
Independent Subbases of the Sierpinski Gasket

立木 秀樹
HIDEKI TSUIKI

京都大学大学院 人間・環境学研究科
GRADUATE SCHOOL OF HUMAN AND ENVIRONMENTAL STUDIES, KYOTO UNIVERSITY

山田修司
SHUJI YAMADA

京都産業大学 理学部
FACULTY OF SCIENCE, KYOTO SANGYO UNIVERSITY

1 Introduction
Let $\mathbb{T}$ denote the set $\{0,1, \perp\}$ , where $\perp$ is a special value which means umdefinedness

between $0$ and 1. We consider the space $\mathbb{P}$ of infinite sequences of $\mathbb{T}$ and call each element
of $\mathbb{T}^{\omega}$ a bottomed sequence. We call each appearance of $0$ and 1 in a bottomed sequence
a digit, and call a bottomed sequence with finite number of digits a finite bottomed
sequence. We denote by $\mathbb{T}^{*}$ the set of finite bottomed sequences.

In [2], in order to realize computation on the unit interval �, the author introduced an
embedding of � into $\mathbb{T}^{\omega}$ , and then generalized this idea to metrizable spaces in general[3].
When $\varphi$ is an embedding of a metric space $X$ in $\mathbb{P}$ , those sets $S_{n,i}=\{x\in X$ : $\varphi(x)(n)=$

$i\}$ for $n<\omega$ and $i<2$ form a subbase of $X$ , since those sets $\{p\in \mathbb{T}^{v} : p(n)=i\}$ for $n<\omega$

and $i<2$ form a subbase of $\mathbb{T}^{\omega}$ . On the other hand, if $S=\{S_{n,i} : n<\omega, i<2\}$ is a
subbase such that $S_{n,0}\cap S_{n,1}$ is empty for $n<\omega$ , then we have a corresponding embedding
$\varphi_{S}$ of $X$ in $\mathbb{T}^{\omega}$ defined as

$\varphi_{S}(x)(n)=\{\begin{array}{l}0 (x\in S_{n,0})1 (x\in S_{n,1}) .\perp (otherwise)\end{array}$

Therefore, we identify an embedding of $X$ in $\mathbb{T}^{d}$ with such a subbase. Among such
subbases, we are interested in those with the following property.
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Definition 1 ([4], [5]) An independent subbase of a space $X$ is a subbase $S=\{S.,i$ :
$n<\omega,$ $i<2\}$ of $X$ , such that

$(\forall n<\omega)(S_{n,0}\cap S_{n,1}=\emptyset)$ , and (1)

$(\forall n<\omega)(\forall p\in 2^{n})(S_{kp(k)}\neq\emptyset)$ . (2)

We can show that $S_{n,1}$ is the exterior of $S_{n,0}$ for every $n<\omega$ for an independent subbase
$S$ . For an independent subbase $S$ and a bottomed sequence $p$ , we denote by $S(p)$ and
$\overline{S}(p)$ the sets

$S(p)=$ $\cap$ $s_{m,p(m)}$ ,
$m\in$dom$(p)$

$\overline{S}(p)=$ $\cap$ cl $S_{m,p(m)}$ .
$m\in$dom$(p)$

Here, dom$(p)=\{n\in\omega : p(n)\neq\perp\}$ . The family of open sets $\{S(p) : p\in \mathbb{T}^{v}\}$ forms the
open base corresponding to $S$ . One can prove that an independent subbase satisfies the
following condition which is stronger than (2).

$(\forall p\in \mathbb{T}^{*})(S(p)\neq\emptyset)$ .

This property is related to non-redundancy of each coding sequence $\varphi_{S}(x),$ $x\in X[4]$ .
An independent subbase also satisfies the condition cl $S(p)=\overline{S}(p)$ for $p\in \mathbb{T}^{*}$ . That

is, it is a proper dyadic subbase in [4], and thus it coincides with the definition of an
independent subbase in [4].

For a non-negative integer $m$ , an independent subbase $S=\{S_{n,i} : n<\omega, i<2\}$ is
of dimension $m$ if ord$\{cl S_{n,0}\backslash S_{n,0} : n<\omega\}\leq m-1$ , where ord $\mathcal{A}$ means the largest
integer $m$ such that the collection $\mathcal{A}$ contains $m+1$ sets with a non-empty intersection.
It is obvious that the degree of an independent subbase cannot be smaller than the small
inductive dimension of the space, and we are interested in independent subbases with the
same dimension as the small inductive dimension of the space.

