
A HISTORY OF THE NASH EQUILIBRIUM

THEOREM IN THE KKM THEORY

SEHIE PARK

ABSTRACT. In 1966, Ky Fan first applied the KKM theorem to the Nash equilibrium
theorem. Since then there have appeared several generalizations of the Nash theorem
on various types of abstract convex spaces satisfying abstract forms of the KKM
theorem. In this review, we introduce the most general results with examples appeared
in each of several stages of such developments.

1. Introduction

In 1928, John von Neumann found his celebrated minimax theorem [Vl] and,
in 1937, his intersection lemma [V2], which was intended to establish his minimax
theorem and his theorem on optimal balanced growth paths. In 1941, Kakutani [K]
obtained a fixed point theorem for multimaps on a simplex, from which von Neu-
mann’s minimax theorem and intersection lemma were easily deduced. In 1950, John
Nash [Nl,2] established his celebrated equilibrium theorem by applying the Brouwer
or the Kakutani fixed point theorem. Later Kakutani’s theorem was extended to
locally convex Hausdorff topological vector spaces by Fan [Fl] and Glicksberg [G]
in 1952 and by Himmelberg [H] in 1972. Those were applied to generalize the above
mentioned theorems.

In 1961, Fan [F2] obtained his own KKM lemma and, in 1964 [F3], applied it to
another intersection theorem for a finite family of sets having convex sections. This
was applied in 1966 [F4] to a proof of the Nash equilibrium theorem. This is the
origin of the application of the KKM theory to the Nash theorem. Moreover, in
1969, Ma [M] extended Fan’s intersection theorem [F3] to infinite families and the
Nash theorem for arbitrary families.
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Note that all of the above results are mainly concerned with convex subsets of
topological vector spaces; see Granas [Gr]. Later, many authors tried to generalize
them to various types of abstract convex spaces. The present author also extended
them in [P3,4,7-10,12-14,PP,IP] by developing theory of generalized convex spaces
(simply, G-convex spaces) related to the KKM theory and analytical fixed point
theory. In the framework of G-convex spaces, we obtained some minimax theorems
and the Nash equilibrium theorems in [P7,8,12] based on coincidence theorems or
intersection theorems for finite families of sets; and in [P13] based on continuous
selection theorems for Fan-Browder maps.

Furthermore, in our recent works [P15-17], we studied the foundations of the
KKM theory on abstract convex spaces. The partial KKM principle for an abstract
convex space is an abstract form of the classical KKM theorem [KKM]. We noticed
that many important results in the KKM theory are closely related to abstract
convex spaces satisfying the partial KKM principle and that a number of such
results are equivalent to each other.

On the other hand, some other authors studied particular types of abstract convex
spaces and deduced some Nash type equilibrium theorem from the corresponding
partial KKM principle; for example, [Bi,BH,GKR,KSY,Lu,P7,12], explicitly, and
many more in the literature, implicitly. Therefore, in order to avoid unnecessary
repetitions for each particular type of abstract convex spaces, it would be necessary
to state them clearly for general abstract convex spaces. This was simply done in
[P18].

In this review, we introduce several stages of such developments of generalizations
of the Nash theorem and related results within the frame of the KKM theory. Section
2 deals with a brief history from the von Neumann minimax theorem to the Nash
theorem. In Section 3, we review the KKM theorem and its direct applications.
Section 4 deals with basic concepts on our new abstract convex spaces and their
fundamental properties. In Section 5, two methods leading to the Nash theorem
–continuous selection method in [P13] and the KKM method in [P18] –are
introduced. More precisely, results in these two papers are compared step-by-step.
We will note that results in [P13] work for any, finite or infinite, families of Hausdorff
G-convex spaces and, on the other hand, results in [P18] work for finite families of
abstract convex spaces whose products satisfy the partial KKM principle.

More detailed version of this preview will appear elsewhere.

2. From von Neumann to Nash

In 1928, J. von Neumann [Vl] obtained the following minimax theorem, which
is one of the fundamental results in the theory of games developed by himself. We
adopt Kakutani’s formulation in 1941 [K]:
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Theorem [Vl]. Let $f(x, y)$ be a continuous real-valued function defined for $x\in K$

and $y\in L$ , where $K$ and $L$ are arbitrary bounded closed convex sets in two Euclidean
spaces $R^{m}$ and $R^{n}$ . If for every $x_{0}\in K$ and for every real number $\alpha$ , the set of all
$y\in L$ such that $f(x_{0}, y)\leq\alpha$ is convex, and if for every $y_{0}\in L$ and for every real
number $\beta$ , the set of all $x\in K$ such that $f(x, y_{0})\geq\beta$ is convex, then we have

$\max_{x\in K}\min_{y\in L}f(x, y)=\min_{y\in L}\max_{x\in K}f(x, y)$ .

