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1 Introduction
Let $n$ be a given positive integer, and suppose that $n$ independent

Bernoulli trials are performed one at a time, each of which results in

a success or a failure. That is, if we let $X_{j}$ equal 1 if the $jth$ trial is

a success and $0$ if it is a failure, then $X_{1},$ $X_{2},$
$\ldots,$

$X_{n}$ are independent

Bernoulli random variables that are observed sequentially. When we

seek an optimal stopping rule of this sequential observation problem

with the objective of maximizing the probability of stopping on the

last success, Bruss(2000) gave an elegant solution given below, where

$p_{j}=P\{X_{j}=1\},$ $q_{j}=1-p_{j}$ , and $r_{j}=p_{j}/q_{j}$ represents the odds of

success on the $jth$ trial (if $p_{j}=1,$ $r_{j}$ is taken to be $\infty$ ).

Bruss Theorem (Sum-the-Odds Theorem). For the above stopping

problem, the optimal rule stops on the first success $X_{k}=1$ with $k\geq s$ ,

if any, where

$s= \min\{k\geq 1:\sum_{j=k+1}^{n}r_{j}\leq 1\}$ .

Moreover, the maximal probability of win (i.e., achieving the objective)

is

$v=( \prod_{j=s}^{n}q_{j})(\sum_{j=s}^{n}r_{j})$ .

The optimal rule (1) has a nice interpretation, i.e., it stops on the

first success for which the sum of the odds of success for the future tri-

als is less than or equal to 1 (we are indifferent between stopping and
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continuing if the surn of the odds is equal to 1). We refer to this result
as the $Su7\prime l- t1\iota c$ -Odds $Theorc\tau n$ (called simply STOT) according to Fer-
guson (2008). Bruss (2000) started liis argument, raising a question of
guessing correctly the last “ 6” when a fair die is tossed a fixed nmber
$n$ of times. The STOT answers this question immediately. But what
about the question of guessing correctly any one of the last two “6”,
i.e., guessing either the last “6” or the second last “6” ? This question
seems a natural extension of the Bruss question, but the STOT cannot
answer this question because the optimality criterion is different. This
paper attempts to answer the problems of this kind. The criterion we
adopt here is more generally described as maximizing the probability
of stopping on any of the last $m$ successes for a predetermined $m$ (we
assume $n>m$ unless otherwise specified, because, for $n\leq m$ , the opti-
mal rule evidently stops on the first success). The optimal rule of this
problem also has a nice interpretation. That is, it can be shown that the
optimal rule stops on the first success for which the sum of the m-fold
multiplicative odds of success for the future trials is less than or equal
to 1, if we define the j-fold multiplicative odds of successes on the $kth$

trial by

$R_{k,j}= \sum_{k\leq i_{1}<i_{2}<\cdot<i_{j}\leq n}..r_{i_{1}}r_{i_{2}}\cdots r_{i_{j}}$

for $1\leq j\leq n-k+1$ and $R_{k,j}=0$ for $j>n-k+1$ . More explicitly we
have

Theorem 1.1. (Sum-the-Multiplicative-Odds Theorem). For the stop-
ping problem of maximizing the probability of stopping on any of the
last $m$ successes in $n$ independent Bernoulli trials, the optimal rule stops
on the first success $X_{k}=1$ with $k\geq s_{m}$ , if any, where

$s_{m}= \min\{k\geq 1:R_{k+1,m}\leq 1\}$ .

Moreover, the maximal probability of win is

$v_{m}=( \prod_{j=s_{m}}^{n}q_{j})(\sum_{j=1}^{m}R_{s_{n\iota},j})$ .

We call Theorem 1.1 $Sum- tf\iota c$-Multiplicative-Odds Thcorem (called
simply STMOT) whose proof will be given in a more generality in Sec-
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tion 2. The STOT has been extended into other directions by Fer-
guson (2008). We show in Section 2 that the Ferguson cxtension caan
be also made to the STMOT. In Section 3, we apply tlie STMOT to
the celebrated secretary problem which corresponds to the special case
$p_{i}=1/i,$ $1\leq i\leq n$ . In Section 4, we consider the full-information
analogue of the secretary problem.