In [4], starting with the Gray subbase of �, he constructed a lot of examples of inde-
pendent subbases of topological spaces. He constructed a dyadic subbase for the Cantor
set, the unit interval �, the products $\text{�^{}n}$

) the Hilbert cube �$\omega$ , the circle $S^{1}$ , and several
surfaces such as $S^{2}$ , the torus $T^{2}$ and the n-torus $nT^{2}$ .

Then, in [5], they proved that a n-dimensional separable metrizable space $X$ has an
independent subbase of dimension $n$ if and only if $X$ is dense in itself. From this theorem,
for example, the Sierpinski Gasket has an independent subbase of dimension 1. However,
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図 1: Sierpinski Gaskct $y/\vee$ , the thrce vcrticcs 0,1, and 2, amd the threc components $1_{0}’-,1_{1}^{\nearrow}$ ,
aiid $1_{\underline{o}}"$ .

this theorem does not provide an independent subbase of the Sierpinski Gasket which is
defined following the recursive structure the Gasket has.

The Sierpinski Gasket $Y$ is a well-known fractal defined by the iteration function system
(IFS for short) $(f_{0}, f_{1}, f_{2})$ where $f_{i}(i=0,1,2)$ are dilations $(i.e.$ , similarity functions which
do not rotate the object) with the ratio 1/2 and with the centers the three vertices of a
regular triangle (Figure 1). By $f_{i}(i=0,1,2),$ $Y$ is mapped to half-sized copies $Y_{i}$ of $Y$ .
Note that dilations are not the only similarity maps which form this fractal, and there
are six candidates for each of them because the symmetry group of $Y$ has order 6.

If a similarity function (or more generally a homeomorphism) $f$ : $Yarrow Y_{i}$ is given, one
can transform an independent subbase $S$ of $Y$ to an independent subbase $f(S)$ of $Y_{i}(i=$

$0,1,2)$ . On the other hand, as we will show, there is a method to construct an independent
subbase of $Y$ from independent subbases of $Y_{i}(i=0,1,2)$ if the three subbases satisfy
some conditions. Our question is whether there is an independent subbase $S$ of $Y$ and
an IFS $(f_{0}, f_{1}, f_{2})$ of the Gasket such that the independent subbases $f_{0}(S),$ $f_{1}(S),$ $f_{2}(S)$

satisfy the above mentioned condition and the independent subbase constructed from
$f_{0}(S),$ $f_{1}(S)$ , and $f_{2}(S)$ on $Y$ coincides with $S$ . Computationally, among dyadic subbases,
only such a recursively-defined one is meaningful. With other subbases, it would be
difficult to express a function recursively defined according to the structure of the Gasket
as a recursively-defined program to input/output the $\mathbb{T}^{\omega}$-code.

In this article, we show that there are three such subbases, modulo rotational and
reflective transformations of the Gasket and switching the role of $S_{n,0}$ and $S_{n,1}$ for $n<\omega$ .

2 Gray subbase of $[0,1]$

In order to clarify the problem, let us first explain the Gray subbase $G$ of the unit
interval �. From the definition of an independent subbase, � is divided into $G(0)=G_{0,0}$ ,
$G(1)=G_{0,1}$ , and their boundary (i.e., {1/2}). The set $G(O)$ is again divided into two
parts $G(00),$ $G(01)$ , and their boundary $(\{1/4\})$ , and $G(1)$ is divided into two parts
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図 2: Gray $s\iota ibb_{c}uc$ of the nnit intcrval $\lceil 0,1\rceil$ . Herc, the umion of interiors of line segments
at level $n$ is $G_{l?.1^{cJ1}}\urcorner d$ the intcrior of thc rest is $G_{l\iota.0}$ .

$G(10),$ $G(11)$ and their boundary $(\{3/4\})$ . Here we express by a finite sequence $d$ the
finite bottomed sequence $d\perp\omega$ . Afterwards, each of them is divided in the same way.
Note that for $x=1/2,$ $\varphi_{G}(x)=\perp 10^{\omega}$ and those open sets $G(\perp 10^{n})(n<\omega)$ form a basic
neighbourhood system of 1/2, in order that $S$ is a subbase. Therefore, the assignments
of the codes 00, 01, 10, 11 to the four regions is not arbitrary, and, furthermore, in order
to use at most one $\perp$ to each sequence, connected regions have sequences with one digit
difference.