The minimax theorem is later extended by von Neumann [V2] in 1937 to the
following intersection lemma. We also adopt Kakutani’s formulation:

Lemma [V2]. Let $K$ and $L$ be two bounded closed convex sets in the Euclidean
spaces $R^{m}$ and $R^{n}$ respectively, and let us consider their Cartesian product $K\cross L$

in $R^{m+n}$ . Let $U$ and $V$ be two closed subsets of $K\cross L$ such that for any $x_{0}\in K$ the
set $U_{x_{0}}$ , of $y\in L$ such that $(x_{0}, y)\in U$ , is nonempty, closed and convex and such
that for any $y_{0}\in L$ the set $V_{y_{0}}$ , of all $x\in K$ such that $(x, y_{0})\in V$ , is nonempty,
closed and convex. Under these assumptions, $U$ and $V$ have a common point.

Von Neumann proved this by using a notion of integral in Euclidean spaces and
applied this to the problems of mathematical economics.

Recall that a multimap $F:Xarrow Y$ , where $X$ and $Y$ are topological spaces, is
upper semicontinuous $(u.s.c.)$ whenever, for any $x\in X$ and any neighborhood $U$ of
$F(x)$ , there exists a neighborhood $V$ of $x$ satisfying $F(V)\subset U$ .

In order to give simple proofs of von Neumann’s Lemma and the minimax the-
orem, Kakutani in 1941 [K] obtained the following generalization of the Brouwer
fixed point theorem to multimaps:

Theorem [K]. If $x\mapsto\Phi(x)$ is an upper semicontinuous point-to-set mapping of an
r-dimensional closed simplex $S$ into the family of nonempty closed convex subset of
$S$ , then there exists an $x_{0}\in S$ such that $x_{0}\in\Phi(x_{0})$ .

Equivalently,

Corollary [K]. Theorem is also valid even if $S$ is an arbitrary bounded closed convex
set in $a$ Euclidean space.

As Kakutani noted, Corollary readily implies von Neumann’s Lemma, and later
Nikaido [Ni2] noted that those two results are directly equivalent.

This was the beginning of the fixed point theory of multimaps having a vital
connection with the minimax theory in game theory and the equilibrium theory in
economics.
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In the $1950’ s$ , Kakutani’s theorem was extended to Banach spaces by Bohnen-
blust and Karlin [BK] and to locally convex Hausdorff topological vector spaces by
Fan [Fl] and Glicksberg [G]. These extensions were mainly applied to extend von
Neumann’s works in the above.

The first remarkable one of generalizations of von Neumann’s minimax theorem
was Nash’s theorem [Nl,2] on equilibrium points of non-cooperative games. The
following formulation is given by Fan [F4, Theorem 4]:

Theorem. Let $X_{1},$ $X_{2},$ $\cdots,$ $X_{n}$ be $n(\geq 2)$ nonempty compact convex sets each in a
real Hausdorff topological vector space. Let $f_{1},$ $f_{2},$ $\cdots,$ $f_{n}$ be $n$ real-valued continuous
functions defined on $\prod_{i=1}^{n}X_{i}$ . If for each $i=1,2,$ $\cdots,$ $n$ and for any given point
$(x_{1}, --, x_{i-1}, x_{i+1}, \cdots, x_{n})\in\prod_{j\neq i}X_{j},$ $f_{i}(x_{1}, \cdots, x_{i-1}, x_{i}, x_{i+1}, \cdots, x_{n})$ is a quasi-
concave function on $X_{i}$ , then there exists a point $( \hat{x}_{1},\hat{x}_{2}, \cdots,\hat{x}_{n})\in\prod_{i=1}^{n}X_{i}$ such
that

$f_{i}(\hat{x}_{1},\hat{x}_{2}, \cdots,\hat{x}_{n})=Maxy_{i}\in X_{i}f_{i}(\hat{x}_{1}, \cdots,\hat{x}_{i-1}, y_{i},\hat{x}_{i+1}, \cdots,\hat{x}_{n})$ $(1 \leq i\leq n)$ .

3. From KKM to Fan-Browder

In 1929, Knaster, Kuratowski, and Mazurkiewicz [KKM] obtained the following
celebrated KKM theorem from the Sperner combinatorial lemma in 1928:

Theorem [KKM]. Let $A_{i}(0\leq i\leq n)$ be $n+1$ closed subsets of an n-simplex
$p_{0}p_{1}\cdots p_{n}$ . If the inclusion relation

$p_{i_{O}}p_{i_{1}}$
, $p_{i_{k}}\subset A_{i_{0}}\cup A_{i_{1}}\cup\cdots\cup A_{i_{k}}$

holds for all faces $p_{i_{0}}p_{i_{1}}\cdots p_{i_{k}}$ $(0\leq k\leq n, 0\leq i_{0}<i_{1}< -- <i_{k}\leq n)$ , then
$\bigcap_{i=0}^{n}A_{i}\neq\emptyset$ .

