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Abstract
In the paper, we introduce several types of set-valued optimization problems

and investigate optimality conditions for them to use unified types of scalarizing

functions for set-valued maps.

1 lntroduction
In recent years, nonlinear scalarization methods for sets are studied as one of im-
portant tools in set-valued optimization. In [1], they introduce sublinear scalarizing

functions for vectors and show several optimality conditions for vector-valued opti-

mization. In [6], they extend these scalarizing functions to four types of nonlinear
scalarizing functions for set-valued maps, and show several useful properties of them.
Moreover, in [8], they introduce several optimality conditions for set-valued optimiza-
tion to use these four types of nonlinear scalarizing functions. In [2], certain inter-
esting nonlinear scalarizing functions for sets are proposed and they give generalized
results on Ekeland variational principle in an abstract space like topological vector
space without such strong assumption as convexity. Moreover, a modified scalarizing

function in $[$ 7$]$ gives a similar result to a minimal element theorem in $[$2 $]$ under differ-
ent assumptions. In [3], they introduced several optimality conditions for set-valued
optimization to use nonlinear scalarizing functions for sets. As seen from the above,
there are several types of nonlinear scalarizing functions for set-valued maps. In [5],

we introduce new unified approach on such scalarization for sets and some properties
of these functions. The aim of this paper is to investigate some properties of unified
types of scalarizing functions proposed in [5] and optimality conditions for set-valued
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optimization to use these functions.
The organization of the paper is as follows. In Section 2, we introduce mathematical

methodology on comparison between two sets in an ordered vector space proposed in
[4] and some definitions of solutions for set-valued optimization problem. In Section
3, we introduce two types of nonlinear scalarizing functions for sets proposed by the
unified approach in [5], and investigate their properties including the monotonicity.
In Section 4, we investigate several optimality conditions for set-valued optimization.

2 Mathematical Preliminaries
Let $Y$ be a real topological vector space with the partial ordering $\leq c$ induced by a
nonempty convex cone $C$ $(C+C=C$ and $\lambda C\subset C$ for all $\lambda\geq 0)$ as follows:

$x\leq cy$ if $y-x\in C$ for $x,$ $y\in Y$ .

It is well known that $\leq c$ is reflexive and transitive when $C$ is a convex cone, more-
over, $\leq c$ has invariant properties to vector space structure as translation and scalar
multiplication. Then, the space $Y$ is called a partially ordered topological vector space,
and if $\leq c$ is antisymmetric it becomes an ordered topological vector space.

Throughout the paper, $X$ is a real topological vector space, $Y$ a real ordered topo-
logical vector space and $F$ a set-valued map from $X$ into $2^{Y}\backslash \{\emptyset\}$ . Moreover, for any
$A\subset Y$ we denote the interior, closure of $A$ by int $(A)$ , cl $(A)$ , respectively.

Let us recall some definitions. It is said that $A$ is C-closed if $A+C$ is a closed set,
C-bounded if for each neighborhood $U$ of zero in $Y$ there is some positive number $t$

such that $A\subset tU+C$ .
At first, we review some basic concepts of set-relation.

Definition 2.1. (set-relation, [4]) For nonempty sets $A,$ $B\subset Y$ and convex cone $C$

in $Y$ , we write

$A\leq_{c}^{(1)}B$ by $A \subset\bigcap_{b\in B}(b-C)$ , equivalently $B \subset\bigcap_{a\in A}(a+C)$ ;
$A\leq_{c}^{(2)}B$ by $A \cap(\bigcap_{b\in B}(b-C))\neq\emptyset$ ;
$A\leq_{c}^{(3)}B$ by $B\subset(A+C)$ ;
$A\leq_{c}^{(4)}B$ by $( \bigcap_{a\in A}(a+C))\cap B\neq\emptyset$ ;
$A\leq_{c}^{(5)}B$ by $A\subset(B-C)$ ;
$A\leq^{(}c^{6)}B$ by $A\cap(B-C)\neq\emptyset$ , equivalently $(A+C)\cap B\neq\emptyset$ .

Proposition 2.1. ([4]) For nonempty sets $A,$ $B\subset Y$ , the following statements hold.

$A\leq^{(}c^{1)}B$ implies $A\leq^{(}c^{2)}B$ ; 且 $\leq^{(}c^{1)}B$ 伽 plies 且 $\leq^{(}c^{4)}B$ ;
$A\leq^{(}c^{2)}B$ implies $A\leq^{(}c^{3)}B$ ; $A\leq^{(}c^{4)}B$ implies み $\leq^{(}c^{5)}B$ ;
$A\leq^{(}c^{3)}B$ implies $A\leq_{c}^{(6)}B$ ; $A\leq_{c}^{(5)}B$ implies $A\leq_{c}^{(6)}B$ .