This Gray subbase is defined through the fractal structure of �; � is composed of two
parts $[0,1/2]$ and [1/2, 1] which are half-sized copies of �. We give two explanations of the
recursive structure of this subbase.

The first one is to use a similarity map different from the ordinary one. Normally,
the unit interval � is considered as the fractal generated $hom$ the IFS $(f_{0}, f_{1})$ where
$f_{0}$ : Il $arrow[0,1/2]$ and $f_{i}:$ � $arrow[1/2,1]$ are defined as $f_{0}(x)=x’ 2$ and $f_{1}(x)=1\prime 2+x/2$ .
Binary expansion is defined according to this fractal structure, and each point $x$ of Il is
given (multiple) codes $c(x)$ ; each point in $[0,1/2)$ is given code(s) $0:c(f_{0}(x))$ , each point
in (1/2,1] is given code(s) 1: $c(f_{1}(x))$ , and 1/2 is given both codes $0:c(f_{0}(12))=01^{\omega}$

and 1 : $c(f_{1}(1/2))=10^{\omega}$ . Here, we denote by $a:p$ an infinite sequence with the head $a$

and the tail $p$ , and sometimes we omit : and simply denote it by $ap$ . According to this
code, � is homeomorphic to the quotient of the Cantor space $\{0,1\}^{\omega}$ with the equivalence
relation $pO1^{\omega}\sim p10^{\omega}$ for $p\in 2^{*}$ . With this binary expansion, the two codes of 1/2 are
completely different, and we cannot express them as one bottomed sequence.

For Gray subbase, we consider that � is defined as a fractal generated by another IFS
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with a different similarity map from � to [1/2, 1]. We consider that � is the fractal generated
from two similarity maps $go$ : � $arrow[0,1/2]$ and $g_{1}$ : � $arrow[1/2,1]$ defined as $g_{0}(x)=x/2$

and $g_{1}(x)=1-x/2$ . Then, the two codes given to 1/2 become $010^{\omega}$ and $110^{\omega}$ . That
is, they are the same except for the first digit. Since the first digit does not contribute
in determining the point and all the rest determines that the point is 1/2, we define the
code of 1/2 $as\perp 10^{\omega}$ and define Gray embedding $\varphi c$ from � to $\mathbb{T}^{\omega}$ as follows.

$\varphi_{G}(x)=\{\begin{array}{ll}0:\varphi_{G}(g_{0}^{-1}(x))=0:\varphi_{G}(2x) (x<12)1 :\varphi_{G}(g_{1}^{-1}(x))=1:\varphi_{G}(2(1-x)) (x>1/2)\perp:1:0^{\omega}(=\perp:\varphi_{G}(g_{0}^{-1}(x))=\perp:\varphi_{G}(g_{1}^{-1}(x))) (x=1\prime 2)\end{array}$

The corresponding subbase $G=\{G_{n,i} : n<\omega, i<2\}$ defined as $G_{n,i}=\{x\in$ � :
$\varphi_{G}(x)(n)=i\}$ is the Gray subbase. Note that $g_{0}(G)$ and $g_{1}(G)$ , as defined in the last part
of Section 1, are independent subbases of $[0,1/2]$ and [1/2, 1], respectively, and $\varphi_{go(G)}(1\prime 2)$

and $\varphi_{91(G)}(1/2)$ agree $($ to $10^{\omega})$ . This suggests a condition we need for a recursively-defined
independent subbase of the Sierpinski Gasket.

The other explanation of the Gray subbase is through inversions of the digits of the
ordinary binary sequences, instead of changing the IFS. We define an embedding $\varphi_{G}’$ as
follows.

$\varphi_{G}’(x)=\{\begin{array}{ll}0:\varphi_{G}’(f_{0}^{-1}(x))=0:\varphi_{G}(2x) (x<12)1: (not 0) \varphi_{G}’(f_{1}^{-1}(x))=1: (not 0) \varphi_{G}’(2x-1) (x>1/2)\perp:1 : 0^{\omega}(=\perp:\varphi_{G}’(f_{0}^{-1}(x))=\perp:(not 0)\varphi_{G}’(f_{1}^{-1}(x))) (x=12)\end{array}$