In 1958, von Neumann’s minimax theorem was extended by Sion [Si] to arbitrary
topological vector spaces as follows:

Theorem [Si]. Let $X,$ $Y$ be a compact convex set in a topological vector space. Let
$f$ be a real-valued function defined on $X\cross Y$ . If

(1) for each fixed $x\in X,$ $f(x, y)$ is a lower semicontinuous, quasiconvex function
on $Y$ , and

(2) for each fixed $y\in Y,$ $f(x, y)$ is an upper semicontinuous, quasiconcave func-
tion on $X$ ,
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then we have
$hIinbIa_{x^{xf(x,y)={\rm Max}{\rm Min} f(x,y)}}y\in Yx\in x\in Xy\in Y^{\cdot}$

Sion’s proof was based on the KKM theorem and this is the first application of
the theorem after [KKM] in 1929.

A milestone of the history of the KKM theory was erected by Ky Fan in 1961
[F2]. He extended the KKM theorem to arbitrary topological vector spaces and
applied it to coincidence theorems generalizing the Tychonoff fixed point theorem
and a large number of problems in a sequence of papers; see [P6].

Lemma [F2]. Let $X$ be an arbitrary set in a Hausdorff topological vector space $Y$ .
To each $x\in X$ , let a closed set $F(x)$ in $Y$ be given such that the following two
conditions are satisfied:

(i) The convex hull of any finite subset $\{x_{1}, x_{2}, --, x_{n}\}$ of $X$ is contained in
$\bigcup_{i=1}^{n}F(x_{i})$ .

(ii) $F(x)$ is compact for at least one $x\in X$ .

Then $\bigcap_{x\in X}F(x)\neq\emptyset$ .

In 1968, Browder [Br] restated Fan’s geometric lemma [F2] in the convenient
form of a fixed point theorem by means of the Brouwer fixed point theorem and the
partition of unity argument. Since then the following is known as the Fan-Browder
fixed point theorem:

Theorem [Br]. Let $K$ be a nonempty compact convex subset of a Hausdorff topo-
logical vector space. Let $T$ be a map of $K$ into $2^{K}$ , where for each $x\in K,$ $T(x)$ is a
nonempty convex subset of K. Suppose further that for each $y$ in $K,$ $T^{-1}(y)=\{x\in$

$K:y\in T(x)\}$ is open in K. Then there exists $x_{0}$ in $K$ such that $x_{0}\in T(x_{0})$ .

Later the Hausdorffness in the Fan lemma and Browder’s theorem was known to
be redundant. It is well-known that this theorem is equivalent to the KKM theorem.

4. Abstract convex spaces

A multimap or map $T:X-\circ Y$ is a function from $X$ into the power set of $Y$ ,
and $x\in T^{-}(y)$ if and only if $y\in T(x)$ .

Let $\langle D\}$ denote the set of all nonempty finite subsets of a set $D$ .

Definition. A generalized convex space or a G-convex space $(E, D;\Gamma)$ consists of a
topological space $E$ , a nonempty set $D$ , and a multimap $\Gamma$ : $\langle D\ranglearrow E$ such that for
each $A\in\langle D\}$ with the cardinality $|A|=n+1$ , there exists a continuous function
$\phi_{A}:\triangle_{n}arrow\Gamma(A)$ such that $J\in\langle A\rangle$ implies $\phi_{A}(\triangle_{J})\subset\Gamma(J)$ .
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Here, $\triangle_{n}$ is a standard n-simplex with vertices $\{e_{i}\}_{i=0}^{n}$ , and $\triangle_{J}$ the face of $\triangle_{n}$

corresponding to $J\in\langle A\rangle$ ; that is, if $A=\{a_{0}, a_{1}, \ldots, a_{n}\}$ and $J=\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{k}}\}$

$\subset A$ , then $\triangle_{J}=$ co $\{e_{i_{O}}, e_{i_{1}}, \ldots, e_{i_{k}}\}$ .

For details on G-convex spaces; see [P5-8,11-13] and references therein.

Example. Typical examples of G-convex spaces are convex subsets of topologi-
cal vector spaces, Lassonde type convex spaces [Ll], C-spaces or H-spaces due to
Horvath [Hl,2].

Recall the following in [P15-18]:

Definition. An abstract convex space $(E, D;\Gamma)$ consists of a topological space $E$ , a
nonempty set $D$ , and a multimap $\Gamma$ : $\langle D\}arrow E$ with nonempty values $\Gamma_{A}$ $:=\Gamma(A)$

for $A\in\langle D\}$ .
For any $D’\subset D$ , the $\Gamma$-convex hull of $D’$ is denoted and defined by

$co_{\Gamma}D’:=\cup\{\Gamma_{A}|A\in\langle D’\rangle\}\subset E$ .

A subset $X$ of $E$ is called a $\Gamma$-convex subset of $(E, D;\Gamma)$ relative to $D’\subset D$ if for
any $N\in\langle D’\rangle$ , we have $\Gamma_{N}\subset X$ , that is, co$rD’\subset X$ . Then $(X, D‘; \Gamma|_{\langle D’\rangle})$ is called
a $\Gamma$ -convex subspace of $(E, D;\Gamma)$ .

