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Abstract

The support vector machines (SVM) is originally designed for binary classification having
high generalization ability, and thus, many kinds of extended models have been investigated
for multiclass classification. In this paper, we deal with the all together model, which classifies
all patterns into the corresponding classes at once, and especially focus on a multiobjective
multiclass SVM model which was proposed as a novel all together model maximizing all
of the geometric margins simultaneously. Although the model is reported to have high
generalization ability, it is formulated as a linear model. Hence, the model can be applied to
only some kinds of classification problems.

Therefore, in this paper, we extend the linear model into a nonlinear one to which the
kernel method can be applied, where weight vectors of the discriminant function are repre-
sented by linear sums of the training patterns in the feature space. Moreover, we introduce
a single-objective optimization model by exploiting the $\epsilon$-constraint method and the coordi-
nate transformation in order to solve the proposed multiobjective model. The single-objective
model can be regarded as a second-order cone programming (SOCP) problem and its opti-
mal solution is Pareto optimal for the proposed nonlinear multiobjective SVM. Furthermore
through numerical experiments we verify that the proposed nonlinear model maximizes the
geometric margins in the sense of multiobjective optimization and has good generalization
ability.

1. Introduction

The support vector machine (SVM) has become greatly popular in the machine learning commu-
nity because it has high generalization ability to solve binary classification problems, however,
extending it for multiclass classification is still an ongoing research issue. Among the extended
SVM models, all together model finds a discriminant function by solving directly a single op-
timization problem with all patterns, where all patterns are classified into the corresponding
classes by using a piecewise linear function [2, 4, 9, 10]. In this paper, we focus on the model.
The existing all together model is a formulated as a single-objective optimization problem of
maximizing the sum of functional margins between all of the pairs of classes, where the func-
tional margin is defined as the distance between two normalized support hyperplanes parallel
to the corresponding discriminant hyperplane. However, as we point out it in [6], there exists a
gap between the functional margin and the geometric margin which is defined as the minimal
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distance of patterns to the corresponding discriminant hyperplane in some examples, and the
geometric margin can exactly indicate the relation between each pattern and the discriminant
function. Therefore, in [6], we emphasized that maximizing the geometric margins is important
for the generalization of multiclass classification, and proposed a linear multiobjective multiclass
SVM model which maximizes all of the geometric margins simultaneously. Moreover, we derived
a single-objective second-order cone programming (SOCP) problem by using scalarization ap-
proaches for multiobjective optimization, which are solvable convex programming problems, and
showed theoretically that the optimal solution of the SOCP is Pareto optimal of the proposed
multiobjective model. Moreover, we applied them to some examples to demonstrate that the
proposed models can achieve maximization of the geometric margins.

However, since the model uses a piecewise linear classifier, it is difficult to discriminate
piecewise linearly inseparable data correctly, which are often seen in the real-world problems. In
this paper, we extend the linear multiobjective multiclass model into a nonlinear one to which the
kernel method can be applied. In the proposed model, weight vectors of the discriminant function
are represented by linear sums of the data in the feature space. Then, similarly to the linear
models, we derive a single-objective optimization model based on $\epsilon$-constraint method to obtain a
Pareto optimal solution of the proposed nonlinear model, and show that into a standard SOCP
problem is obtained from the single-objective model by transforming its coordinate system.
Finally, through numerical experiments we verify that the SOCP model maximizes the geometric
margins in the sense of multiobjective optimization and compare the classification abilities of
the proposed and the existing models.

2. Multiclass classification

In this paper, we consider the following multiclass classification problem: For given data: $D=$

$\{x^{i}, y_{i}\},$ $i=1,$ $\ldots,$
$m$ , where $x^{i}$ in an input space $R^{n}$ is an input pattern and $y^{i}\in P:=\{1, \ldots, \nu\}$

denotes the corresponding class, we construct a classifier which divides all patterns into the
corresponding classes:

$f(x)= \arg\max\{w^{pT}xp+b^{p}\}$ , (1)

where $w^{p}\in R^{n}$ and $b^{\rho},$ $p\in P$ are decision variables and the linear function $w^{pT}x+b^{p}$ indicates
the degree of confidence when a point $x$ is classified into class $p$ . Then,

