : $S^{4}arrow BG$ . Suppose that $H^{*}(BG;K)$ and $H^{*}(BH;K)$ are polynomial
algebms on genemtors with even degree. Then one has

$1eve1_{D(C^{*}(S^{4},K))}(E_{g})=1$ .

Propositions 3.5 and 3.6 make one expect that a ‘nice’ object in $\mathcal{T}\mathcal{O}\mathcal{P}/X$ such as
the total space of a fibration associated with a bundle is almost of low level. On the
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other hand, the following result guarantees existence of an object in $\mathcal{T}\mathcal{O}\mathcal{P}/S^{d}$ with
the level greater than given arbitrary number.

Theorem 3.7. [19] Suppose that the underlying field $K$ is of characteristic zero.
For any integer $l\geq 1$ , there exists an object $P_{l}arrow S^{d}$ in $\mathcal{T}\mathcal{O}\mathcal{P}/S^{d}$ such that

$1eve1_{D(C^{*}(S^{d},K))}(P_{l})\geq l$ .

4. $J\emptyset RGENSEN’ S$ RESULTS ON AUSLANDER-REITEN THEORY OVER
TOPOLOGICAL SPACES

The original computation in Proposition 3.5 is made relying on $J\emptyset rgensen$ ’s work
on Auslander-Reiten theory over topological spaces in [13]. We here give an overview
of the result.

We say that an object in a triangulated category $\mathcal{T}$ is indecomposable if it is not
a coproduct of nontrivial objects. A triangle $Larrow uMarrow vNarrow w\Sigma L$ in a triangulated
category $T$ is $an$ Auslander-Reiten triangle [8], by definition, if the following condi-
tions are satisfied:

(i) $L$ and $N$ are indecomposable.
(ii) $w\neq 0$ .
(iii) Each morphism $N’arrow N$ which is not a retraction factors through $v$ .

We say that a morphism $f$ : $Marrow N$ in $\mathcal{T}$ is irreducible if it is neither a section
nor a retraction, but satisfies that in any factorization $f=rs$ , either $s$ is a section
or $r$ is a retraction. The category 7‘ is said to have Auslander-Reiten triangles if,
for each object $N$ with local endomorphism ring, there exists an Auslander-Reiten
triangle with $N$ as the third term from the left. Recall also that an object $K$ in $T$

is compact if the functor $Hom_{\mathcal{T}}(K, )$ preserves coproducts; see [23, Chapter 4].
We denote by $D^{c}(A)$ the full subcategory of the derived category $D(A)$ consist-

ing of the compact objects. For a DG module $M$ over $A$ , let $DM$ be the dual
$Hom_{K}(M, K)$ to $M$ .

Suppose that $d$ $:= \sup\{i|H^{i}A\neq 0\}$ is finite. One of the main results in [13] asserts
that both $D^{c}(A)$ and $D^{c}(A^{op})$ have Auslander-Reiten triangles if and only if there
are isomorphisms of graded HA-modules $HA(DHA)\cong_{HA}(\Sigma^{d}HA)$ and $(DHA)_{HA}\cong$

$(\Sigma^{d}HA)_{HA}$ ; that is, $H^{*}(A)$ is a Poincar\’e duality algebra. Moreover we observe that
the condition on $A$ is equivalent to the Gorensteinness of $A$ in the sense of F\’elix,
Halperin and Thomas [5].

Definition 4.1. The Auslander-Reiten quiver of $D$ has as vertices the isomorphism
classes $[M]$ of indecomposable objects. It has one arrow from $[M]$ to $[N]$ when there
is an irreducible morphism $Marrow N$ and no arrow from $[M]$ to $[N]$ otherwise.

The form of the Auslander-Reiten quiver of $D^{c}(A)$ is clarified in [13] and [14] for
a DGA $A$ whose cohomology is a Poincar\’e duality algebra. The key lemma [13,
Lemma 8.4] to proving results in [13, Section 8] is obtained by using the rational
formality of the spheres. Since the spheres are also K-formal for any field $K$ , the
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assumption of the characteristic of the underlying field can be removed from all the
results in [13, Section 8]. In particular, we have

Theorem 4.2. [13, Theorem 8.13] [13, Proposition 8.10] Let $S^{d}$ be the d-dimensional
sphere with $d>1$ and $K$ an arbitmry field. Then the Auslander-Reiten quiver of
the category $D^{c}(C^{*}(S^{d};K))$ consists of $d-1$ components, each isomorphic to $ZA_{\infty}$ .
The component containing $Z_{0}\cong C^{*}(S^{d};K)$ is of the form

. : . .

. . .
$oo_{\backslash }z_{3}\circ 0\backslash _{\searrow\nearrow\searrow\nearrow^{\backslash }\searrow_{\circ}\nearrow^{\backslash }\searrow_{o}}\Sigma^{-2(d-1)}Z_{2}$

. . .