When $D\subset E$ , the space is denoted by $(E\supset D;\Gamma)$ . In such case, a subset $X$ of
$E$ is said to be $\Gamma$-convex if $co_{\Gamma}(X\cap D)\subset X$ ; in other words, $X$ is $\Gamma$-convex relative
to $D’$ $:=X\cap D$ . In case $E=D$ , let $(E;\Gamma)$ $:=(E, E;\Gamma)$ .

Example. Every G-convex space is an abstract convex space. For other examples,
see [P15-18].

Definition. Let $(E, D;\Gamma)$ be an abstract convex space. If a multimap $G:D-\circ E$

satisfies
$\Gamma_{A}\subset G(A);=\bigcup_{y\in A}G(y)$

for all $A\in\langle D\rangle$ ,

then $G$ is called a $KKM$ map.

Definition. The partial $KKM$ principle for an abstract convex space $(E, D;\Gamma)$ is the
statement that, for any closed-valued KKM map $G:D-\infty E$ , the family $\{G(y)\}_{y\in D}$

has the finite intersection property.

Definition. For a topological space $X$ and an abstract convex space $(E, D;\Gamma)$ , a
multimap $T:Xarrow E$ is called a $\Phi$-map or a Fan-Browder map provided that there
exists a companion map $S:Xarrow D$ satisfying

(a) for each $x\in X,$ $co_{\Gamma}S(x)\subset T(x)$ ; and
(b) $X=\cup\{$Int $S^{-}(y)|y\in D\}$ .
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Lemma 1. [P5] Let $X$ be a Hausdorff space, $(E, D;\Gamma)$ a G-convex space, and
$T$ : $Xarrow E$ a $\Phi$ -map. Then for any nonempty compact subset $K$ of $X,$ $T|_{K}$ has
a continuous selection $f$ : $Karrow E$ such that $f(K)\subset\Gamma_{A}$ for some $A\in\langle D\rangle$ . More
precisely, there exist two continuous functions $p:Karrow\triangle_{n}$ and $\phi_{A}:\triangle_{n}arrow\Gamma_{A}$ such
that $f=\phi_{A}op$ for some $A\in\langle D\}$ with $|A|=n+1$ .

For an abstract convex space $(E\supset D;\Gamma)$ , an extended real-valued function $f$ :
$Earrow\overline{\mathbb{R}}$ is said to be quasiconcave [resp., quasiconvex] if $\{x\in E|f(x)>r\}$ [resp.,
$\{x\in E|f(x)<r\}]$ is $\Gamma$-convex for each $r\in \mathbb{R}$ .

Recall that a function $f$ : $Xarrow\overline{\mathbb{R}}$ , where $X$ is a topological space, is lower
[resp., upper] semicontinuous $(1.s.c.)$ [resp., $u.s.c.$ ] if $\{x\in X|f(x)>r\}$ [resp.,
$\{x\in X|f(x)<r\}]$ is open for each $r\in \mathbb{R}$ .

Let $\{X_{i}\}_{i\in I}$ be a family of sets, and let $i\in I$ be fixed. Let

$X= \prod_{j\in I}X_{j}$
,

$X^{i}= \prod_{j\in I\backslash \{i\}}X_{j}$
.

If $x^{i}\in X^{i}$ and $j\in I\backslash \{i\}$ , let $x_{j}^{i}$ denote the jth coordinate of $x^{i}$ . If $x^{i}\in X^{i}$ and
$x_{i}\in X_{i}$ , let $[x^{i}, x_{i}]\in X$ be defined as follows: its ith coordinate is $x_{i}$ and, for $j\neq i$

the jth coordinate is $x_{j}^{i}$ . Therefore, any $x\in X$ can be expressed as $x=[x^{i}, x_{i}]$ for
any $i\in I$ , where $x^{i}$ denotes the projection of $x$ in $X^{i}$ .

The following is known:

Lemma 2. Let $\{(X_{i}, D_{i};\Gamma_{i})\}_{i\in I}$ be any family of abstract convex spaces. Let $X:=$
$\prod_{i\in I}X_{i}$ be equipped with the product topology and $D= \prod_{i\in I}D_{i}$ . For each $i\in I$ , let
$\pi_{i}$ : $Darrow D_{i}$ be the projection. For each $A\in\langle D\rangle$ , define $\Gamma(A)$ $:= \prod_{i\in I}\Gamma_{i}(\pi_{i}(A))$ .
Then $(X, D;\Gamma)$ is an abstmct convex space.

Let $\{(X_{i}, D_{i};\Gamma_{i})\}_{i\in I}$ be a family of G-convex spaces. Then $(X, D;\Gamma)$ is a G-
convex space and hence a $KKM$ space.

As we have seen in Sections 1-3, we have three methods in our subject as follows:

(1) Fixed point method –Applications of the Kakutani theorem and its various
generalizations (for example, for acyclic valued multimaps, admissible maps, or
better admissible maps in the sense of Park); see [BK, $D$ ,Fl,3,G,H,IP,K,L2,M,Nl,2,
Nil.P3,4,9-11,14,PP] and others.