$(w^{p}-w^{q})^{T}x+b^{p}-b^{q}=0,$ $q\neq p,p,$ $q\in P$, (2)

is the discriminant hyperplane which distinguishes between classes $p$ and $q$ . Note that the
representation of discriminant hyperplane (2) is not unique. For any constants $t(\neq 0),$ $s\in R$ and
any vector $v\in R^{n},$ $(w^{1T}, \ldots, w^{\nu T}),$ $(b^{1}, \ldots, b^{\nu})$ and $(tw^{1T}+v^{T}, \ldots, tw^{\nu T}+v^{T}),$ $(tb^{1}+s, \ldots, tb^{k}+s)$

are different representations of the same discriminant hyperplanes.
Now, we suppose that data $D$ are piecewise linearly separable. Then, there exist an infinite

number of discriminant functions to distinguish all classes correctly. In the multiclass classifica-
tion, the model maximizing $1/\Vert w^{p}-w^{q}\Vert$ for all pairs $(p, q),$ $q\neq p,p,$ $q\in P$ similar to the binary
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SVM was proposed [2, 4, 9, 10],

(0)
$\min_{w,b}$

$\frac{1}{2}\sum_{p=1}^{\nu}\sum_{q>p}\Vert w^{p}-w^{q}\Vert^{2}$

st $(w^{p}-w^{q})^{T}x^{i}+(b^{p}-b^{q})\geq 1,$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$,

where $I_{p}$ denotes an index set defined by $I_{p}:=\{i\in\{1, \ldots, m\}|y^{i}=p\}$ . However, the margin in
model (O) is not necessarily equal to the geometric margin defined as the distance of the nearest
pattern in a pair of classes to the corresponding discriminant hyperplane classifying all patterns
in both classes correctly, as we pointed out it in [6].

$d_{pq}^{g}(w, b)= \min\{\min_{i\in I_{p}}\frac{|(w^{p}-w^{q})^{T}x^{i}+(b^{\rho}-b^{q})|}{\Vert w^{p}-w^{q}\Vert},$ $\min_{i\in I_{q}}\frac{|(w^{p}-w^{q})^{T}x^{i}+(b^{\rho}-b^{q})|}{\Vert w^{p}-w^{q}\Vert}\}$ ,

$q>p,$ $p,$ $q\in P$.

Thus, it cannot guarantee that margins obtained by minimizing $\Vert w^{p}-w^{q}\Vert,$ $q\neq p\in P$ in
model (O) are equal to the corresponding geometric margins $d_{pq}^{g}(w, b)$ . Therefore, in [6] we
proposed a linear hard-margin multiobjective SVM (Ml) which maximizes all geometric margins
simultaneously.

(Ml) $\max_{w,b}$
$(d_{12}^{g}(w, b),$ $d_{13}^{g}(w, b),$

$\ldots,$
$d_{(\nu-1)\nu}^{g}(w, b))$

$s.t$ . $(w^{p}-w^{q})^{T}x^{i}+(b^{\rho}-b^{q})\geq 1,$ $i\in I_{p},$ $q\neq p,$ $p,$ $q\in P$.

Moreover, since model (Ml) is difficult to solve directly, we proposed the following model (M2)
using a vector $\sigma\in R^{k(k-1)/2}$ :

$\max_{w,b,\sigma}$

$( \frac{\sigma_{12}}{\Vert w^{1}-w^{2}\Vert},$
$\ldots,$

$\frac{\sigma_{(\nu-1)\nu}}{\Vert w^{(\nu-1)}-w^{\nu}\Vert})$

(M2) $s.t$ . $(w^{p}-w^{q})^{T}x^{i}+(b^{\rho}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$,
$(w^{q}-w^{p})^{T}x^{i}+(b^{q}-b^{\rho})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p,$ $p,$ $q\in P$,
$\sigma_{pq}\geq 1,$ $q>p,$ $p,$ $q\in P$.

Then, we showed that if there exist Pareto optimal solutions of (M2), the optimal solutions of
(M2) can be considered to be equivalent to those of (Ml) as follows [7].

Theorem 1 If $(w^{*}, b^{*}, \sigma^{*})$ is Pareto optimal for (M2), $(w^{*}, b^{*})$ is Pareto optimal for (Ml).
Conversely, if $(w^{*}, b^{*})$ is Pareto optimal for (Ml), $(w^{*}, b^{*}, \sigma(w^{*}, b^{*}))$ is Pareto optimal for (M2),
where an element of $\sigma$ is defined by

$\sigma_{pq}(w, b)=\min\{\min_{i\in I_{p}}|(w^{p}-w^{q})^{T}x^{i}+(b^{p}-b^{q})|,$ $\min_{i\in I_{q}}|(w^{p}-w^{q})^{T}x^{i}+(b^{p}-b^{q})|\}$ ,

$q>p,$ $p,$ $q\in P$.

