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Abstract

In this paper, we review results in Lee [13] and Lee et al. [14] without proofs. We con-
sider e-approximate solutions for a convex semidefinite optimization problem (SDP)
with conic constraints and present e-optimality theorems and e-saddle point theorems
for such solutions which hold under a weakened constraint qualification or which hold
with out any constraint qualification. We give a Wolfe type dual problem for (SDP),
and then we present e-duality results, which hold under a weakened constraint quali-

fication.

1 Introduction and Preliminaries

Convex semidefinite optimization problem is to optimize an objective convex func-
tion over a linear matrix inequality. When the objective function is linear and the
corresponding matrices are diagonal, this problem become a linear optimization prob-
lem. So, this problem is an extension of a linear optimization problem. For convex
semidefinite optimization problem, strong duality without constraint qualification [17],
complete dual characterization conditions of solutions ([7, 11]), saddle point theorems

[1] and characterizations of optimal solution sets [9] have been investigated.

To get the e-approximate solution, many authors have established e-optimality

conditions, e-saddle point theorems and e-duality theorems for several kinds of op-



timization problems ([2, 3, 4, 15, 16, 18, 19]). Recently, Jeyakumar et al. (7] es-
tabilished sequential optimality conditions for exact solutions of convex optimization
problem which holds without any constraint qualification. Jeyakumar et al. [6] gave
e-optimality conditions for convex optimization problems, which hold without any con-
straint qualification. Yokoyama et al. {19] gave a special case of convex optimization
problem which e-optimality conditions. Kim et al. [12] proved sequential e-saddle point
theorems and e-saddle point theorems for convex semidefinite optimization problems
which have not conic constraints. Recently, Lee {13] and Lee et al. [14] extended results

in Kim et al. [12] to convex semidefinite optimization problems with conic constraints.

In this paper, we review the results in Lee [13] and Lee et al. [14] without proofs.
We consider e-approximate solutions for a convex semidefinite optimization problem
with conic constraints and present e-optimality theorems and e-saddle point theorems
for such solutions which hold under a weakened constraint qualification or which hold
with out any constraint qualification. We give a Wolfe type dual problem for the
convex semidefinite optimization problem with conic constraint and then we present

e-duality results, which hold under a weakened constraint qualification.

Consider the following convex semidefinite optimization problem:

(SDP) Minimize f(z)
m
subject to Fp + ZwiFi =0, (1,22, " ,Zm) € C,

i=1

where f : R™ — R is a convex function, the space of n x n real symmetric matrices,
C is a closed convex cone of R™, and for i = 0,1,--- ,m, F; € S,. The space
S, is partially ordered by the Léwner order, that is, for M,N € S,, M > N if
and only if M — N is positive semidefinite. The inner product in S, is defined by
(M, N) = Tr[MN], where Tr[] is the trace operation.

Let S:={M € S, | M =0} . Then S is self-dual, that is,
St:={0€S,](0,2)20, for any Z€ S} = S.

Let F(zx) := Fo + Y v, =i F;, F(x) =y xiF, x = (1 ,Zm) € R™. Then F

is a linear operator from R™ to S, and its dual is defined by

F*(Z)=(Tr[F12],-- ,Tr[Fn2))
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for any Z € S, . Clearly, A:= {z € C'| F(z) € S} is the feasible set of (SDP).

We define the e-approximate solution of (SDP) as follows:

Definition 1.1 Let € =2 0. Then T is called an e-approzimate solution of (SDP)
Jorany z € A,

f(@) 2 f(2) -«

Now we give the definitions of subdifferential and e-subdifferential of convex func-

tion in [5].

Definition 1.2 Let g : R®™ — R be a convex function.
(1) The subdifferential of g at a is given by
0g(a) = {v € R" | g(z) = g(a)+ < v,z —a >, for allz € R"},
where (-, ) is the scalar product on R™
(2) The e-subdifferential of g at a is given by

Oeg(a) ={v e R" | g(z) 2 g(a)+ < v,z —a > —¢, forall z c R"}.

Definition 1.3 Let C be a closed convezx set in R™ and z € C.

(1) Let No(z)={veR"| <v,y—z> < 0, forall yec C}.
Then N¢(z) is called the normal cone to C at .

(2) Letez0. Let No(z)={veR"| <v,y—z> < ¢, forallyeC}.
Then N&(z) is called the € — normal set to C at x.

(3) When C is a closed convex cone in R™, Ng(0) is denoted by C* and

called the negative dual cone of C.
Following the proof of Lemma 2.2 in [8], we can obtain the following lemma.

Lemma 1.1 [13, 14] Let F; € Sp, ¢ = 0,1,--- ,m. Suppose that A # 0. Let u €

R™ and o € R. Then the following are equivalent:

(i) {zeC|F +iﬂxi:0}c{z€Rm|(u,x)ga}.