(2) Continuous selection method –Applications of the fact that Fan-Browder
type maps have continuous selections under certain assumptions like Hausdorffness
and compactness of relevant spaces; see [BDG,Br.Hl,HL, $P5,7,13,T$] and others.
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(3) The KKM method –As for the Sion theorem. direct applications of the
KKM theorem or its equivalents like as the Fan-Browder fixed point theorem for
which we do not need the Hausdorffness; see [BH,CG, $C$ ,CKL $F2,4,5$ ,GKR,Gr Hl-
3,HL,Kh,KSY,Ko,Ll,Lu,P2,7,l2,l5-l7,S,Si] and others.

For Case (1), we will study elsewhere and, in this paper, we are mainly concerned
with Cases (2) and (3).

An abstract convex space $(E, D;\Gamma)$ is said to be compact if $E$ is a compact
topological space.

$i^{From}$ now on, for simplicity, we are mainly concerned with compact abstract
convex spaces $(E;\Gamma)$ satisfying the partial KKM principle. For example, any com-
pact G-convex space, any compact H-space, or any compact convex space is such a
space.

5. From collective fixed points to Nash equilibria

In this section, we compare consequences of Cases (2) and (3) which lead to the
Nash theorem. In fact, such results in Case (2) are for infinite families of Hausdorff
compact G-convex spaces; and, in Case (3) for finite families of compact abstract
convex spaces whose products Satisfy the partial KKM principle.

We have the following collective fixed point theorem:
Theorem 1. Collective fixed point theorem. [P5] Let $\{(X_{i};\Gamma_{i})\}_{i\in I}$ be a family
of Hausdorff compact G-convex spaces, $X= \prod_{i\in I}X_{i}$ , and for each $i\in I,$ $T_{i}$ : $Xarrow$

$X_{i}$ a $\Phi$ -map. Then there exists a point $x\in X$ such that $x\in T(x)$ $:= \prod_{i\in I}T_{i}(x)$ ;
that is, $x_{i}=\pi_{i}(x)\in T_{i}(x)$ for each $i\in I$ .

Example. In case when $(X_{i};\Gamma_{i})$ are all H-spaces, Theorem 1 reduces to Tarafdar
[$T$ , Theorem 2.3]. This is applied to sets with H-convex sections [$T$ , Theorem 3.1]
and to existence of equilibrium point of an abstract economy $[T$ , Theorem 4.1 and
Corollary 4.1]. These results also can be extended to G-convex spaces and we will
not repeat here.

But, the following is possible:

Theorem 1’. Collective fixed point theorem. Let $\{(X_{i};\Gamma_{i})\}_{i=1}^{n}$ be a finite
family of compact abstract convex spaces such that $(E; \Gamma)=(\prod_{i=1}^{n}X_{i};\Gamma)$ satisfies
the partial $KKM$ principle, and for each $i,$ $T_{i}$ : $Earrow X_{i}$ a $\Phi$ -map. Then there exists
a point $x\in X$ such that $x\in T(x)$ $:= \prod_{i=1}^{n}T_{i}(x)$ ; that is, $x_{i}=\pi_{i}(x)\in T_{i}(x)$ for
each $i$ .

Comparing Theorems 1 and 1’, the former assumes the Hausdorffness of the G-
convex spaces and is a consequence of a selection theorem based on the character
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of G-convex spaces. However, Theorem 1’ assumes the finiteness of the family and
follows from the Fan-Browder fixed point equivalent to the partial KKM principle.

Example. 1. If $I$ is a singleton, $X$ is a convex space, and $S_{i}=T_{i}$ , then Theorem
1’ reduces to the Fan-Browder fixed point theorem.

2. For the case $I$ is a singleton, Theorem 1‘ for a convex space $X$ was obtained
by Ben-El-Mechaiekh et al. [BDG, Theorem 1] and Simons [ $S$ , Theorem 4.3]. This
was extended by many authors; see Park [P2].

The collective fixed point theorems can be reformulated to generalizations of
various Fan type intersection theorems for sets with convex sections as follows:

Theorem 2. The von Neumann-Fan-Ma intersection theorem. [P13] Let
$\{(X_{i};\Gamma_{i})\}_{i\in I}$ be a family of Hausdorff compact G-convex spaces and, for each $i\in I$ ,
let $A_{i}$ and $B_{i}$ are subsets of $X= \prod_{i\in I}X_{i}$ satisfying the following:

(2.1) for each $x^{i}\in X^{i},$ $\emptyset\neq$ co$r_{i}^{B_{i}(x^{i})}\subset A_{i}(x^{i})$ $:=\{y_{i}\in X_{i}|[x^{i}, y_{i}]\in A_{i}\}$ ; and
(2.2) for each $y_{i}\in X_{i},$ $B_{i}(y_{i})$ $:=\{x^{i}\in X^{i}|[x^{i}, y_{i}]\in B_{i}\}$ is open in $X^{i}$ .