In addition, we derived two kinds of single-objective optimization problems by scalarization
approaches to multiobjective optimization, $\epsilon$-constraint approach and Benson’s method, and
transform them into single-objective second-order cone programming (SOCP) problems. The
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SOCP is a convex programming problem having a linear objective function and linear and
second-order cone constraints, which can be efficiently solved by a number of methods such as
the primal-dual interior point method within the almost same time as a quadratic programming
problem of the same size [1]. Moreover, several commercial and noncommercial solvers have
been developed [5]. Furthermore, we showed theoretically that Pareto optimal solutions of the
multiobjective problem (M2) can be obtained by solving SOCP models, and applied them to
some examples to demonstrate that they can achieve maximization of the geometric margins [7].
Furthermore, we extended the models into the soft-margin ones for piecewise linearly inseparable
data in the real-world classification problem [6].

However, there exist various kinds of classification data for which the linear models have
poor performance. Thus, we extend the multiobjective multiclass SVM to a nonlinear one for
the data in the next section.

3. Nonlinear multiobjective model maximizing geometric mar-
gins

In this section, we focus on the classification problem for data which cannot be correctly dis-
criminated by the linear SVMs. To such data, nonlinear SVMs have been applied, which classify
the data by a linear discriminant function in a high dimensional feature space $F$ by using an
appropriate mapping $\phi$ : $R^{n}arrow F$ . Namely, a nonlinear classifier is trained as a linear model for
images of the data, $\phi(x^{1}),$

$\ldots,$
$\phi(x^{m})$ . Therefore, our aim is finding a suitable classifier for the

data:

$f(x)= \arg\max\{w^{pT}\phi(x)p+b^{p}\}$ . (3)

In this and subsequent sections, although we only discuss hard-margin nonlinear models,
note that they can be easily extended into soft margin ones. Thus, we suppose that given data
$D$ are piecewise linearly inseparable in $R^{n}$ , but piecewise linearly separable in an appropriate
$F$ . Then, the classification problem can be formulated as follows, which is derived by replacing
$x^{i}$ of (O) with $\phi(x^{i})[4]$ .

(NO) $\min_{w,b}$
$\frac{1}{2}\sum_{p=1}^{\nu}\sum_{q>p}\Vert w^{p}-w^{q}\Vert^{2}$

st $(w^{p}-w^{q})^{T}\phi(x^{i})+(b^{p}-b^{q})\geq 1,$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$.

In the nonlinear model, the geometric margin is redefined by

$d_{pq}^{g}(w, b)= \min\{\min_{i\in I_{p}}\frac{|(w^{p}-w^{q})^{T}\phi(x^{i})+(b^{p}-b^{q})|}{||w^{p}-w^{q}\Vert},$ $\min_{i\in I_{q}}\frac{|(w^{p}-w^{q})^{T}\phi(x^{i})+(b^{p}-b^{q})|}{||w^{p}-w^{q}\Vert}\}$ ,

$q>p,$ $p,$ $q\in P$.
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In addition, we consider the following dual problems of (NO):

$\min_{\alpha}$
$\frac{1}{2}\sum_{p=1}^{\nu}\sum_{q\neq p}\sum_{r\neq p}\{$

$\sum_{i\in I_{p}}\sum_{j\in I_{p}}\alpha_{pqi}\alpha_{prj}\phi(x^{i})^{T}\phi(x^{j})-2\sum_{i\in I_{p}}\sum_{j\in I_{r}}\alpha_{p}$一
$\phi(x^{i})^{T}\phi(x^{j})$

(DNO) $+ \sum_{i\in I_{q}}\sum_{j\in I_{r}}\alpha_{qpi}\alpha_{rpj}\phi(x^{i})^{T}\phi(x^{j})\}-\sum_{p=1}^{\nu}\sum_{q>p}\sum_{i\in I_{p}}\alpha_{pqi}$