2 The General Model

In the STMOT, Bernoulli random variables $X_{1},$ $X_{2},$
$\ldots,$

$X_{n}$ are as-
sumed to be independent for a finite $n$ and the payoff for not stopping is
assumed to be zero. In this section, we attempt to extend the STMOT
into the following directions: First, an infinite number of Bernoulli tri-
als is allowed. Second, the payoff for not stopping is $\omega$ , which may be
difTerent from zero. Third, the Bernoulli random variables are allowed
to be dependent. Fourth, at stage $i$ , in addition to observing $X_{i}$ , other
dependent random variables are allowed to be observed that may influ-
ence the assessment of the probability of success at future stages. The

method we use here is to change the original problem into a monotone
stopping problem by not allowing stopping on a failure and then apply a
simple result that gives conditions for the one-stage look-ahead rule (the

l-sla) to be optimal in a monotone problem (see, e.g., Ferguson (2006,

Chapter 5) for a l-sla and a monotone problem). This method is exactly
the same that Ferguson (2008, Section 2) used to extend the STOT, so
we mimic his argument.

We modify the original problem by not allowing stopping on a failure
(this modification does not change the problem). When stopping on a
failure is forbidden, we must change the notion of a“stage”. A stage

is defined to contain all the observations up to and including the next

success if any. We model this as follows. For $i=1,2,$ $\ldots$ , let $Z_{i}$ de-
note the set of random variables observed after success $i-1$ up to and
including success $i$ . If there are less than $i$ successes, we let $Z_{i}=0$ ,

where “ $0$ ” is a special absorbing state. Thus we treat the following gen-
eral model. Let $Z_{1},$ $Z_{2},$

$\ldots$ be a stochastic process on an arbitrary space
with an absorbing state called $0$ . We make the assumption that with

probability one the process will eventually be absorbed at $0$ . We observe

the process sequentially and must predict within $m$ stages in advance

when the state $0$ will first be hit. If we predict correctly, we win 1, if we
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predict uncorrectly, we win nothing, and if the process hits $0$ before we

predict, we win $\omega$ (it is assumed here that $\omega<1$ , because, if $\omega\geq 1$ , it is

clearly optimal never to stop). Tliis is a stopping rule pioblem in which

stopping at stage $k$ yields the payoff

$Y_{k}$ $=$ $\omega I(Z_{k}=0)+I(Z_{k}\neq 0)P\{Z_{k+n\iota}=0|\mathcal{G}_{k}\},$ $k=1,2,$ $\ldots$

$Y_{\infty}$ $=$ $\omega$ , (1)

where $\mathcal{G}_{k}=\sigma(Z_{1)}\ldots, Z_{k})$ is the a-field generated by $Z_{1},$
$\ldots,$

$Z_{k}$ and

$I(E)$ represents the indicator function of an event $E$ . The assignment

$Y_{\infty}=\omega$ means that if we never stop, we win $\omega$ . It is easy to see that

the l-sla is

$N_{m}= \min\{k:Z_{k}=0 or (Z_{k}\neq 0 and W_{k}/V_{k}\leq 1-\omega)\}$ , (2)

where

$V_{k}$ $=$ $P\{Z_{k+1}=0|\mathcal{G}_{k}\}$ ,

$W_{k}$ $=$ $P\{Z_{k+m}\neq 0, Z_{k+m+1}=0|\mathcal{G}_{k}\}$ .

and that a sufficient condition for the problem to be monotone is

$W_{k}/V_{k}$ is a.s. non-increasing in $k$ . (3)

We have the following result.

Theorem 2.1. Suppose that the process $Z_{1},$ $Z_{2},$
$\ldots$ has an absorbing

state $0$ such that $P$ { $Z_{k}$ is absorbed at $0$ } $=1$ and that the stopping

problem with reward sequence (1) satisfies the condition (3). Then the

l-sla (2) is optimal.
Proof. omitted.

The following result is immediate from Theorem 2.1.

Corollary 2.2. Suppose that $n$ Bernoulli random variables $X_{1},$ $X_{2},$
$\ldots,$

$X_{n}$

are observed sequentially. Let $\mathcal{F}_{1},$ $\mathcal{F}_{2},$

$\ldots$ , $\mathcal{F}_{n}$ be an increasing sequence

of a-fields such that $\{X_{j}=1\}$ is in $\mathcal{F}_{j}$ for all $1\leq j\leq n$ . Let

$V_{k}$ $=$ $P\{X_{k+1}+\cdots+X_{n}=0|\mathcal{F}_{k}\}$ ,

$W_{k}$ $=$ $P\{X_{k+1}+\cdots+X_{n}=m|\mathcal{F}_{k}\}$ .

Theii the optirrial rule is described as

$N_{n\iota}=$ niin $\{k\geq 1:X_{k}=1$ and $W_{k}/V_{k}\leq 1\}$ ,
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provided that the following condition is satisfied:

$W_{k}/V_{k}$ is a.s. non-increasing in $k$ .

