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Abstract

In this paper, we review results in Lee [13] and Lee et al. [14] without proofs. We con-
sider $\epsilon$-approximate solutions for a convex semidefinite optimization problem (SDP)

with conic constraints and present $\epsilon$-optimality theorems and $\epsilon$-saddle point theorems
for such solutions which hold under a weakened constraint qualification or which hold
with out any constraint qualification. We give a Wolfe type dual problem for (SDP),
and then we present $\epsilon$-duality results, which hold under a weakened constraint quali-
fication.

1 Introduction and Preliminaries

Convex semidefinite optimization problem is to optimize an objective convex func-
tion over a linear matrix inequality. When the objective function is linear and the
corresponding matrices are diagonal, this problem become a linear optimization prob-
lem. So, this problem is an extension of a linear optimization problem. For convex
semidefinite optimization problem, strong duality without constraint qualification [17],
complete dual characterization conditions of solutions ([7, 11]), saddle point theorems
[1] and characterizations of optimal solution sets [9] have been investigated.

To get the $\epsilon$-approximate solution, many authors have established $\epsilon$-optimality
conditions, $\epsilon$-saddle point theorems and $\epsilon$-duality theorems for several kinds of op-
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timization problems ([2, 3, 4, 15, 16, 18, $19|)$ . Recently, Jeyakumar et al. [7] es-

tabilished sequential optimality conditions for exact solutions of convex optimization

problem which holds without any constraint qualification. Jeyakumar et al. [6] gave
$\epsilon$-optimality conditions for convex optimization problems, which hold without any con-

straint qualification. Yokoyama et al. [19] gave a special case of convex optimization

problem which $\epsilon$-optimality conditions. Kim et al. [12] proved sequential $\epsilon$-saddle point

theorems and $\epsilon$-saddle point theorems for convex semidefinite optimization problems

which have not conic constraints. Recently, Lee [13] and Lee et al. [14] extended results

in Kim et al. [12] to convex semidefinite optimization problems with conic constraints.

In this paper, we review the results in Lee [13] and Lee et al. [14] without proofs.

We consider $\epsilon$-approximate solutions for a convex semidefinite optimization problem

with conic constraints and present $\epsilon$-optimality theorems and $\epsilon$-saddle point theorems

for such solutions which hold under a weakened constraint qualification or which hold

with out any constraint qualification. We give a Wolfe type dual problem for the

convex semidefinite optimization problem with conic constraint and then we present
$\epsilon$-duality results, which hold under a weakened constraint qualification.

Consider the following convex semidefinite optimization problem:

(SDP) Minimize $f(x)$

subject to $F_{0}+ \sum_{i=1}^{m}x_{i}F_{i}\succeq 0,$ $(x_{1}, x_{2}, \cdots, x_{m})\in C$,

where $f$ : $\mathbb{R}^{m}arrow \mathbb{R}$ is a convex function, the space of $n\cross n$ real symmetric matrices,

$C$ is a closed convex cone of $\mathbb{R}^{m}$ , and for $i=0,1,$ $\cdots,$ $m,$ $F_{i}\in S_{n}$ . The space
$S_{n}$ is partially ordered by the Lowner order, that is, for $M,$ $N\in S_{n},$ $M\succeq N$ if

and only if $M-N$ is positive semidefinite. The inner product in $S_{n}$ is defined by

$(M, N)=Tr[MN]$ , where $Tr[\cdot]$ is the trace operation.

Let $S:=\{M\in S_{n}|M\succeq O\}$ . Then $S$ is self-dual, that is,

$S^{+}$ $:=\{\theta\in S_{n}|(\theta,$ $Z)\geqq 0$ , for any $Z\in S\}=S$ .

Let $F(x);=F_{0}+ \sum_{i=1}^{m}x_{i}F_{i},\hat{F}(x);=\sum_{i=1}^{m}x_{i}F_{i},$ $x=(x_{1}\cdots, x_{m})\in \mathbb{R}^{m}$ . Then $\hat{F}$

is a linear operator from $\mathbb{R}^{m}$ to $S_{n}$ and its dual is defined by

$\hat{F}^{*}(Z)=(Tr[F_{1}Z], \cdots, Tr[F_{m}Z])$
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for any $Z\in S_{n}$ . Clearly, $A:=\{x\in C|F(x)\in S\}$ is the feasible set of (SDP).

