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Abstract

In the paper, we introduce several types of set-valued optimization problems
and investigate optimality conditions for them to use unified types of scalarizing
functions for set-valued maps.

1 Introduction

In recent years, nonlinear scalarization methods for sets are studied as one of im-
portant tools in set-valued optimization. In [1], they introduce sublinear scalarizing
functions for vectors and show several optimality conditions for vector-valued opti-
mization. In [6], they extend these scalarizing functions to four types of nonlinear
scalarizing functions for set-valued maps, and show several useful properties of them.
Moreover, in [8], they introduce several optimality conditions for set-valued optimiza-
tion to use these four types of nonlinear scalarizing functions. In [2], certain inter-
esting nonlinear scalarizing functions for sets are proposed and they give generalized
results on Ekeland variational principle in an abstract space like topological vector
space without such strong assumption as convexity. Moreover, a modified scalarizing
function in [7] gives a similar result to a minimal element theorem in [2] under differ-
ent assumptions. In [3], they introduced several optimality conditions for set-valued
optimization to use nonlinear scalarizing functions for sets. As seen from the above,
there are several types of nonlinear scalarizing functions for set-valued maps. In [5],
we introduce new unified approach on such scalarization for sets and some properties
of these functions. The aim of this paper is to investigate some properties of unified
types of scalarizing functions proposed in [5] and optimality conditions for set-valued
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optimization to use these functions.

The organization of the paper is as follows. In Section 2, we introduce mathematical
methodology on comparison between two sets in an ordered vector space proposed in
[4] and some definitions of solutions for set-valued optimization problem. In Section
3, we introduce two types of nonlinear scalarizing functions for sets proposed by the
unified approach in [5], and investigate their properties including the monotonicity.
In Section 4, we investigate several optimality conditions for set-valued optimization.

2 Mathematical Preliminaries

Let Y be a real topological vector space with the partial ordering <c induced by a
nonempty convex cone C (C' + C = C and AC C C for all A > 0) as follows:

zr<cyify—zelCforz,ycY.

It is well known that < is reflexive and transitive when C' is a convex cone, more-
over, <¢ has invariant properties to vector space structure as translation and scalar
multiplication. Then, the space Y is called a partially ordered topological vector space,
and if < is antisymmetric it becomes an ordered topological vector space.

Throughout the paper, X is a real topological vector space, Y a real ordered topo-
logical vector space and F' a set-valued map from X into 2Y \ {#}. Moreover, for any
A C Y we denote the interior, closure of A by int(A), cl(A), respectively.

Let us recall some definitions. It is said that A is C-closed if A 4 C is a closed set,

C-bounded if for each neighborhood U of zero in Y there is some positive number ¢
such that A C tU + C.
At first, we review some basic concepts of set-relation.

Definition 2.1. (set-relation, [4]) For nonempty sets A, B C Y and convex cone C
in Y, we write

A Sg) B by A CNyep(b—C), equivalently B C ,c4(a+ C);
A<D Bby AN (Nyep(b—C)) #0;
A<® Bby Bc (4A+0);
A<® Bby (Naeala+C) NB#0;
A<®) Bby Ac (B-0C);
A S(c('s) B by AN (B —C) # 0, equivalently (A+ C)N B # 0.
Proposition 2.1. ([4]) For nonempty sets A, B C Y, the following statements hold.

A g‘(}) B implies A Sg) B; A Sg) B implies A Sg) B;
A g(g) B implies A Sg’) B; A S(é) B implies A Sg) B;
A Sg) B implies A S(g) B; A S(Cs) B implies A Sgi) B.

Proposition 2.2. ([5]) For nonempty sets A, B C Y, the following statements hold.
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(i) For each j =1,...,6,
A Sg) B implies (A +y) Sg) (B+y) foryeY, and
A gg) B implies a A Sg) aB for a > 0;
(ii) For each j =1,...,5, Sg) is transitive;
(iii) For each j = 3,5,6, Sg) is reflezive.