$s.t$ .
$\sum_{q\neq p}\sum_{i\in I_{p}}\alpha_{pqi}=\sum_{q\neq p}\sum_{i\in I_{q}}\alpha_{qpi},$

$p\in P$

$\alpha_{pqi}\geq 0,$ $i\in I_{p},$ $q\neq p,$ $p,$ $q\in P$,

where $\alpha_{pqi},$ $i\in I_{p},p,$ $q\in P$ is a dual variable. Then, by using the optimal solution $\alpha^{*}$ of (DNO),
(3) is rewritten as follows:

$f(x)= \arg\max_{p}\{\sum_{q\neq p}\sum_{i\in I_{p}}\alpha_{pqi}^{*}\phi(x^{i})^{T}\phi(x)-\sum_{q\neq p}\sum_{i\in I_{q}}\alpha_{q\dot{\mu}}^{*}\phi(x^{i})^{T}\phi(x)+b^{\rho}\}$ . (4)

(DNO) has often been used because it can be applied the kernel method to. The kernel method
enables us to solve (DNO) without calculating images of data $\phi(x^{i}),$ $i=1,$ $\ldots,$

$m$ , but rather
by simply calculating the inner products $\phi(x^{i})^{T}\phi(x^{j})$ between images of all pairs $(x^{i}, x^{j}),$ $i,$ $j=$

$1,$
$\ldots,$

$m$ . It is well-known that kernel functions $k:R^{n}\cross R^{n}arrow R$ satisfying Mercer’s Theorem are
guaranteed to have a function $\phi$ : $R^{n}arrow F$ such that $k(x, x’)=\phi(x)^{T}\phi(x’)$ for any $x,$ $x’\in R^{n}[8]$ .
Moreover, $\phi(x)$ appears in the form of the inner product in (DNO) and (4). Therefore, in (DNO)
all of the inner products can be replaced with the kernel functions. Then, even if the dimension
of $F$ is quite high, we can solve (DNO) without suffering from the curse of dimensionality. For
major kernel functions, polynomial kernels $k(x, x’)=(x^{T}x’+1)^{d}$ with a integer constant $d$ , and
RBF kernels $k(x, x’)=\exp(-\gamma\Vert x-x’\Vert^{2})$ with a real constant $\gamma$ are commonly used.

However, since (DNO) maximizes functional margins $1/\Vert w^{p}-w^{q}\Vert$ for all pairs $(p, q),$ $q\neq$

$p,$ $p,$ $q\in P$ in the same way as (O), we derive a nonlinear multiobjective model maximizing all
geometric margins. Now, we extend the linear model (M2) into a nonlinear one similarly to
(NO) as follows:

$\max_{w,b,\sigma}$

$( \frac{\sigma_{12}}{\Vert w^{1}-w^{2}\Vert},$
$\ldots,$

$\frac{\sigma_{(\nu-1)\nu}}{\Vert w^{\nu-1}-w^{\nu}\Vert}I$

$(MN)$ $s.t$ . $(w^{p}-w^{q})^{T}\phi(x^{i})+(b^{p}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$,
$(w^{q}-w^{p})^{T}\phi(x^{i})+(b^{q}-b^{\rho})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p,$ $p,$ $q\in P$ ,
$\sigma_{pq}\geq 1,$ $q>p,$ $p,$ $q\in P$.

(MN) is a nonlinear multiobjective SVM which maximizes all geometric margins in $F$ simul-
taneously. However, since any $\phi(x^{i})$ does not appear in the form of inner product differently
to (NO), we cannot straightforwardly apply the kernel method to (MN). Thus, we propose a
model by limiting the feasible region of (MN) to which the kernel method can be applied. The
following constraints are imposed on (MN) by introducing variables $\beta_{i}^{p}$ , $i=1,$ $\ldots,$ $m,$ $p\in P$ .