Here, (not $n_{0},$ $\ldots,$ $n_{k-1}$ ) is a function $hom\mathbb{T}^{v}$ to $\mathbb{T}^{v}$ to invert values at indices $n_{i}(i<k)$

if they are digits. With the IFS $(f_{0}, f_{1}),$ $\varphi_{f_{0}(G)}(1/2)=10^{\omega}$ and $\varphi_{f_{1}(G)}(1/2)=0^{\omega}$ differ
at the first digit. However, for any pair $(S, T)$ of independent subbases of $[0,1/2]$ and
[1/2, 1], we can invert the values of $T$ to obtain an independent subbase of [1/2, 1] so that
the two independent subbases agree on 1/2. Therefore, we can construct an independent
subbase of $[0,1]$ by inverting some of the digits of $T$ and adding one more digit which
assigns $0$ to $[0,1/2)$ and 1 to (1/2, 1]. Note that 1/2 is an endpoint of $[0,1/2]$ (and [1/2, 1])
and it cannot be the boundary of a regular open set, and therefore the code sequences
$\varphi_{S}(1\prime 2)$ $($ and $\varphi_{T}(1/2))$ do not contain $a\perp$ . Therefore, we can add a new $\perp$ to the front
to generate the code sequence of 1/2.

In order to make a similar definition for the Sierpinski Gasket, there are two difficulties.
One is that the Sierpinski Gasket is defined through three similarity maps but we are
allowed to use only two digits $0$ and 1 for an independent subbase.

The other one is that the three components are conmected at three points. Therefore,
it is impossible to combine any triple of independent subbases of the three components
by inverting some of the digits, and the three independent subbases should satisfy some
condition.
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図 3: Thc coding of the three componcnts,

3 Recursively Defined Independent Subbases of the
Sierpinski Gasket

A similarity map from $Y$ to $Y_{i}$ is expressed as the dilation composed with one of the
six self-congruence maps of $Y_{i}(i=0,1,2)$ . Since a self-congruence map of $Y$ (and also
$Y_{i})$ can be expressed as a permutation of the vertices $0,1$ , and 2 in Figure 1, we express
a similarity map from $Y$ to $Y_{i}$ as a permutation of (0,1,2).

For the Gray subbase of �, we gave two explanations; through another set of similarity
maps and through inversions of values of some of the digits. For the Gasket, we consider
an independent subbase which is defined through the combination of both of the two.

As we mentioned above, our first problem is that there are three components $Y_{0},$ $Y_{1},$ $Y_{2}$

but we can use only two digits $0$ and 1. In order to distinguish them, we use one digit $0$

for $Y_{0}$ and sequences 10 and 11 for $Y_{1}$ and $Y_{2}$ as Figure 3 shows. Therefore, we adopt the
following form of definition.

$\varphi(x)=\{\begin{array}{ll}0:h_{0}(\varphi(f_{0}^{-1}(x)) (x\in Y_{0})1 :0:h_{1}(\varphi(f_{1}^{-1}(x))) (x\in Y_{1})1 :1:h_{2}(\varphi(f_{2}^{-1}(x))) (x\in Y_{2})\end{array}$

Here, $f_{i}$ is a similarity map from $Y$ to $Y_{i}$ selected from the six possibilities, and $h_{i}$ is a
function from $\mathbb{T}^{v}$ to $\mathbb{T}^{\omega}$ which inverts values of some of the elements. Therefore, in $Y_{i}$

$(i=0,1,2)$ , we have the same code as $Y$ rotated and flipped according to $f_{i}$ and inverted
according to $h_{i}$ , and shifted for one character in $Y_{0}$ and two characters in $Y_{1}$ and $Y_{2}$ , and
the first digit for $Y_{0}$ is $0$ whereas the first two digits of $Y_{1}$ and $Y_{2}$ are 10 attd 11.

On the three boundary points $q_{0},$ $q_{1}$ , and $q_{2}$ , we can apply two definitions. We require
that the two definitions on both sides agree except for one digit. For example, on $q_{2}$

which is the boundary between $Y_{0}$ and $Y_{1)}$ we have two sequences $0:h_{0}(\varphi(f_{0}(q_{2})))$ and
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$Ao,0,1\dot{u}_{1j,l}’\neg$ $\int ii_{0},1\dot{u}\tau_{1,1}$
$\lambda?\llcorner,0^{u’},^{11_{r}’}.\cdot 1\neg$

図 4: $A:Rc\overline{c}\cdot nr\rangle_{-}\backslash ivcly$ dcfincd independent $\backslash _{-}n1$) $|)c_{-}\backslash bC\# 1$ . As thc figures on thc first line
shows. }

$-$ is rotated 120 $d\iota^{Y}grce$ to thc right on $]_{()}^{-}$ and to thc left on $1_{1}^{-}’$ , and not rotatcd
on $1^{r}\underline{)}c\backslash iid$ the 0-th value is inverted on } $\prime 0$ .