Next, we consider the following six kinds of set-valued optimization problems:

. j—Min F(x)
(-SVOP) { Subject to z € X

and we introduce the concepts of solutions for these problems under six kinds of
set-relations in Definition 2.1.

Definition 2.2. (solution and weak solution of j-SVOP) Let zo € X. For each
j=1,...,6, zo is a solution of (j-SVOP) if for any x € X \ {z0},

F(x) Sg) F(zo) implies F(xo) Sg) F(x).
Moreover, zg is a weak solution of (j-SVOP) if for any z € X \ {zo},
F(z) Si(ﬁzc F(xo) implies F(zo) Si(gzc F(x).

We denote the solution sets of (j-SVOP) by (5)-Min F(X) and the weak solution sets
of (~-SVOP) by (5)-WMin F(X).

Ezample 2.1. Let X = R, Y = R? and C = R%. We consider a set-valued map

F:X—2Y [(g)(;il)] O<z<1),
GG e

where [a, b] := {c € Y|a <¢ cand ¢ <¢ b}. Then (1)-Min F(z)=(1)-WMin F(z)=X.
For each j = 2,...,5, (j)-Min F(x)=[0, 1], ()-WMin F(z)=X.
It is clear that if g is a solution of (j-SVOP) then zg is a weak solution of (j-SVOP).

Il

F(z):

3 Unified Scalarization Methods for Sets

At first, we introduce the definition of two types of nonlinear scalarizing functions for
sets proposed by a unified approach in [5]

Definition 3.1. (unified types of scalarizing functions, [5].) Let V and V' be
nonempty subsets of Y, and direction k£ € intC. For each j = 1,...,6, I,EJ,‘),, :
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2Y \ {#} — RU {#o0} and S,(CJ;%,, :2Y\ {#} = RU {£co} are defined by

19),(V) := inf {t eR | v <9 (tk + V') } :

S;(C{Q/I(V) = sup {t eR l (tk + V') S(Cj) V} ,

respectively.

In this section, we introduce some properties of unified types of scalarizing func-
tions.

Proposition 3.1. ([5]) Let V € 2Y \ {0}. For each j = 1,...,6, the following
statements hold.

| %4 Sg) (tk+V') implies V Sg) (sk+V') foranys>t;
(tk+ V") <PV implies (sk+ V') <PV  for anys <t

Proposition 3.2. ([5]) For nonempty subsets A,B,V C Y, I,(CJ},, and S,(c{‘)/, satisfy
the following properties:

(i) For eachj=1,...,6 and a € R,,
I, (V +ak) = IT,. (V) + o
SI,.(V + ak) = ST, (V) + a.
(ii) For each j=1,...,5,
) . : (7) (J) () )

A SC B Zmplzes Ik,V’ (A) S Ik,V/ (B) and Sk’vr (A) S Sk:,V’ (B).
Proposition 3.3. For each j =1,...,5, I,EJ;‘)/,(V') >0 and S,(c{%,,(V') <0, in partic-
ular, ' ‘ .

V' <DV implies I,gj,‘),,(V') = S,(CJ,%,,(V') = 0;

Proof. The case of j = 3,5, by Proposition 2.2 (iii), V' Sg) V’. Hence we obtain
I,gfe,,(V’) > 0 and S,(c”%,,(V’) < 0. We consider the case of j = 1,2,4. Let I,gj,‘),,(V') =
t; and assume that ¢t; < 0. Then, there exists ¢ > 0 and t(e) € R such that

ti<tle)<t+e<0 and V' <D t(e)k+ V" (3.1)

By Proposition 3.2 (ii),

IO, (V) < IE (tH)k + V7).
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Moreover, by Proposition 3.2 (i),

19 (4()k + V') = I0).(V') + t(e).
Hence, we obtain t; < t; +t(e) and so t(¢) > 0. This contradicts (3.1). Consequently,

we have [ ,(CJ},,(V') > 0. The case of S,(cJ Z,, (V') are proved in the similar way. Next, we

assume that V’ gg) V’. By Proposition 3.2 (ii), we obtain I;E{%//(V') = S,(c]},,(V’) =
0. O