. . .
$oo0_{z_{0}z_{0}}\nearrow^{0\langle\circ z\circ\Sigma^{-(d-1)}Z_{1}}\backslash _{*}\backslash _{\searrow\nearrow^{\backslash }\searrow\nearrow}\nearrow\searrow^{1}\nearrow\searrow_{O}\Sigma^{d-1}z_{0}\Sigma^{-(d-1)}$

. . .

Moreover, the cohomology of the indecomposable object $\Sigma^{-l}Z_{m}$ has the form
$H^{i}(\Sigma^{-l}Z_{m})\cong\{\begin{array}{l}K for i=-m(d-1)+l and d+l,0 otherwise.\end{array}$

We can compute the level of a compact object over $C^{*}(S^{d};K)$ with the aid of the
following result due to Schmidt.

Lemma 4.3. [26, Proposition 6.6] Let $Z_{i}$ be the indecomposable object in $D^{c}(C^{*}(S^{d};K))$

described in Theorem 4.2. Then $1eve1_{D(C^{*}(S^{d};K))}(Z_{i})=i+1$ .

5. A GENERAL METHOD FOR COMPUTING THE LEVEL OF A SPACE.

We first give a sketch of the original proof of Proposition 3.5. Consider the map
$f$ : $S^{4}arrow BG$ in Proposition 3.5. As mentioned in Example 3.3, the map $f$ satisfies
the condition (P3) in Proposition 3.2. It is immediate that the universal bundle
$\pi$ : $EGarrow BG$ satisfies the condition (P3). Thus by Proposition 3.2 we see that the
pair $(f, \pi)$ is relatively K-formalizable. An explicit calculation enables us to conclude
that, in the derived category $D(C^{*}(S^{4};K))$ , the object $C^{*}(E_{f};K)$ is isomorphic to
a coproducts of shifts of $Z_{1}$ if $f^{*}\neq 0$ ; see [19, Section 5]. Moreover we see that
$C^{*}(E_{f};K)$ is isomorphic to a coproducts of shifts of $Z_{0}=C^{*}(S^{4};K)$ if $f^{*}=0$ ; see
[19, Section 5]. Thus the result follows from Lemma 4.3.

One may ask why the level of such a bundle is small. The following general
method for computing the level of a space will answer the question.

Theorem 5.1. [20] Let $\mathcal{F}$ be a pull-back diagram

$E_{\varphi}B\downarrowarrow Xarrow E\varphi\downarrow q$

in which $q$ is a fibration and the pair $(q, \varphi)$ is relatively K-formalizable. Suppose
that either of the following conditions (i) and (ii) holds.
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(i) The cohomology $H^{*}(X;K)$ is a polynomial algebm generated by $m$ indecompos-
able elements. Let $\Lambda$ be the subalgebra of $H^{*}(X;K)$ genemted by the vector subspace

$\Gamma$ $:=Ker\varphi^{*}\cap QH^{*}(X;K)$ . Then $\dim Tor_{*}^{\Lambda}(H^{*}(E;K), K)<\infty$ .
(ii) There exists a homotopy commutative diagram

$q\downarrow XEarrow X’arrow X’\cross X’\simeq h^{\simeq}\downarrow\triangle$

in which horizontal arrows are homotopy equivalences and $\triangle$ is the diagonal map.
Moreover $H^{*}(X’;K)$ is a polynomial algebm genemted by $m$ indecomposable ele-
ments. In this case put $\Gamma=Ker(\triangle^{*}|_{QH^{*}(X’\cross X’)})\cap Ker(h\varphi)^{*}$ .
Then one has

$1eve1_{D(C^{*}(B;K))}(E_{\varphi})\leq m-\dim\Gamma+1$ .

In particular, $1eve1_{D(C^{*}(B;K))}(E_{\varphi})=1$ if $\varphi^{*}\equiv 0$ .

We consider again the G-bundle $E_{f}arrow S^{4}$ described in Proposition 3.5. Let $\Gamma$ be
the vector space $Kerf^{*}\cap QH^{*}(BG;K)$ and $\Lambda$ the subalgebra of $H^{*}(BG;K)$ generated
by $\Gamma$ . Suppose that $f^{*}=0$ . Then it is immediate that $\dim\Gamma=m$ . Since $\Lambda$ is a
polynomial algebra, it follows that $Tor_{*}^{\Lambda}(H^{*}(EG;K), K)\cong Tor_{*}^{\Lambda}(K, K)$ is an exterior
algebra and hence $\dim Tor_{*}^{\Lambda}(H^{*}(EG;K), K)<\infty$ . This yields that the condition (i)
in Theorem 5.1 holds. Thanks to the theorem, we see that $1eve1_{D(C^{*}(S^{4};K))}(E_{f})=$

$m-m+1=1$ .
In the case where $f^{*}\neq 0$ , it is readily seen that $\dim\Gamma=m-1$ and the dimension

of $Tor_{*}^{\Lambda}(H^{*}(EG;K), K)$ is finite. Thus Theorem 5.1 is applicable and hence we have
$1\leq 1eve1_{D(C^{*}(S^{4};K))}(E_{f})\leq m-(m-1)+1=2$ .