Then we have $\bigcap_{i\in I}A_{i}\neq\emptyset$ .

Example. For convex subset $X_{i}$ of Hausdorff topological vector spaces, particular
forms of Theorem 2 have appeared as follows:

1. Ma [$M$ , Theorem 2]: $A_{i}=B_{i}$ for all $i\in I$ . The proof is different from ours.
2. Chang [$C$ , Theorem 4.2] obtained Theorem 2 with a different proof. She also

obtained a noncompact version of Theorem 2 as [$C$ , Theorem 4.3].
3. Park [P9, Theorem 4.2]: A related result.

Theorem 2’. The von Neumann-Fan intersection theorem. $[$P18$]$ Let
$\{(X_{i};\Gamma_{i})\}_{i=1}^{n}$ be a finite family of compact abstract convex spaces such that $(X; \Gamma)$

$=( \prod_{i=1}^{n}X_{i};\Gamma)$ satisfies the partial $KKM$ principle and, for each $i$ , let $A_{i}$ and $B_{i}$

are subsets of $E$ satisfying
(2.1)’ for each $x^{i}\in X^{i},$ $\emptyset\neq$ co$\Gamma_{i}B_{i}(x^{i})\subset A_{i}(x^{i});=\{y\in X|[x^{i}, y_{i}]\in A_{i}\}$ ; and
(2.2)’ for each $y_{i}\in X_{i},$ $B_{i}(y_{i})$ $:=\{x^{i}\in X^{i}|[x^{i}, y_{i}]\in B_{i}\}$ is open in $X^{i}$ .

Then we have $\bigcap_{i=1}^{n}A_{i}\neq\emptyset$ .

Example. For convex spaces $X_{i}$ , particular forms of Theorem 2’ have appeared as
follows:

1. Fan [F3, Th\’eor\‘eme 1]: $A_{i}=B_{i}$ for all $i$ .
2. Fan [F4, Theorem 1’]: $I=\{1,2\}$ and $A_{i}=B_{i}$ for all $i\in I$ .
$i^{From}$ these results, Fan [F4] deduced an analytic formulation, fixed point the-

orems, extension theorems of monotone sets, and extension theorems for invariant
vector subspaces.

For particular types of G-convex spaces, Theorem 2’ was known as follows:
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3. Bielawski [Bi, Proposition (4.12) and Theorem (4.15)]: $X_{i}$ has the finitely
local convexity.

4. Kirk, Sims, and Yuan [KSY, Theorem 5.2]: $X_{i}$ are hyperconvex metric spaces.
5. Park [P7, Theorem 4], [P8, Theorem 19]: $X_{i}$ are G-convex spaces.

From the above intersection theorems, resp., we can deduce the following equiv-
alent forms, resp., of a generalized Fan type minimax theorem or an analytic alter-
native:

Theorem 3. The Fan type analytic alternative. [P13] Let $\{(X_{i};\Gamma_{i})\}_{i\in I}$ be a
family of Hausdorff compact G-convex spaces and, for each $i\in I$ , let $f_{i},$ $g_{i}$ : $X=$
$X^{i}\cross X_{i}arrow \mathbb{R}$ be real functions satisfying

(3.1) $f_{i}(x)\leq g_{i}(x)$ for each $x\in X$ ;
(3.2) for each $x^{i}\in X^{i},$ $x_{i}\mapsto g_{i}[x^{i}, x_{i}]$ is quasiconcave on $X_{i}$ ; and
(3.3) for each $x_{i}\in X_{i},$ $x^{i}\mapsto f_{i}[x^{i}, x_{i}]$ is $l.s.c$ . on $X^{i}$ .

Let $\{t_{i}\}_{i\in I}$ be a family of real numbers. Then either
(a) there exist an $i\in I$ and an $x^{i}\in X^{i}$ such that

$f_{i}[x^{i}, y_{i}]\leq t_{i}$ for all $y_{i}\in X_{i}$ ; or

(b) there exists an $x\in X$ such that

$g_{i}(x)>t_{i}$ for $alli\in I$ .

Example. 1. Ma [$M$ , Theorem 3]: Each $X_{i}$ is a compact convex subsets each in a
Hausdorff topological vector spaces and $f_{i}=g_{i}$ for all $i\in I$ .

3. Park [P9, Theorem 8.1]: $X_{i}$ are convex spaces.

Theorem 3’. The Fan type analytic alternative. Let $\{(X_{i};\Gamma_{i})\}_{i=1}^{n}$ be a finite
family of compact abstmct convex spaces such that $(X; \Gamma)=(\prod_{i=1}^{n}X_{i};\Gamma)$ satisfies
the partial $KKM$ principle and, for each $i\in I$ , let $f_{i},$ $g_{i}$ : $X=X^{i}\cross X_{i}arrow \mathbb{R}$ be
real functions satisfying $(3.1)-(3.3)$ . Then the conclusion of Theorem 3 holds for
$I=\{1,2, \ldots, n\}$ .