Proposition 3.4. Let A € 2Y \ {0}. Then, the following statements hold:

(i) For each j =1,...,3, A and V' are C-bounded sets if and only if
I,E{%,,(A) > —o0o0 and S,g{%,,(A) < 00,

(ii) For each j = 4,5, A and V' are (—C)-bounded sets if and only if
19,4y > —o0 and S0, (4) < oo

Proof. In the case of j = 3,5, they are shown in [Theorem 3.6, 3]. The others can be
proved by similar ways in the case of j = 3, 5, respectively. O

Proposition 3.5. Let A € 2¥ \ {#}. Then, the following statements hold:

(i) For each j =1,...,3, if A is C-closed, C-bounded and V' is C-bounded then
I),(A) = min{t € R|A <@ tk + V'},

SY),.(A) = max{t € Rjtk + V' <& A},

(ii) For each j = 4,5, if A is (—C)-closed, (—C)-bounded and V' is (—C)-bounded
then
1), (A) = min{t € R|A < tk + V'},
Sl(c{%/’(A) = max{t € R|tk + V' Sg) A}.

Proof. In the case of j = 3,5, they are shown in [Proposition 3.2, 3]. The others can
be proved by similar ways in the case of j = 3,5, respectively. O

Proposition 3.6. Let A, B € 2¥ \ {0}. Then, the following statements hold:
(i) For each j =1,2,3, if B is C-closed and A Si(izc B then
I(j) A I(j) B d S(j) A S(j) B
k,V'( ) < k,v'( ) an k,vf( ) < k,vf( )s
(ii) For each j = 4,5, if A is (—C)-closed and A gi(,{zc B then

I9).(A) <I{,(B) and S9%.(A4) < SU.(B).
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Proof. First, we prove (i). Assume that B is C-closed and A g.szc B. We consider
the case of j = 3. Let t4 := I,E?‘),,(A) and tp := I,g?‘),,(B). Then, for any € > 0 there
exists t(e) € R such that

tp <t(e) <tp+e and B<P t(e)k+ V"
. 3
Since A gi(nt)c B,
t(e)k +v € B+ C C A+intC = int(A + C),

for all v € V'. Hence, there exists absorbing open neighborhood of zero G such that

tle)k+v+ G CintA+C.

Since G is absorbing, there exists to > 0 such that —tgk € G and so we obtain

(t(e) —to)k+v+ G CintA+ C.
Hence we have
ta <t(e) —to < tp+e—to.
Since € is an arbitrary, we obtain t4 < tg —to < tg. The proof of S,(c‘?"),, and the other
cases can be proved in a similar way. Also, the proof of (ii) is shown similarly. O

Remark 3.1. In Proposition 3.6, the conditions of C-closed or (—C)-closed are nec-
essary. Consider the case of j = 3. Let A,B C Y \ {0} with A # intA and

B+ C = int(A+C), and let t4 := I,g?‘)/,(A) and tp = I,E‘?‘)/,(B). Then, since C

containing zero and B + C = int(A + C), we obtain A gg’) B and so t4 < tg by
Proposition 3.2 (ii). We assume that t4 < tg. Then, there exists £ € R such that
ta<t<tpand A Sg’) tk+ V. Let tg := %f—i— %tB. By Proposition 3.1,

A<Dtk +V’ and B g® tok+ V'
Hence, there exists tok + v € tok + V' such that

tok+veA+C and tegk+v g B+C. (3.2)

Since k € intC and C is a convex cone, (to—%)k € intC. Hence, (to—t)k+v € V' +intC
and so we have

tok+vetk+V' +intC Cc A+ C+ intC =int(A+C) =B+ C.