=1
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(i) (Z) ea|l U {(*Tf[z(fo; ) 5)} " xR,

(Z,8)eSxR4

Using the above Lemma 1.1, we can obtain the following lemma:

Lemma 1.2 [13, 14] Suppose that A # 0. Let T € A and € 2 0. Then T is an e-
approzimate solution of (SDP) if and only if there exist €g,€1 2 0, v € O¢, f(Z) such

that g + €1 = €, and

(e e[ U (b ) -emm

(Z,E)ESXR+

2 e-Optimality Conditions

Now, using the above Lemma 1.2, we can give the following two e-optimality conditions
for (SDP).

. F*(2) . :
Theorem 2.1 (13] Let T € A and U {(——T'I‘[ZF()] B 5)} —C* xRy is
(2,6)ESxRy

closed in R™ xR. Then Z € A is an e-approzimate solution of (SDP) if and only
if there exist €9, €1 20, v € O f(Z), Z €S, c* € C* such that €+ €1 =,

v=F*2Z)-c*

and

0< Tr[ZF(z)] € €.

Theorem 2.2 (13| Let £ € A. Then I is an e-approzimate solution of (SDP) if
and only if there exist €g, €1 2 0, v € O, f(Z), ¢, € C*, Z, € S, dp 2 0 such that
€+ €1 =€,

v= lim (F*(Z,) — c)

n—oo
and

<v,Z>—e€ = lim (=Tr[Z,Fp] — op).
n—00



111

3 e-Saddle Point Theorems and e-Duality Theorem

Now we give e-saddle point theorems and e-duality theorems for (SDP). Using Lemma
1.1, we can obtain the following two lemmas which are useful in proving our e-saddle

point theorems for (SDP).

Lemma 3.1 [13] Let Z € A. Then T € A is an e-approzimate solution of (SDP)

if and only if there exists a sequence {Z,} in S such that

flz) - linrr_1>i£fTr[ZnF(x)] 2 f(Z) —€, foranyzeC.

_ F(2) .
Lemma 3.2 (13, 14] Let T € A. Suppose that U {(—T"'[ZFQ] _ 6) } —C* x
(Z2,5)ES xR

R, is closed. Then & is an e-approzimate solution of (SDP) if and only if there exists

Z € 8§ such that for any z € C,

f(z) ~ Tr(ZF ()] 2 f(z) — .

Let € 2 0. Consider the following sequential e-saddle point problem and e-saddle
point problem:
(SSP). Find & € C and a sequence {Z,} C S such that
f(@) —liminf Tr[Z,F(Z)] -~ ¢ < f(Z) - liminf Tr[Z,F(Z)]
n—o0 n—oo
< f(z) —liminfTr(Z,F(z)] + €
n—oco

for any = € C and any sequence {Z,} C S.

(SP), FindzeCand Z € S such that

f(@) - Tr(ZFZ)] — e = f(z) - Tr(ZF ()]
L f(z) — Tr(ZF(z)] + €

for any x € C and any Z € S.

Now we give a useful characterization of solution of (SSP)..
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Lemma 3.3 [13] Suppose that A # 0. Let (z,{Z,}) € C xS, n =1,2,---. Then
(Z,{Zn}) is a solution of (SSP). if and only if

f(Z) — iminf Tr[Z,F(Z)] £ f(z) — linm inf Tr[Z,F(x)] + €
n—o0 —00
foranyz € C,
0 £ lim i£f Tr(Z.F(Z)] £ €
and F(Z) € S.

Using Lemma 3.1 and 3.3, we can give a sequential e-saddle point theorem which

holds between (SDP) and (SSP)..

Theorem 3.1 (Sequential e-Saddle Point Theorem) [13]

(1) If £ € A is an e-approzimate solution of (SDP), then there exists a sequence
{Z,} such that (z,{Zn}) is a solution of (SSP).

(2) If A # 0 and (z,{Z,}) is a solution of (SSP)c, then T is an 2e-approzimate
solution of (SDP).

Using Lemma 3.2, we can give an e-saddle point theorem which holds between
(SDP) and (SP)..

Theorem 3.2 [13] (e- Saddle Point Theorem) Suppose that

U ACriont-o)) o <=

(Z,6)eSxR 4

is closed. If £ € A is an e-approzimate solution of (SDP), then there exists Z € S
such that (Z, Z) is a solution of (SP)..

Theorem 3.3 [13] If (Z, Z) is a solution of (SP)e, then & is an 2e-approzimate solu-
tion of (SDP).

Now we can formulate dual problem (SDD) of (SDP) as follows:

(SDD) Maximize f(z) — Tr[ZF(z)]
subject to 0 €, f(z)— F*(Z) + Ng (z),
Z >0,

€+ € € [0,6].



We can prove e-weak and e-strong duality theorems which hold between (SDP)
and (SDD).

Theorem 3.4 (e-Weak Duality) [13, 14] For any feasible x of (SDP) and any
feasible (y, Z) of (SDD),

f(x) 2 fly) —Tr[ZF(y)] —e.

Theorem 3.5 (e-Strong Duality) [13, 14] Suppose that

F*(2) X _
U {(——TT[ZFO] _ 5)} — C* xRy is closed.

(2,8)eSxR+
If Z is an e-approzimate solution of (SDP), then there exists Z € S such that (&, Z)
is an 2e-approzimate solution of (SDD).
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