$w^{p}= \sum_{i=1}^{m}\beta_{i}^{p}\phi(x^{i}),$ $p\in P$, (5)
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which means that each $w^{p}$ can be represented by a linear sum of $\phi(x^{i})$ . This kind of represen-
tation has been used in many binary SVM, and it is reported that they are high generalization
ability. Then, in (MN) with (5), $\phi(x)$ appears in the form of the inner product. Similarly to
(DNO) they can be replaced with kernel functions. Here, we define $\Phi(x)=(\phi(x^{1}), \ldots, \phi(x^{m}))$ ,
$\beta^{p}=(\beta_{1}^{p}, \ldots, \beta_{m}^{p})^{T},p\in P$ and $K(x, x)=\Phi(x)^{T}\Phi(x),$ $K(x, x)$ is called a kernel matrix. The
denominator of objective function in (MN) is transformed as follows:

$\Vert w^{p}-w^{q}\Vert=\Vert\Phi(x)(\beta^{p}-\beta^{q})\Vert=\Vert\beta^{p}-\beta^{q}\Vert_{\Phi(x)^{T}\Phi(x)}=\Vert\beta^{p}-\beta^{q}\Vert_{K(x,x)}$, (6)

where for any semi-definite positive symmetric matrix $A,$ $\Vert u\Vert_{A}$ is defined by $\Vert u\Vert_{A}=\sqrt{u^{T}Au}$ .
Then, the substitution of (5) and (6) into (MN) gives us the following model:

$\max\beta,b,\sigma$

$( \frac{\sigma_{12}}{\Vert\beta^{1}-\beta^{2}\Vert_{K(x,x)}},$
$\ldots,$

$\frac{\sigma_{(k-1)k}}{\Vert\beta^{k-1}-\beta^{k}||_{K(x,x)}})$

(MN2) st. $(\beta^{p}-\beta^{q})^{T}\kappa(x, x^{i})+(b^{\rho}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$,
$(\beta^{q}-\beta^{p})^{T}\kappa(x, x^{i})+(b^{q}-b^{\rho})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p,$ $p,$ $q\in P$,
$\sigma_{pq}\geq 1,$ $q>p,$ $p,$ $q\in P$,

where $\kappa(x, x^{i})$ is defined by $\kappa(x, x^{i})=(k(x^{1}, x^{i}), \ldots, k(x^{m}, x^{i}))^{T}$ , $i=1,$ $\ldots,$
$m$ . Then, we can

obtain the discriminant function for an unseen sample $\overline{x}$ by using the optimal solution $(\beta^{*}, b^{*}, \sigma^{*})$

of (MN2) as follows:

$f( \overline{x})=\arg\max p\{\beta^{p*T}\kappa(x,\overline{x})+b^{\rho*}\}$ . (7)

Now, we obtain the nonlinear multiobjective model (MN2) maximizing geometric margins. Next,
let us consider solving (MN2) to obtain its Pareto optimal solutions.

4. SOCP model based on $\epsilon$-constraint method

In this section, we propose a method of obtaining a Pareto optimal solution of (MN2). First,
we derive the following single-objective model by using a scalarization approach, $\epsilon$-constraint
method, to (MN2) similarly to the linear multiobjective multiclass model:

$\max\beta,b,\sigma$
$\frac{\sigma_{rs}}{\Vert\beta^{r}-\beta^{s}\Vert_{K(x,x)}}$

$(\epsilon-MN)$

$s.t$ . $\frac{\sigma_{pq}}{\Vert\beta^{p}-\beta^{q}\Vert_{K(x,x)}}\geq\epsilon_{pq},$ $q>p$ , $(p, q)\neq(r, s),$ $p,$ $q\in P$,

$(\beta^{p}-\beta^{q})^{T}\kappa(x, x^{i})+(b^{p}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p,$ $p,$ $q\in P$,
$(\beta^{q}-\beta^{p})^{T}\kappa(x, x^{i})+(b^{q}-b^{p})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p,$ $p,$ $q\in P$,
$\sigma_{pq}\geq 1,$ $q>p,$ $p,$ $q\in P$,

where a pair $(r, s)$ and constants $\epsilon_{pq},$ $q>p,$ $(p, q)\neq(r, s),p,$ $q\in P$ are appropriately selected
such that the feasible region of $(\epsilon- MN)$ is not empty. This method maximizes only one of the
objectives of (MN2) while the others are transformed to constraints with $\epsilon_{pq}$ . Then, the following
theorems are known.
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Theorem 2 $[3J$ Let $(\beta, b, \sigma)$ be an optimal solution of $(\epsilon- MN)$ for some $(r, s)$ . Then $(\beta, b, \sigma)$ is
weakly Pareto optimal for (MN2).

Theorem 3 $[3J(\beta, b, \sigma)$ is Pareto optimal for (MN2) if and only if there exists an $\epsilon_{-rs}$ such
that $(\beta, b, \sigma)$ is optimal for $(\epsilon- MN)$ for any $(r, s),$ $r,$ $s\in P$ .