Example. Fan [F3, Th\’eor\‘eme 2], [F4, Theorem 3]: $X_{i}$ are convex subsets, and
$f_{i}=g_{i}$ for all $i\in I$ . From this, Fan [F2,3] deduced Sion’s minimax theorem
[Si], the Tychonoff fixed point theorem, solutions to systems of convex inequalities,
extremum problems for matrices, and a theorem of Hardy-Littlewood-P\’olya.

From Theorems 3 and 3’, we obtain the following generalizations of the Nash-Ma
type equilibrium theorem, resp.:

85



Theorem 4. Generalized Nash-Ma type equilibrium theorem. [P13] Let
$\{(X_{i};\Gamma_{i})\}_{?\in I}$ be a family of Hausdorff compact G-convex spaces and, for each $i\in I$ ,
let $f_{i},$ $g_{i}:X=X^{\tau}\cross X_{i}arrow \mathbb{R}$ be real functions such that

(4.0) $f_{i}(x)\leq g_{i}(x)$ for each $x\in X$ ;
(4.1) for each $x^{i}\in X^{i},$ $x_{i}\mapsto g_{i}[x^{i}, x_{i}]$ is quasiconcave on $X_{i}$ ;
(4.2) for each $x^{i}\in X^{i},$ $x_{i}\mapsto f_{i}[x^{i}, x_{i}]$ is $u.s.c$ . on $X_{i}$ ; and
(4.3) for each $x_{i}\in X_{i},$ $x^{i}\mapsto f_{i}[x^{i}, x_{i}]$ is 1. $s.c$ . on $X^{i}$ .

Then there exists a point $\hat{x}\in X$ such that

$g_{i}( \hat{x})\geq y_{i}X_{i}\max_{\in}f_{i}[\hat{x}^{i}, y_{i}]$ for all $i\in I$ .

Example. Park [P9, Theorem 8.2]: $X_{i}$ are convex spaces.

Theorem 4’. Generalized Nash-Fan type equilibrium theorem. [P18] Let
$\{(X_{i};\Gamma_{i})\}_{i=1}^{n}$ be a finite family of compact abstract convex spaces such that $(X; \Gamma)=$

$( \prod_{i=1}^{n}X_{i};\Gamma)$ satisfies the partial $KKM$ principle and, for each $i$ , let $f_{i},$ $g_{i}$ : $X=$
$X^{i}\cross X_{i}arrow \mathbb{R}$ be real functions satisfying (4.0) $-(4.3)$ . Then there exists a point
$\hat{x}\in X$ such that

$g_{i}( \hat{x})\geq\max_{y_{l}\in X_{1}}f_{i}[\hat{x}^{i}, y_{i}]$ for all $i=1,2,$ $\ldots,$
$n$ .

Example. In case when $X_{i}$ are convex spaces, $f_{i}=g_{i}$ , Theorem 4’ reduces to Tan
et al. [TYY, Theorem 2.1].

From Theorems 4 and 4’, we obtain the following generalization of the Nash
equilibrium theorem, resp.:

Theorem 5. Generalized Nash-Ma type equilibrium theorem. [P13] Let
$\{(X_{i};\Gamma_{i})\}_{i\in I}$ be a family of Hausdorff compact G-convex spaces and, for each $i\in I$ ,
let $f_{i}:Xarrow \mathbb{R}$ be a function such that

(5.1) for each $x^{i}\in X^{i},$ $x_{i}\mapsto f_{i}[x^{i}, x_{i}]$ is quasiconcave on $X_{i}$ ;
(5.2) for each $x^{i}\in X^{i},$ $x_{i}\mapsto f_{i}[x^{i}, x_{i}]$ is $u.s.c$ . on $X_{i}$ ; and
(5.3) for each $x_{i}\in X_{i},$ $x^{i}\mapsto f_{i}[x^{i},$ $x_{i}]$ is $l.s.c$ . on $X^{i}$ .

Then there exists a point $\hat{x}\in X$ such that

$f_{i}( \hat{x})=\max_{y_{i}\in X_{i}}f_{i}[\hat{x}^{i}, y_{i}]$ for all $i\in I$ .

Example. Ma [ $M$ , Theorem 4]: Each $X_{i}$ is a compact convex subsets each in a
Hausdorff topological vector spaces.
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Theorem 5’. Generalized Nash-Fan type equilibrium theorem. [P18] Let
$\{(X_{i};\Gamma_{i})\}_{i=1}^{n}$ be a finite family of compact abstract convex spaces such that $(X; \Gamma)=$

$( \prod_{i=1}^{n}X_{i};\Gamma)$ satisfies the partial $KKM$ principle and, for each $i$ , let $f_{i}$ : $Earrow \mathbb{R}$ be
a function satisfying $(5.1)-(5.3)$ . Then there exists a point $\hat{x}\in X$ such that

$f_{i}( \hat{x})=\max_{y_{z}\in X_{i}}f_{i}[\hat{x}^{i}, y_{i}]$ for all $i=1,2,$ $\ldots,$
$n$ .