3 Application to the Secretary Problem

The secretary problem can be described as follows. A known number $n$

of rankable applicants (1 being the best and $n$ the worst) appear one at

a time in random order with all $n!$ permutations equally likely. That is,

each of the successive ranks of $n$ applicants constitutes a random permu-
tation. Suppose that all that can be observed are the relative ranks of
the applicants as they appear. If $Y_{j}$ denotes the relative rank of the $jth$

applicant among the first $j$ applicants, the sequentially observed random
variables are $Y_{1},$ $Y_{2},$

$\ldots,$
$Y_{n}$ . It is well known that

(a) $Y_{1},$ $Y_{2},$
$\ldots,$

$Y_{n}$ are independent random variables.
(b) $P\{Y_{j}=i\}=1/j$ , $1\leq i\leq j,$ $1\leq j\leq n$ .

The $jth$ applicant is called a candidate if he$/she$ is relatively best, i.e.,

$Y_{j}=1$ . The problem we consider here is to stop on any of the last
$m$ successes, that is, any of the last $m$ candidates (stopping is iden-
tified with selection of an applicant in the secretary problem). The
independent random variables of Section 1 are tberefore $X_{1},$ $X_{2},$

$\ldots$ , $X_{n}$ ,

where $X_{j}=I(Y_{j}=1)$ from (a). Since $p_{j}=P\{X_{j}=1\}=1/j$ and so
$r_{j}=1/(j-1)$ from (b), we immediately have from the STMOT

Lemma 3.1 For the secretary problem, the optimal rule passes up the
first $s_{m}-1$ applicants and then selects the first candidate, if any, where

$s_{m}= \min\{k\geq 1:\sum_{k+1\leq i_{1}<i_{2}<<i_{m}\leq n}\ldots\prod_{j=1}^{m}(\frac{1}{i_{j}-1}I\leq 1\}$ .

The maximal probability of win is

$v_{m}=( \frac{s_{m}-1}{n})\sum_{k=1}^{m}[\sum_{s_{m}\leq i_{i}<i_{2}<<i_{k}\leq n}\ldots\prod_{j=1}^{k}(\frac{1}{i_{j}-1})]$ .

Let $n$ tend to infinity. Then asymptotically

( $i$ ) $s_{m}^{*}$ $=$ $\lim\underline{s_{m}}=\exp\{-(m!)^{1\prime m}\}$ ,
$narrow\infty n$
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( $ii$ ) $v_{711}^{*}$ $=$ $\lim_{narrow\infty}v_{Vt}=\exp\{-(7\gamma\iota!)^{1/m}\}\sum_{j=1}^{7\prime l}\frac{(7l\downarrow!)^{j\prime m}}{j!}$ .

Proof. Omitted.

Table 1
Values of $s_{n\iota}^{*}$ and $v_{7n}^{*}$ for several $m$

$m$ 1 2 3 4 5 10
$s_{n\iota}^{*}$ 0.3679 0.2431 0.1625 0.1093 0.0739 0.0108
$v_{m}^{*}$ 0.3679 0.5869 0.7260 0.8167 0.8767 $*****$

Table 1 presents some numerical values of $s_{n\iota}^{*}$ and $v_{m}^{*}$ for given $m$ . For
later use, we return to the finite problem and review the distribution of
the number of candidates. Define

$M_{n}=X_{1}+X_{2}+\cdots+X_{n}$ ,

where $X_{j}=I(Y_{j}= 1)$ is defined as before. Then $M_{n}$ denotes the
total number of candidates. It is well known that the probability mass
function of $M_{n}$ , expressed as

$p_{n}(k)=P\{M_{n}=k\}$

satisfies the following recursion with $p_{1}(1)=1$ and $p_{n}(k)=0$ for $k=0$

or $k>n$

$p_{n}(k)= \frac{1}{n}p_{n-1}(k-1)+(1-\frac{1}{n})p_{n-1}(k)$ , $1\leq k\leq n,$ $2\leq n$ .