Here, $\epsilon_{-rs}$ denotes a vector in which the element $\epsilon_{rs}$ is removed from $\epsilon$ . These theorems show
that we can obtain any Pareto optimal solution of (MN2) can be obtained by solving $(\epsilon- MN)$

with an appropriate choice of $\epsilon_{-rs}$ .
Although $(\epsilon- MN)$ is a single-objective model, $(\epsilon- MN)$ is also difficult to solve because of its

fractional constraints and objective functions. Hence, by making use of one degree of freedom of
$(\epsilon- MN)$ , we add a constraint $\sigma_{rs}=c_{\tau s}$ with an appropriate constant $c_{rs}$ to obtain the following
model:

$\max\beta,b,\sigma$
$\frac{c_{rs}}{\Vert\beta^{r}-\beta^{s}||_{K(x_{r}x)}}$

s.t. $\frac{\sigma_{pq}}{||\beta^{p}-\beta^{q}||_{K(x,x)}}\geq\epsilon_{pq},$ $q>p,$ $(p, q)\neq(r, s),$ $p,$ $q\in P$,

$(\epsilon-MN2)$
$(\beta^{r}-\beta^{S})^{T}\kappa(x, x^{i})+(b^{r}-b^{s})\geq c_{rs},$ $i\in I_{r}$ ,
$(\beta^{s}-\beta^{r})^{T}\kappa(x, x^{i})+(b^{s}-b^{r})\geq c_{rs},$ $i\in I_{s}$ ,
$(\beta^{p}-\beta^{q})^{T}\kappa(x, x^{i})+(b^{\rho}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p,$ $(p, q)\neq(r, s),$ $p,$ $q\in P$,
$(\beta^{p}-\beta^{q})^{T}\kappa(x, x^{i})+(b^{q}-b^{p})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p,$ $(p, q)\neq(r, s),$ $p,$ $q\in P$ ,
$\sigma_{pq}\geq 1,$ $q>p,$ $(p, q)\neq(r, s),$ $p,$ $q\in P$,

where $(\beta, b, \sigma_{-rs})$ denotes the vector in which the element $\sigma_{rs}$ is removed from $(\beta, b, \sigma)$ . More-
over, for a solution $(\beta, b, \sigma_{-rs})$ of $(\epsilon- MN2)$ , we define a vector $(\beta, b, (\sigma_{-rs}, c_{rs}))$ whose element
$\sigma_{rs}$ is $c_{\tau s}$ and other elements are equal to $(\beta, b, \sigma_{-rs})$ . Now, we can show the following theorems
about relations between problems $(\epsilon- MN)$ and $(\epsilon- MN2)$ .

Theorem 4 Let $(\hat{\beta},\hat{b},\hat{\sigma})$ be an optimal solution of $(\epsilon- MN)$ and $c_{\tau s}=t\hat{\sigma}_{rs}$ for $t\geq 1$ . If
$(\beta^{*}, b^{*}, \sigma_{-rs}^{*})$ is an optimal solution of $(\epsilon- MN2)$ , then $(\beta^{*}, b^{*}, (\sigma_{-rs}^{*}, c_{rs}))$ is optimal for $(\epsilon- MN)$ .

Theorem 5 If $(\beta^{*}, b^{*}, \sigma^{*})$ is an optimal solution of $(\epsilon- MN)$ , then for any $t\geq 1,$ $(t\beta^{*}, tb^{*}, t\sigma_{-rs}^{*})$

is an optimal solution of $(\epsilon- MN2)$ with $c_{\tau s}=t\sigma_{rs}^{*}$ .

Theorem 4 shows that for an optimal solution $(\beta^{*}, b^{*}, \sigma_{-rs}^{*})$ of $(\epsilon- MN2),$ $(\beta^{*}, b^{*}, (\sigma_{-rs}^{*}, c_{rs}))$ is
optimal for $(\epsilon- MN)$ . Thus, Theorem 2 implies that the optimal solution is weakly Pareto optimal
for (MN2). In addition, the result together with Theorems 3 and 5 suggests that we can obtain
any Pareto optimal solution of (MN2) is obtained by solving $(\epsilon- MN)$ with an appropriate choice
of $\epsilon_{-rs}$ . Consequently, we can conclude that various discriminant functions which determined
by Pareto optimal solutions of (MN2) can be obtained by solving $(\epsilon- MN2)$ as a pair $(r, s)$ and
the corresponding parameter $\epsilon_{-rs}$ are varied.