Example. For continuous functions $f_{i}$ , a number of particular forms of Theorem
5’ have appeared for convex subsets $X_{i}$ of topological vector spaces as follows:

1. Nash [N2, Theorem 1]: $X_{i}$ are subsets of Euclidean spaces.
2. Nikaido and Isoda [NI, Theorem 3.2].
3. Fan [F4, Theorem 4].

For particular types of G-convex spaces $X_{i}$ and continuous functions $f_{i}$ , particular
forms of Theorem 5’ have appeared as follows:

4. Bielawski [Bi, Theorem (4.16)]: $X_{i}$ have the finitely local convexity.
5. Kirk, Sims, and Yuan [KSY, Theorem 5.3]: $X_{i}$ are hyperconvex metric spaces.
6. Park [P7, Theorem 6], [P8, Theorem 20]: $X_{i}$ are G-convex spaces.
7. Park [P12, Theorem 4.7]: A variant of Theorem 5’ under the hypothesis that

$(X; \Gamma)$ is a compact G-convex space with $X= \prod_{i=1}^{n}X_{i}$ and $f_{1},$
$\ldots,$

$f_{n}:Xarrow \mathbb{R}$ are
continuous functions such that

(3) for each $x\in X$ , each $i=1,$ $\ldots,$
$n$ , and each $r\in \mathbb{R}$ , the set $\{(y_{i}, x^{i})\in$

$X|f_{i}(y_{i}, x^{i})>r\}$ is $\Gamma$-convex.
8. Gonz\’alez et al. [GK]: Each $X_{i}$ is a compact, sequentially compact L-space

and each $f_{i}$ is continuous as in 7.
9. Briec and Horvath [BH, Theorem 3.2]: Each $X_{i}$ is a compact B-convex set

and each $f_{i}$ is continuous as in 7.

The point $\hat{x}$ in the conclusion of Theorem 5 is called a Nash equilibrium. This
concept is a natural extension of the local maxima and the saddle point as follows.

In case $I$ is a singleton, we obtain the following:

Corollary 5.1. Let $X$ be a closed bounded convex subset of a reflexive Banach space
$E$ and $f:Xarrow \mathbb{R}$ a quasiconcave $u.s.c$ . function. Then $f$ attains its maximum on
$X$ ; that is, there exists an $\hat{x}\in X$ such that $f(\hat{x})\geq f(x)$ for all $x\in X$ .

Corollary 5.1 is due to Mazur and Schauder in 1936. Some generalized forms of
Corollary 1 were known by Park et al. [PK,Pl].

For $I=\{1,2\}$ , Theorem 5’ reduces to the following:
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Corollary 5.2. The von Neumann-Sion minimax theorem. [P18] Let $(X; \Gamma_{1})$

and $(Y;\Gamma_{2})$ be compact abstract convex spaces and $f$ : $X\cross Yarrow\overline{\mathbb{R}}$ an extended real
function such that

(1) for each $x\in X,$ $f(x, \cdot)$ is $l.s.c$ . and quasiconvex on $Y$ ; and
(2) for each $y\in Y,$ $f(\cdot, y)$ is $u.s.c$ . and quasiconcave on $X$ .

If $(X\cross Y;\Gamma)$ satisfies the partial $KKM$ principle, then
(i) $f$ has a saddle point $(x_{0}, y_{0})\in X\cross Y$ ; and
(ii) we have

$\max_{x\in X}\min_{y\in Y}f(x, y)=\min_{y\in Y}\max_{x\in X}f(x, y)$ .

Example. We list historically well-known particular or related forms of Corollary
5.2 in chronological order:

1. von Neumann [Vl], Kakutani [K]: $X$ and $Y$ are compact convex subsets of
Euclidean spaces and $f$ is continuous.

2. Nikaid\^o [Nil]: Euclidean spaces in the above are replaced by Hausdorff topo-
logical vector spaces, and $f$ is continuous in each variable.

3. Sion [Si]: $X$ and $Y$ are compact convex subsets in topological vector spaces in
Corollary 5.2.

4. Komiya [Ko, Theorem 3]: $X$ and $Y$ are compact convex spaces in the sense of
Komiya and $Y$ is Hausdorff.

5. Bielawski [Bi, Theorem (4.13)]: $X$ and $Y$ are compact spaces having certain
simplicial convexities.

6. Horvath [Hl, Prop. 5.2]: $X$ and $Y$ are C-spaces with $Y$ Hausdorff compact.
In 4 and 6 above, Hausdorffness of $Y$ is assumed since they adopted the parti-

tion of unity argument. However, 3 and 5 were based on the corresponding KKM
theorems which need not the Hausdorffness of $Y$ .

7. Park [P7. Theorems 2 and 3]: Variants of Corollary 5.2 with different proofs.
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