4 Full-information Analogue
In contrast to the no-information problem considered in Section 3,

the full-information analogue is the problem in which the observations
are the true values of $n$ applicants $Y_{1},$ $Y_{2},$

$\ldots,$
$Y_{n}$ , assumed to be i.i. $d$ .

random variables from a known continuous distribution, taken without
loss of generality to be the uniform distribution on the interval $[0,1]$ . Let
$L_{k}= \max\{Y_{1}, Y_{2}, \ldots, Y_{k}\}$ be the maximum of the first $k$ observations
and call the $kth$ observation or the $kth$ applicant a record if $L_{k}=Y_{k}$ .
It is desired to obtain a stopping rule that inaximizes the probability
of stopping on any of the last $m$ successes, that is, the last $m$ records.
The case $m=1$ is the full-information best-choice problem solved by
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Gilbert and Mosteller (1966). For ease of description, let $a_{k}=P\{M_{k}<$

$m\},$ $k\geq 0$ be the probability that the number of candidates is less than
$\prime\prime$ when the total nuinber of applicants is $k$ in the secretary problein,

namely, $a_{k}= \sum_{i=1}^{77t-1}p_{k}(i)$ for $k\geq 7l\iota$ and ($\iota k=1$ for $k<m(a_{0}=1$ for
convenience). The main results can be summarized as follows.

Theorem 4.1 $(a)$ Optimal stopping rule: For a given positive integer

$m$ , there exists a non-decreasing sequence of the thresholds $\{b_{j}(m),$ $1\leq$

$j\}$ defined as $b_{j}(m)=0$ for $1\leq j<m$ and as a unique solution $x\in(O, 1)$

to the equation

$\sum_{i=m}^{j}p_{i}(m)(\begin{array}{l}ji\end{array})(\frac{1-x}{x})^{i}=1$

for $j\geq m$ , such that the optimal rule is to choose the first record $Y_{k}(=$

$L_{k})$ that exceeds the threshold $b_{n-k}(m)$ . Henceforth, we simply write $b_{j}$

for $b_{j}(m)$ unless otherwise specified.

$(b)$ Optimal probability; Let $P_{n,m}^{*}$ denote the optimal probability of win

as a function of $n$ and $m$ . Then

$P_{n,m}^{*}= \sum_{r=1}^{n}P(r)$ ,

where

$P(1)= \frac{1}{n}\sum_{k,=0}^{n-1}a_{k}(\begin{array}{ll}n -1 k\end{array}) \sum_{j=k+1}^{n}(\begin{array}{l}nj\end{array})(1-b_{n-1})^{j}b_{n-1}^{n-j}$

and

$P(r)= \frac{1}{r-1}\sum_{k=0}^{n-r}a_{k}(\begin{array}{l}n-rk\end{array})\sum_{i=1}^{r-1}[P_{1}(i, k)+P_{2}(i, k)]$

for $2\leq r\leq n$ , where

$P_{1}(i, k)= \sum_{j=k+1}^{n}\frac{(_{j}^{n})}{(_{k}^{n})}[\frac{(1-b_{n-r})^{j}b_{n-r}^{n-j}-(1-b_{n-i})^{j}b_{n-i}^{n-j}}{n-k}]$

and

$P_{2}(i, k)= \sum_{j=k+1}^{n-r+1}\frac{(^{7t-r+1}j)}{(\begin{array}{l}n-r+1k\end{array})}[\frac{(1-b_{n-i})^{j}b_{n-i}^{n-j}}{n-r-k+1}]$ .
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$(c)$ Asymptotics: Let $c_{?’ 1}$ be the unique root $t$ to the equation

$\sum_{i=7ll}^{\infty}I^{j!}i(m)\frac{t^{i}}{i!}=1$ .

Then, as $narrow\infty_{f}$

$P_{n,7?1}^{*}arrow P_{nt}^{*}=e^{-c_{m}}J_{?n}(c_{m})+\{K_{7n}(c_{n\iota})-c_{m}J_{m}(c_{m})\}I(c_{7n})$ ,

where

$I(t)$ $=$ $\int_{1}^{\infty}\frac{e^{-tx}}{x}dx$

$J_{m}(t)$ $=$ $\sum_{j=0}^{\infty}a_{j}\frac{t^{j}}{j!}=\sum_{j=0}^{m-1}\frac{t^{j}}{j!}+\sum_{j=m}^{\infty}a_{j^{\frac{t^{j}}{j!}}}$

$K_{m}(t)$ $=$ $\sum_{i=1}^{\infty}\min(i, m)\frac{t^{i}}{i!}+\sum_{i=m+1}^{\infty}(\sum_{j=m}^{i-1}a_{j})\frac{t^{i}}{i!}$ .

Proof. Omitted.

Table 2 presents some numerical values of $c_{m}$ and $P_{m}^{*}$ .

Table 2
Values of $c_{m}$ and $P_{m}^{*}$ for several $m$

$m$ 1 2 3 4 5 10
$c_{m}$ 0.8044 1.5151 2.3731 3.3573 4.4523 11.243

$P_{m}^{*}$ 0.5802 0.8424 0.9465 0.9834 0.9953 0.9999
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