We define the $\epsilon$-approximate solution of (SDP) as follows:

Definition 1.1 Let $\epsilon\geqq 0$ . Then $\overline{x}$ is called an $\epsilon$ -approximate solution of (SDP) if
for any $x\in A$ ,

$f(x)\geqq f(\overline{x})-\epsilon$ .

Now we give the definitions of subdifferential and $\epsilon$-subdifFerential of convex func-
tion in [5].

Definition 1.2 Let $g:\mathbb{R}^{n}arrow \mathbb{R}$ be a convex function.
(1) The subdifferential of $g$ at $a$ is given by

$\partial g(a)=\{v\in \mathbb{R}^{n}|g(x)\geqq g(a)+<v,$ $x-a>$ , for all $x\in \mathbb{R}^{n}\}$ ,

where $\langle\cdot,$ $\cdot\rangle$ is the scalar product on $\mathbb{R}^{n}$

(2) The $\epsilon$ -subdifferential of $g$ at $a$ is given by

$\partial_{\epsilon}g(a)=\{v\in \mathbb{R}^{n}|g(x)\geqq g(a)+<v,$ $x-a>-\epsilon$ , for all $x\in \mathbb{R}^{n}\}$ .

Definition 1.3 Let $C$ be a closed convex set in $\mathbb{R}^{n}$ and $x\in C$ .

(1) Let $N_{C}(x)=\{v\in \mathbb{R}^{n}|<v,$ $y-x>\leqq 0$ , for all $y\in C\}$ .

Then $N_{C}(x)$ is called the normal cone to $C$ at $x$ .

(2) Let $\epsilon\geqq 0$ . Let $N_{C}^{\epsilon}(x)=\{v\in \mathbb{R}^{n}|<v,$ $y-x>\leqq\epsilon$ , for all $y\in C\}$ .

Then $N_{C}^{\epsilon}(x)$ is called the $\epsilon$ –normal set to $C$ at $x$ .

(3) When $C$ is a closed convex cone in $\mathbb{R}^{n},$ $N_{C}(0)$ is denoted by $C^{*}$ and

called the negative dual cone of $C$.

Following the proof of Lemma 2.2 in [8], we can obtain the following lemma.

Lemma 1.1 [13, 14] Let $F_{i}\in S_{n},$ $i=0,1,$ $\cdots,$ $m$ . Suppose that $A\neq\emptyset$ . Let $u\in$

$\mathbb{R}^{m}$ and $\alpha\in \mathbb{R}$ . Then the following are equivalent:

(i) $\{x\in C|F_{0}+\sum_{i=1}^{m}F_{i}x_{i}\succeq 0\}\subset\{x\in \mathbb{R}^{m}|\langle u, x\rangle\geqq\alpha\}$ .
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(ii) $(_{\alpha}^{u}) \in cl(\bigcup_{(Z,\delta)\in S\cross \mathbb{R}+}\{\urcorner\}-C^{*}\cross \mathbb{R}_{+})$ .

Using the above Lemma 1.1, we can obtain the following lemma:

Lemma 1.2 [13, 14] Suppose that $A\neq\emptyset$ . Let $\overline{x}\in A$ and $\epsilon\geqq 0$ . Then $\overline{x}$ is an $\epsilon-$

approximate solution of (SDP) if and only if there exist $\epsilon_{0},$
$\epsilon_{1}\geqq 0,$ $v\in\partial_{\epsilon_{0}}f(\overline{x})$ such

that $\epsilon_{0}+\epsilon_{1}=\epsilon$ , and

$(\begin{array}{ll}v \langle v,\overline{x}\rangle- \epsilon_{1}\end{array})\in cl(\bigcup_{(Z,\delta)\in S\cross \mathbb{R}_{+}}\{(\begin{array}{l}\hat{F}^{*}(Z)-Tr[ZF_{0}]-\delta\end{array})\}-C^{*}\cross \mathbb{R}_{+})$ .

2 $\epsilon$-Optimality Conditions

Now, using the above Lemma 1.2, we can give the following two $\epsilon$-optimality conditions

for (SDP).