This contradicts (3.2). Consequently, I ,£3‘),, (A) =1 ,g?‘),,(B) for any k € intC although

A Si(r?zc B. The other cases are similar, too.
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4 Optimality conditions for set-valued optimization
Let V' € 2Y \ {0} and direction k € intC. For any z € X and for each j = 1,...,6,
we consider the following composite functions:

(I, 0 F)(z) := I} (F(z)),

(S9Y, o F)(z) := 8),,(F(x)).

In this section, we consider some scalar optimization problems where objective
functions are unified types of scalarizing functions, and investigate the relation of the
solution between these problems and (j-SVOP).

Theorem 4.1. ([3]) Assume that F' is C-closed, C-bounded valued on X and zo € X.
Let k € intC. Then x¢ is a solution of (3-SVOP) if and only if xg is a solution of the
following scalar optimization problem:

Min (1,‘0?;(%) o F)(z)

Subjectto € X

(3 —SOP) {
and if x € X then
I8} o F(@) =0 if and only if F(zo) <& F(z) and F(z) <& F(zo).
Corollary 4.1. Assume that F is (—C)-closed, (—C)-bounded valued on X and ¢ €

X. Let k € intC. Then zo is a solution of (5-SVOP) if and only if zo is a solution
of the following scalar optimization problem:

Min (I,S’;(xo) o F)(z)

(5 - SOP) { Subjectto € X
and if € X then
(I k) © F)(@) =0 if and only if F(zo) <& F(z) and F(z) <& F(zo).
Proof. We assume that zg is a solution of (5-SVOP). Then, for any z € X \ {zo}
F(x) S(cs) F(zo) implies F(xo) 5275) F(x).

By Proposition 3.2 and 3.3, we obtain (I,ﬁ’sl),(xo) o F)(z9) = 0 and

F(z) 28 F(zo) implies (I oy 0 F)(@) > 0= (I p, o F)(xa)- (4.1)



Moreover, by Proposition 3.2 (ii) we have
F(zo) < F(z) implies (IC),) 0 F)(@0) < I ke, 0 F)(@).  (4.2)

Hence, by (4.1) and (4.2) we obtain (I,E?I),(mo) o F)(zg) < (IIS’},(EO) o F)(z) for any
x € X \ {zo}. Consequently, zq is a solution of (5-SOP).

Conversely, we assume that zg is a solution of (5-SOP). Then, (I és}(zo) o F)(zp) <

(I,S’I),(wo) o F)(x) for any x € X \ {zo}. Suppose that zy is not a solution of (5-SVOP).
Then, there exist £ € X \ {zo} such that
F(z) <®) F(zo) and F(zo) 2% F(a). . (4.3)

By Proposition 3.3, (I IE?I)’(zo) o F)(z¢) = 0 and so we obtain

0= (I 0y © F)(@0) < Uk ) © F)I(@). (4.4)
Moreover, by Proposition 3.2 (ii)
Ik 2oy © F)(@) < (IP) 0y © F)(@o) = 0. (4.5)

Hence, by (4.4) and (4.5) we obtain (I,(fl)m(xo) o F)(z) = (IIS?I):‘(:::O) o F)(xp) = 0, and so
we have

F(z) < F(zo) and F(zo) <® F(2).
This contradicts (4.3). Consequently, zo is a solution of (5-SVOP). O

Corollary 4.2. Assume that F is (—C)-closed, (—C)-bounded valued on X and xy €
X. Let k € intC. For each j = 1,4, if ¢ is a solution of the following scalar
optimization problem:

T i
and for any r € X

Ig},(mo)F(a:) =0 ifandonlyif F(xo) Sg) F(z) and F(z) Sg) F(zo),
then zq is a solution of (7-SVOP).
Proof. We can prove this corollary by a similar way in Corollary 4.2. d
Corollary 4.3. Assume that F is C-closed, C-bounded valued on X and zo € X.