1 : $0$ : $h_{1}(\varphi(f_{1}(q_{2})))$ on the two sides. Since the first digit disagree, we require that
$h_{0}(\varphi(f_{0}(q_{2})))=0:h_{1}(\varphi(f_{1}(q_{2})))(=p)$ , and we define the code of $q_{2}as\perp:p$ .

There are three recursive equations of this form. They are first found by a computer
program, and checked through hand calculation as we explain later.

$A$ : Recursively defined independent subbase #1.
$f_{0}^{-1}=(1,2,0),$ $f_{1}^{-1}=(2,0,1),$ $f_{2}^{-1}=(0,1,2)$ ,
$h_{0}=(not0),$ $h_{1}=id,$ $h_{2}=id$ .

$B$ : Recursively defined independent subbase #2.
$f_{0}^{-1}=(2,1,0),$ $f_{1}^{-1}=(0,1,2),$ $f_{2}^{-1}=(0,2,1)$ ,
$h_{0}=$ (not $0$ ), $h_{1}=$ (not 1), $h_{2}=$ (not 1).

$C$ : Recursively defined independent subbase #3.
$f_{0}^{-1}=(2,1,0),$ $f_{1}^{-1}=(1,0,2),$ $f_{2}^{-1}=(1,2,0)$ ,
$h_{0}=$ (not $0$ ), $h_{1}=$ (not $0,1$ ), $h_{2}=$ (not $0,1$ ).

3.1 $A$ : Recursively defined independent subbase #1
Figure 4 shows the first four components of the subbase $A$ . With the definition, we can

calculate as follows;
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$\varphi_{A}(0)=0$ : (not $0$ ) $\varphi_{A}(1)=0$ : (not $0$ ) $1:0:\varphi_{A}(0)=0^{\omega}$ ,
$\varphi_{A}(1)=1$ : $0$ : $\varphi_{A}(0)=10^{\omega}$ ,
$\varphi_{A}(2)=1:1:\varphi_{A}(2)1^{\omega}$ .

For $q_{i}(i=0,1,2)$ , let $\varphi_{A}(q_{i}(arrow j))$ the value of $\varphi_{A}(q_{i})$ when approached from $Y_{j}$ .
$\varphi_{A}(q_{2}(arrow 0))=0$ : (not $0$ ) $\varphi$乃 (2) $=0$ : (not $0$ ) $1^{\omega}=001^{\omega}$ ,
$\varphi_{A}(q_{2}(arrow 1))=1:0:\varphi_{A}(2)=101^{\omega}$ ,
$\varphi_{A}(q_{0}(arrow 1))=1:0:\varphi_{A}(1)=1010^{\omega}$ ,
$\varphi_{A}(qo(arrow 2))=1:1:\varphi$ノ (1) $=1110^{\omega}$ ,
$\varphi_{A}(q_{1}(arrow 2))=1:1$ : $\varphi$ノ (0) $=110^{\omega}$ ,
$\varphi_{A}(q_{1}(arrow 0))=0$ : (not $0$ ) $\varphi_{A}(0)=010^{\omega}$ .

Thus, since $\varphi_{A}(q_{i}(arrow j))$ for $j\neq i$ differ only at one digit, it forms an independent
subbase of dimension 1 with the following definition.

$\varphi_{A}(q_{2})=\perp 01^{\omega}$ ,
$\varphi_{A}(q_{0})=1\perp 10^{\omega}$ ,
$\varphi_{A}(q_{1})=\perp 10^{\omega}$ .

3.2 $B$ : Recursively defined independent subbase #2
For the second one, we similarly have the following calculation.

$\varphi_{B}(0)=0$ : (not $0$ ) $\varphi_{B}(2)=001^{\omega}$ ,
$\varphi_{B}(1)=1:0$ : (not $1$ ) $\varphi_{B}(1)=101^{\omega}$ ,
$\varphi_{B}(2)=1:1$ : (not $1$ ) $\varphi_{B}(1)=1^{\omega}$ .