Next let us consider how to solve $(\epsilon- MN2)$ . Although $(\epsilon- MN2)$ can be regarded as a SOCP
problem, and thus, it is efficiently solvable as mentioned at Section 2, $(\epsilon- MN2)$ is not a standard
form of SOCP. Therefore, we introduce a coordinate transformation for $(\epsilon- MN2)$ . First, since
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$K(x, x)$ is a positive semidefinite, it can be diagonalized by using an orthogonal matrix $T$ as
follows:

$K(x, x)=T\Lambda T^{T}$ , (8)

where $\Lambda$ is a diagonal matrix whose elements are the corresponding eigenvalues of $K(x, x)$ . Now,
the number of positive eigenvalues of $K(x, x)$ is represented by $l$ . Then, let us define a diagonal
matrix A $\in R^{l\cross l}$ whose elements are positive eigenvalues of $K(x, x)$ , and $\overline{T}\in R^{m\cross l}$ consisting
of the corresponding $l$ column vectors of $T$ . Moreover, $\overline{t}_{i}^{T}$ is the i-th row vectors of $\overline{T}$ . Then, we
have

$K(x, x)$ $=$ $T\Lambda T^{T}=\overline{T}$入 $\overline{T}^{T}$ , (9)
$\kappa(x, x^{i})$ $=$ $\overline{T}\overline{\Lambda}\overline{t}_{i}$ . (10)

Here, we define a new decision variable $z^{p}$ by $z^{p}=\overline{\Lambda}^{\frac{1}{2}}\overline{T}^{T}\beta^{p},$ $p\in P$ , then we can obtain from
(10) and (10)

$\Vert\beta^{p}-\beta^{q}\Vert_{K(x,x)}=\Vert\beta^{p}-\beta^{q}\Vert_{\overline{T}\overline{\Lambda}\overline{T}^{T}}=\Vert\overline{\Lambda}^{\frac{1}{2}}\overline{T}^{T}(\beta^{p}-\beta^{q})\Vert=\Vert z^{p}-z^{q}\Vert$ , (11)

and,

$(\beta^{p}-\beta^{q})^{T}\kappa(x, x^{i})=(\beta^{p}-\beta^{q})^{T}\overline{T}\overline{\Lambda}^{\dot{\tau}}t=(z^{p}-z^{q})^{T}\overline{\Lambda}^{\frac{1}{2}}t^{i}\neg$. (12)

Thus, consequently we can transform $(\epsilon- MN2)$ into the following model from (11) and (12).

$\max_{z,b,\sigma}$
$\frac{c_{rs}}{\Vert z^{r}-z^{s}\Vert}$

$s.t$ . $\frac{\sigma_{pq}}{\Vert z^{p}-z^{q}\Vert}\geq\epsilon_{pq},$ $q>p$ , $(p, q)\neq(r, s),$ $p,$ $q\in P$,

$(z^{r}-z^{s})^{T}\overline{\Lambda}^{\frac{1}{2}}\overline{t}^{i}+(b^{r}-b^{s})\geq c_{rs},$ $i\in I_{r}$ ,
$(\epsilon-MN3)$

$(z^{s}-z^{r})^{T}\overline{\Lambda}^{1}\tilde{2}\overline{t}^{i}+(b^{s}-b^{r})\geq c_{rs},$ $i\in I_{s}$ ,
$(z^{p}-z^{q})^{T}\overline{\Lambda}^{\frac{1}{2}}\overline{t}^{i}+(b^{p}-b^{q})\geq\sigma_{pq},$ $i\in I_{p},$ $q>p$ , $(p, q)\neq(r, s),$ $p,$ $q\in P$,
$(z^{q}-z^{p})^{T}\overline{\Lambda}^{\frac{1}{2}}\overline{t}^{i}+(b^{q}-b^{\rho})\geq\sigma_{pq},$ $i\in I_{q},$ $q>p$ , $(p, q)\neq(r, s),$ $p,$ $q\in P$ ,
$\sigma_{pq}\geq 1,$ $q>p$ , $(p, q)\neq(r, s),$ $p,$ $q\in P$.