In order to prove that the level of $E_{f}$ is greater than one, we appeal to a proposition
which characterizes a space of level one in terms of spectral sequences.

Proposition 5.2. [20] Let $\mathcal{F}’:Farrow jEarrow B$ be a fibration with $B$ simply-connected
and $F$ connected. If $1eve1_{D(C^{*}(B,K))}(E)=1_{f}$ then both the Leray-Serre spectml se-
quence and the Eilenberg-Moore spectral sequence for $\mathcal{F}’$ collapse at the $E_{2}$ -term,
where the coefficients of the spectral sequence are in the field K.

In the Leray-Serre spectral sequence $\{E_{r’}^{**}, d_{r}\}$ for the universal bundle $Garrow$

$EGarrow BG$ , the indecomposable elements of $H^{*}(G;K)\cong E_{2}^{0,*}$ are chosen as trans-
gressive ones. Since $f^{*}\neq 0$ , it follows that the Leray-Serre spectral sequence for the
fibration $Garrow E_{\varphi}arrow S^{4}$ does not collapse at the $E_{2}$-term. Proposition 5.2 implies
that $1<1eve1_{D(C^{*}(S^{4};K))}(E_{f})$ . We have the result.

We conclude this section with comments. For a DG module $M$ over a DGA $A$ ,
the level of $M$ defined in the derived category $D(A)$ certainly counts the number
of steps to build $M$ out of $A$ via triangles in $D(A)$ . As for topological side, what
the invariant describes is not clear. We are, however, convinced that the level of
a topological space measures complexity of the topological one in some sense. We
refer the reader to [20, \S 3 Examples] for more computations of levels of spaces.
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6. APPENDIX

We recall briefly the TV-model introduced by Halperin and Lemaire [7]. Let $TV$

be the tensor algebra $\sum_{n\geq 0}V^{\otimes n}$ with a graded vector space $V$ over a field $K$ and
$T^{\geq k}V$ denote the ideal $\sum_{n\geq k}V^{\otimes n}$ of the algebra $TV$ , where $V^{\otimes 0}=$ K. As usual,
we define the degree of the element $w=v_{1}v_{2}\cdots v_{l}\in TV$ by $\deg w=n_{1}+\cdots+n_{l}$

if $v_{n_{\iota}}\in V^{n_{t}}$ . Let $V’$ and $V^{l/}$ be copies of $V$ . We write $sv$ for the element of $\Sigma V$

corresponding to $v\in V$ . The cylinder object $TV\wedge I=(T(V‘ \oplus V’’\oplus\Sigma V), d)$

introduced by Baues and Lemaire [2, \S 1] is a DGA with differential $d$ defined by

$dv’=(dv)’,$ $dv”=(dv)”$ and $dsv=v”-v’-S(dv)$ ,

where $S:TVarrow T(V’\oplus V’’\oplus\Sigma V)$ is a map with $Sv=sv$ for $v\in V$ and $S(xy)=$
$Sx\cdot y’’+(-1)^{\deg x}x’\cdot Sy$ for $x,$ $y\in TV$ . The inclusions $\in 0$ : $TVarrow TV\wedge I$ and
$\Xi_{1}$ : $TVarrow TV\wedge I$ are defined by $\epsilon_{0}(v)=v’$ and $\in 1(v)=v’’$ , respectively.

For DGA maps $\phi’,$ $\phi’’$ : $TVarrow A$ form $TV$ to a DGA $A$ , we say that $\phi’$ and $\phi’’$

are homotopic if the DGA map $(\phi’, \phi’’)$ : $T(V’\oplus V’’)arrow A$ extends to a DGA map
$\Phi$ : $TV\wedge Iarrow A$ ; that is $\phi’=\Phi\epsilon_{0}$ and $\phi’’=\Phi\epsilon_{1}$ . We refer the reader to [6, Section
3$]$ for homotopy theory of DGA’s.

A TV-model for a differential graded algebra $(A, d_{A})$ is a quasi-isomorphism
$(TV, d)arrow\simeq(A, d_{A})$ . Moreover the model is called minimal if $d(V)\subset T^{\geq 2}V$ . For
any simply-connected space whose cohomology with coefficients in $K$ is locally fi-
nite, there exists a minimal TV-model $(TV, d)arrow\simeq C^{*}(X;K)$ which is unique up to
homotopy. Such a model $(TV, d)$ is called a minimal model for $X$ . It is known that
the vector space $V^{n}$ is isomorphic to $(\Sigma^{-1}\tilde{H}^{*}(\Omega X;K))^{n}=\tilde{H}^{n-1}(\Omega X;K)$ and the
quadratic part of the differential $d$ is the coproduct on $\tilde{H}^{*}(\Omega X;K)$ up to the iso-
morphism $V\cong\Sigma^{-1}\tilde{H}^{*}(\Omega X;K)$ . The reader is referred to [7] and [24, Introduction]
for these facts and more details of TV-models.
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