Theorem 2.1 [13] Let $\overline{x}\in A$ and $\bigcup_{(Z,\delta)\in S\cross \mathbb{R}+}\{(\begin{array}{l}\hat{F}^{*}(Z)-Tr[ZF_{0}]-\delta\end{array})\}-C^{*}\cross \mathbb{R}+is$

closed in $\mathbb{R}^{m}\cross \mathbb{R}$ . Then $\overline{x}\in A$ is an $\epsilon$ -approximate solution of (SDP) if and only

if there exist $\epsilon_{0},$
$\epsilon_{1}\geqq 0,$ $v\in\partial_{\epsilon_{0}}f(\overline{x}),$ $Z\in S,$ $c^{*}\in C^{*}$ such that $\epsilon_{0}+\epsilon_{1}=\epsilon$ ,

$v=\hat{F}^{*}(Z)-c^{*}$

and
$0\leqq Tr[ZF(\overline{x})]\leqq\epsilon_{1}$ .

Theorem 2.2 [13] Let $\overline{x}\in A.$ Then $\overline{x}$ is an $\epsilon$ -approximate solution of (SDP) if
and only if there exist $\epsilon_{0},$

$\epsilon_{1}\geqq 0,$ $v\in\partial_{\epsilon 0}f(\overline{x}),$ $c_{n}^{*}\in C^{*},$ $Z_{n}\in S,$ $\delta_{n}\geqq 0$ such that

$\epsilon_{0}+\epsilon_{1}=\epsilon$ ,

$v= \lim_{narrow\infty}(\hat{F}^{*}(Z_{n})-c_{n}^{*})$

and

$<v, \overline{x}>-\epsilon_{1}=\lim_{narrow\infty}(-Tr[Z_{n}F_{0}]-\delta_{n})$ .
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3 $\epsilon$-Saddle Point Theorems and $\epsilon$-Duality Theorem

Now we give $\epsilon$-saddle point theorems and $\epsilon$-duality theorems for (SDP). Using Lemma
1.1, we can obtain the following two lemmas which are useful in proving our $\epsilon$-saddle
point theorems for (SDP).

Lemma 3.1 [13] Let $\overline{x}\in A$ . Then $\overline{x}\in A$ is an $\epsilon$ -approximate solution of (SDP)

if and only if there exists a sequence $\{Z_{n}\}$ in $S$ such that

$f(x)- \lim_{narrow}\inf_{\infty}Tr[Z_{n}F(x)]\geqq f(\overline{x})-\epsilon$, for any $x\in C$ .

Lemma 3.2 [13, 14] Let $\overline{x}\in A$ . Suppose that $\bigcup_{(Z,\delta)\in S\cross \mathbb{R}+}\{(\begin{array}{l}\hat{F}^{*}(Z)-Tr[ZF_{0}]-\delta\end{array})\}-C^{*}\cross$

$\mathbb{R}+is$ closed. Then $\overline{x}$ is an $\epsilon$-approximate solution of (SDP) if and only if there exists
$Z\in S$ such that for any $x\in C$ ,

$f(x)-Tr[ZF(x)]\geqq f(\overline{x})-\epsilon$ .

Let $\epsilon\geqq 0$ . Consider the following sequential $\epsilon$-saddle point problem and $\epsilon$-saddle
point problem:

$(SSP)_{\epsilon}$ Find $\overline{x}\in C$ and a sequence $\{\overline{Z}_{n}\}\subset S$ such that

$f( \overline{x})-\lim_{narrow}\inf_{\infty}Tr[Z_{n}F(\overline{x})]-\epsilon$ $\leqq$
$f( \overline{x})-\lim_{narrow}\inf_{\infty}Tr[\overline{Z}_{n}F(\overline{x})]$

$\leqq$
$f(x)- \lim_{narrow}\inf_{\infty}Tr[\overline{Z}_{n}F(x)]+\epsilon$

for any $x\in C$ and any sequence $\{Z_{n}\}\subset S$ .

$(SP)_{\epsilon}$ Find $\overline{x}\in C$ and $\overline{Z}\in S$ such that

$f(\overline{x})-Tr[ZF(\overline{x})]-\epsilon$ $\leqq$ $f(\overline{x})-Tr[\overline{Z}F(\overline{x})]$

$\leqq$ $f(x)-Tr[\overline{Z}F(x)]+\epsilon$

for any $x\in C$ and any $Z\in S$ .