$\varphi_{B}(q_{2}(arrow 0))=0$ : (not $0$ ) $\varphi_{B}(1)=0001^{\omega}$ ,
$\varphi_{B}(q_{2}(arrow 1))=1:0$ : (not $1$ ) $\varphi_{B}(0)=1001^{\omega}$ ,
$\varphi_{B}(q_{0}(arrow 1))=1$ : $0$ : (not $1$ ) $\varphi_{B}(2)=10101^{\omega}$ ,
$\varphi_{B}(q_{0}(arrow 2))=1:1$ : (not $1$ ) $\varphi_{B}(2)=11101^{\omega}$ ,
$\varphi_{B}(q_{1}(arrow 2))=1:1$ : (not $1$ ) $\varphi_{B}(0)=1101^{\omega}$ ,
$\varphi_{B}(q_{1}(arrow 0))=0$ : (not $0$ ) $\varphi_{B}(0)=0101^{\omega}$ .

Thus, it also forms an independent subbase of dimension 1 with the following definition.
$\varphi_{B}(q_{2})=\perp 001^{\omega}$ ,
$\varphi_{B}(q_{0})=1\perp 101^{\omega}$ ,
$\varphi_{B}(q_{1})=\perp 101^{\omega}$ .
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図 5: Thc subba.ses $B$ (upper line) and $C$ (lowcr line).

3.3 $C$ : Recursively defined independent subbase #3
$\varphi_{C}(0)=0$ : (not $0$ ) $\varphi_{C}(2)=001^{\omega}$ ,
$\varphi_{C}(1)=1:0$ : (not $0,1$ ) $\varphi_{C}(0)=101^{\omega}$ ,
$\varphi_{C}(2)=1:1$ : (not $0,1$ ) $\varphi_{C}(0)=1^{\omega}$ .

$\varphi_{C}(q_{2}(arrow 0))=0$ : (not $0$ ) $\varphi_{C}(1)=0001^{\omega}$ ,
$\varphi_{C}(q_{2}(arrow 1))=1$ : $0$ : (not $0,1$ ) $\varphi_{C}(1)=1001^{\omega}$ ,
$\varphi_{C}(q_{0}(arrow 1))=1:0$ : (not $0,1$ ) $\varphi_{C}(2)=10001^{\omega}$ ,
$\varphi_{C}(q_{0}(arrow 2))=1$ : 1 : (not $0,1$ ) $\varphi_{C}(2)=11001^{\omega}$ ,
$\varphi_{C}(q_{1}(arrow 2))=1$ : 1 : (not $0,1$ ) $\varphi_{C}(1)=1101^{\omega}$ ,
$\varphi_{C}(q_{1}(arrow 0))=0$ : (not $0$ ) $\varphi_{C}(0)=0101^{\omega}$ .

Thus, it also forms an independent subbase of dimension 1 with the following definition.
$\varphi_{C}(q_{2})=\perp 001^{\omega}$ ,
$\varphi_{C}(q_{0})=1\perp 001^{\omega}$ ,
$\varphi_{C}(q_{1})=\perp 101^{\omega}$ .

We can show that an independent subbase of dimension 1 always satisfies the following
condition.
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Condition $A$ : For each level $n<\omega$ , we have even number of $\perp$ along the
inner triangle of the Gasket.

At level-O, we have $\perp$ on $q_{1}$ and $q_{2}$ . At level-l, we have $a\perp$ on $q_{0}$ and there should be one
$\perp$ on the edge between $q_{1}$ and $q_{2}$ . Therefore, $f_{0}^{-1}$ should have the form $(*, *, 0)$ or $(*, 0, *)$ .
For symmetricity, we only consider the case $(*, *, 0)$ . that is, $($ 1, 2, $0)$ and $($ 2, 1, $0)$ . Note
that $f_{i}(i=0,1,2)$ determine all the positions of $\perp$ at all the level. Conversely, if condition
A is satisfied by an IFS $(f_{0}, f_{1}, f_{2})$ , then by fixing a sequence for $\varphi(0)$ , an independent
subbase is umiquely determined by inserting appropriate functions $h_{i}(i=0,1,2)$ .

Therefore, we only need to find an IFS $(f_{0}, f_{1}, f_{2})$ which satisfies Condition A. With
the above arguments, we only need to consider $2\cross 6\cross 6=72$ cases. We checked that
all the other 69 cases do not satisfy condition $A$ , both with hand calculation and through
computer calculation. Therefore, there are only three recursively defined independent
subbases of the Sierpinski Gasket, if we identify rotationally and reflectively equivalent
ones and equivalent ones through switching the role of $S_{n,0}$ and $S_{n,1}$ for $n<\omega$ .
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