Let k € intC'. If zg is a solution of the following scalar optimization problem:

: (2)
(2 — SOP) Mln. L b2y F ()
Subjectto € X
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and for any x € X then

[P F(@)=0 if andonlyif F(zo) <& F(z) and F(z) <& F(zo),

then xo is a solution of (2-SVOP).
Proof. We can prove this corollary by a similar way in Corollary 4.2. O

Remark 4.1. In the case of j = 1,2,4, even if zg € X is a solution of (j-SVOP), z¢
is not necessary a solution of each scalar optimization problem (j-SOP) in Corollary
4.2 and 4.3. We consider the case of j = 1. Let X =R, Y = R?, C = Ry,

az
b1

e { () |osn <1t na1),
2

and k£ = ( i) Then, we consider a set-valued map F : X — 2V

(a1 —1)2+(a2 —1)22 1},

_J A (z2>0),
F(“)'—{B (=< 0)

Since A ﬁg) B and B ﬁg) A we obtain (1)-Min F(X)=X. Let z; =1, z2 = —1 and
we consider I,&ll),(zi). Then, (Ilifl)”(l) o F)(1) =2 and (I,gll),(l) o F)(—1) = 1. Hence, z;
is not a solution of (1-SOP) although z; is a solution of (1-SVOP). This example is

the counter example of the other cases, too.

Theorem 4.2. Assume that F is C-closed, C-bounded valued on X, V' € 2Y \ {0}
is C-bounded, and o € X. Let k € intC. For each j = 1,...,3, g is a solution of
the following scalar optimization problem then xg is a weak solution of (+SVOP):

Min I, F(z)
Subjectto z € X.

(j—SOP) {
Proof. We assume that zg is a solution of (j-SOP). Then, for any x € X \ {zo}
(I3, 0 F)(zo) < (IF),, o F)(2). (4.6)
Suppose that xg is not a weak solution of (j-SVOP). Then, there exists T € X \ {zo}
such that ‘ .
F(z) <Q)o F(zo) and F(zo) £0)c F(%).

By Proposition 3.6 (i), (I,?‘),, o F)(z) < (I,(CJ‘)/, o F)(zg). This contradicts (4.6). Con-
sequently, xg is a weak solution of (j-SVOP). O
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Corollary 4.4. Assume that F is (—C)-closed, (—C)-bounded valued on X, V' €
2Y \ {0} is (—C)-bounded and vo € X. Let k € intC. For each j = 4,5, if zo is
a solution of the following scalar optimization problem then xo is a weak solution of
(#SVOP):

Min I}, F(z)

Subjectto z € X.

(—SOP) {

Proof. We can prove this corollary by a similar way in Theorem 4.2. (]

Theorem 4.3. Assume that F is C-closed, C-bounded valued on X, V' € 2¥ \ {0} is
C-bounded and xo € X. Let k € intC. For each j =1,...,3, xo s a unique solution
of the following scalar optimization problem then xq is a solution of (+SVOP):

. Min IY) F(z)
—SOP K,V
( ) { Subjectto =z € X.

Proof. We assume that xg is a unique solution of (j-SOP). Then, for any z € X \ {zo}

(I8, 0 F) (o) < (I, o F)(a).

Suppose that zo is not a solution of (5-SVOP). Then, there exists Z € X \ {zo} such
that
F(z) <) F(zo) and F(=0) £8 F(2).

By Proposition 3.2 (ii), (I,gj‘),, o F)(z) < (I,(CJ‘),, o F)(zg). Hence Z is a solution of (j-
SOP). This is a contradiction to the uniqueness of zy. Consequently, g is a solution
of (j-SVOP). (]

Corollary 4.5. Assume that F is (—C)-closed, (—C)-bounded valued on X, V' €
2Y \ {0} is (—C)-bounded and o € X. Let k € intC. For each j = 4,5, if zo is a
unique solution of the following scalar optimization problem then xo is a solution of

(7SVOP):
. Min IY),F (x)
—-SOP kv’
( ) { Subjectto z € X.
Proof. We can prove this corollary by a similar way in Theorem 4.3. O
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