Now we give a useful characterization of solution of $($SSP $)_{\epsilon}$ .
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Lemma 3.3 [13] Suppose that $A\neq\emptyset$ . Let $(\overline{x}, \{\overline{Z}_{n}\})\in C\cross S,$ $n=1,2,$ $\cdots$ . Then
$(\overline{x}, \{\overline{Z}_{n}\})$ is a solution of $($ SSP $)_{\epsilon}$ if and only if

$f( \overline{x})-\lim_{narrow}\inf_{\infty}Tr[\overline{Z}_{n}F(\overline{x})]\leqq f(x)-\lim_{narrow}\inf_{\infty}Tr[\overline{Z}_{n}F(x)]+\epsilon$

for any $x\in C$ ,

$0 \leqq\lim_{narrow}\inf_{\infty}Tr[\overline{Z}_{n}F(\overline{x})]\leqq\epsilon$

and $F(\overline{x})\in S$ .

Using Lemma 3.1 and 3.3, we can give a sequential $\epsilon$-saddle point theorem which

holds between (SDP) and $($ SSP $)_{\epsilon}$ .

Theorem 3.1 (Sequential $\epsilon$-Saddle Point Theorem) [13]

(1) If $\overline{x}\in A$ is an $\epsilon$ -approximate solution of (SDP), then there exists a sequence
$\{\overline{Z}_{n}\}$ such that $(\overline{x}, \{\overline{Z}_{n}\})$ is a solution of $(SSP)_{\epsilon}$

(2) If $A\neq\emptyset$ and $(\overline{x}, \{\overline{Z}_{n}\})$ is a solution of $($ SSP $)_{\epsilon}$ , then $\overline{x}$ is an $2\epsilon$ -approximate

solution of (SDP).

Using Lemma 3.2, we can give an $\epsilon$-saddle point theorem which holds between

(SDP) and $(SP)_{\epsilon}$ .

Theorem 3.2 [13] ( $\epsilon-$ Saddle Point Theorem) Suppose that

$\bigcup_{(Z,\delta)\in S\cross \mathbb{R}+}\{(\begin{array}{l}\hat{F}^{*}(Z)-Tr[ZF_{0}]-\delta\end{array})\}-C^{*}\cross \mathbb{R}_{+}$

is closed. If $\overline{x}\in A$ is an $\epsilon$ -approximate solution of (SDP), then there exists $\overline{Z}\in S$

such that $(\overline{x},\overline{Z})$ is a solution of $($SP $)_{\epsilon}$ .

Theorem 3.3 [13] If $(\overline{x},\overline{Z})$ is a solution of $($ SP $)_{\epsilon}$ , then $\overline{x}$ is an $2\epsilon$ -approximate solu-

tion of (SDP).

Now we can formulate dual problem (SDD) of (SDP) as follows:

(SDD) Maximize $f(x)-Tr[ZF(x)]$

subject to $0\in\partial_{\epsilon_{0}}f(x)-\hat{F}^{*}(Z)+N_{C}^{\epsilon_{1}}(x)$ ,

$Z\succeq 0$ ,

$\epsilon_{0}+\epsilon_{1}\in[0, \epsilon]$ .
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We can prove $\epsilon$-weak and $\epsilon$-strong duality theorems which hold between (SDP)
and (SDD).

Theorem 3.4 ( $\epsilon$-Weak Duality) [13, 14] For any feasible $x$ of (SDP) and any

feasible $(y, Z)$ of (SDD),

$f(x)\geqq f(y)-Tr[ZF(y)]-\epsilon$ .

Theorem 3.5 ( $\epsilon$-Strong Duality) [13, 14] Suppose that

$\bigcup_{(Z,\delta)\in S\cross \mathbb{R}_{+}}\{(\begin{array}{l}\hat{F}^{*}(Z)-Tr[ZF_{0}]-\delta\end{array})\}-C^{*}\cross \mathbb{R}+$ is dosed.

If $\overline{x}$ is an $\epsilon$ -approximate solution of (SDP), then there exists $\overline{Z}\in S$ such that $(\overline{x},\overline{Z})$

is an $2\epsilon$ -approximate solution of (SDD).
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