Since ( $\epsilon-$ MN2) and $(\epsilon- MN3)$ are equivalent, Theorems 2-5 imply that any Pareto optimal
solutions of (MN2) by solving $(\epsilon- MN3)$ with an appropriate choice of $\epsilon_{-rs}$ instead of $(\epsilon- MN2)$ .
Then, we can obtain the discriminant function for an unseen sample $\overline{x}$ by using the optimal
solution $(z^{*}, b^{*}, \sigma^{*})$ of ( $\epsilon-$MN3) as follows:

$f( \overline{x})=\arg\max_{p}\{z^{p*T}(\overline{\Lambda}^{-\frac{1}{2}}T^{T})\kappa(x,\overline{x})+$ 解 $*\}$ . (13)

Finally, in the next section, we apply the proposed models to some classification problems.
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5. Numerical Examples

In this section, we report the results of numerical experiments where existing model (NO) and the
proposed model (MN2) were applied to a bench mark problem, Balance Scale dataset. We used
$(\epsilon- MN3)$ in order to solve (MN2). Balance Scale dataset is a three-class classification problem
involving 625 patterns with four features. We used the ten-fold cross-validation to estimate
generalization abilities of two models; we randomly partitioned the dataset into ten subsets, and
made ten different datasets consisting of a single test subset and nine training subsets, where
each subset is used exactly once for the test one. Then, the average of test data accuracies was
used as the generalization ability estimator of each classifier. We used optimization tools in
MathWorks Matlab 7.0.1 and Mosek version 5.0 to solve two models. The kernel functions used
in two models are polynomial kernels with varying $d\in\{2,3,4\}$ and RBF kernels with varying
$\gamma\in\{0.1,0.5\}$ . The fixed pair $(r, s)$ in ( $\epsilon-$ MN3) was selected as all pairs of classes and $c_{rs}=10$ ,
and constant $\epsilon_{-rs}$ in $(\epsilon- MN3)$ is determined by the geometric margins of the optimal solution
of the model (DNO).

Table 1 shows geometric margins obtained by two models with the polynomial kernel with
$d=3$ in the ten-fold cross-validation. We can observe that solutions obtained by the proposed

Table 1: Comparison of geometric margins for two models (Polynomial kernels $[d=3]$ )

model dominate ones by the existing model. These results indicate that Pareto optimal solutions
of (MN2) are obtained by $(\epsilon- MN3)$ . Table 2 shows the generalization ability estimators for two
models when kernel functions varies, which means that the generalization ability of the proposed

Table 2: Comparison of generalization ability estimator obtained by varying kernel functions for
two models

model are better than or equal to those of the existing model. Moreover, we can observe that
( $\epsilon-$ MN3) can improve the generalization ability of classifiers obtained by (NO). At the same

218



time, we can obsene that obtained solutions by $(\epsilon- MN3)$ considerably depends on the selection
of a pair $(r, s)$ and the constant $\epsilon_{-rs}$ . Therefore, we can conclude that there exists a Pareto
optimal solution of (MN2) having high generalization ability..

6. Conclusion

In this paper, we have focused on the nonlinear all together model of the support vector machine
(SVM) for multiclass classification. In particular, we have discussed a multiobjective SVM
model maximizing all geometric margins for multiclass classification, which was proposed for the
high generalization. While the existing all together model can discriminate piecewise linearly
inseparable data by using the kernel method, the multiobjective model is proposed as a linear
one, and it is difficult to extend it into a nonlinear model to which the kernel method can be
straightforwardly applied.

Therefore, we have proposed a nonlinear multiobjective SVM model by representing weight
vectors of the discriminant functions as linear sums of the training data in the feature space,
to which can be applied kernel method. Then, in order to obtain a Pareto optimal solution
of the proposed nonlinear model, we have derived a single-objective optimization model based
on $\epsilon$-constraint method, and moreover, we have transformed the single-objective model into a
standard SOCP problem by transforming its coordinate system. Furthermore, we have observed
that the proposed model can maximize the geometric margins and obtain classifiers with the
high generalization ability through some numerical experiments.

For further tasks, we should apply the proposed nonlinear multiobjective model to many
kinds of classification problems with more than three classes in order to investigate its perfor-
mance. Moreover, since we have focused on nonlinear hard-margin model in this paper, we will
extend the proposed model into a soft-margin model, and apply it to classification problems
including noisy data or outliers.
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