Proposition 2.2. ([5]) For nonempty sets $A,$ $B\subset Y$ , the following statements hold.
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(i) For each $j=1,$ $\ldots,$
$6$ ,

$A\leq^{(}c^{j)}B$ implies $(A+y)\leq^{(}c^{j)}(B+y)$ for $y\in Y$ , and
$A\leq^{(}c^{j)}B$ implies $\alpha A\leq^{(}c^{j)}\alpha B$ for $\alpha\geq 0$;

(ii) For each $j=1,$ $\ldots,$
$5,$ $\leq^{(}c^{j)}$ is transitive;

(iii) For each $j=3,5,6,$ $\leq^{(}c^{j)}$ is reflexive.
Next, we consider the following six kinds of set-valued optimization problems:

$(j-SVOP)\{\begin{array}{l}j-{\rm Min} F(x)Subject to x\in X\end{array}$

and we introduce the concepts of solutions for these problems under six kinds of
set-relations in Definition 2.1.

Definition 2.2. (solution and weak solution of j-SVOP) Let $x_{0}\in X$ . For each
$j=1,$ $\ldots,$

$6,$ $x_{0}$ is a solution of (j-SVOP) if for any $x\in X\backslash \{x_{0}\}$ ,

$F(x)\leq^{(}c^{j)}F(x_{0})$ implies $F(x_{0})\leq^{(}c^{j)}F(x)$ .

Moreover, $x_{0}$ is a weak solution of (j-SVOP) if for any $x\in X\backslash \{x_{0}\}$ ,

$F(x)\leq_{intC}(j)F(x_{0})$ implies $F(x_{0})\leq_{intC}(j)F(x)$ .

We denote the solution sets of (j-SVOP) by $(j)-{\rm Min} F(X)$ and the weak solution sets
of (j-SVOP) by $(j)$ -WMin $F(X)$ .

Example 2.1. Let $X=\mathbb{R}+,$ $Y=\mathbb{R}^{2}$ and $C=\mathbb{R}_{+}^{2}.$ We consider a set-valued map
$F:Xarrow 2^{Y}$

$F(x):=\{\begin{array}{ll}[[Matrix], [Matrix]] (0\leq x\leq 1),[[Matrix], [Matrix]] (1\leq x),\end{array}$

where $[a, b]$ $:=\{c\in Y|a\leq cc$ and $c\leq c^{b\}}$ . Then (l)-Min $F(x)=(1)$-WMin $F(x)=X$ .
For each $j=2,$ $\ldots,$

$5,$ $(j)-{\rm Min} F(x)=[0,1],$ $(j)$ -WMin $F(x)=X$ .
It is clear that if $x_{0}$ is a solution of (j-SVOP) then $x_{0}$ is a weak solution of (j-SVOP).

3 Unified Scalarization Methods for Sets
At first, we introduce the definition of two types of nonlinear scalarizing functions for
sets proposed by a unified approach in [5]

Definition 3.1. (unified types of scalarizing functions, [5].) Let $V$ and $V’$ be
nonempty subsets of $Y$ , and direction $k\in$ int$C$ . For each $j=1,$ $\ldots,$

$6,$ $I_{k,V}^{(j)}$ , :
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$2^{Y}\backslash \{\emptyset\}arrow \mathbb{R}\cup\{\pm\infty\}$ and $S_{k,V}^{(j)}$ , : $2^{Y}\backslash \{\emptyset\}arrow \mathbb{R}\cup\{\pm\infty\}$ are defined by

$I_{k,V}^{(j)},(V):= \inf\{t\in \mathbb{R}|V\leq^{(}c^{j)}(tk+V’)\}$ ,

$S_{k,V}^{(j)},(V)$ $:= \sup\{t\in \mathbb{R}|(tk+V’)\leq c(j)V\}$ ,

respectively.

In this section, we introduce some properties of unified types of scalarizing func-
tions.

Proposition 3.1. ([5]) Let $V\in 2^{Y}\backslash \{\emptyset\}$ . For each $j=1,$ $\ldots,$
$6$ , the following

statements hold.

$V\leq^{(}c^{j)}(tk+V’)$ implies $V\leq c(j)(sk+V’)$ for any $s\geq t$ ;

$(tk+V’)\leq_{c}^{(j)}V$ implies $(sk+V’)\leq^{(}c^{j)}V$ for any $s\leq t$ .

Proposition 3.2. ([5]) For nonempty subsets $A,$ $B,$ $V\subset Y_{f}I_{k,V}^{(j)}$ , and $S_{k,V}^{(j)}$ , satisfy
the following properties;

(i) For each $j=1,$ $\ldots,$
$6$ and $\alpha\in \mathbb{R}+$ ,

$I_{k,V’}^{(j)}(V+\alpha k)=I_{k,V’}^{(j\rangle}(V)+\alpha$;

$S_{k,V’}^{(j)}(V+\alpha k)=S_{k,V’}^{(j)}(V)+\alpha$.

(ii) For each $j=1,$ $\ldots,$
$5_{f}$

$A\leq^{(}c^{j)}B$ implies $I_{k,V}^{(j)},(A)\leq I_{k,V}^{(j)},(B)$ and $S_{k,V}^{(j)},(A)\leq S_{k,V}^{(j)},(B)$ .

Proposition 3.3. For each $j=1,$ $\ldots,$
$5,$ $I_{k,V}^{(j)},(V’)\geq 0$ and $S_{k,V}^{(j)},(V’)\leq 0$ , in partic-

ular,
$V’\leq^{(}c^{j)}V’$ implies $I_{k,V}^{(j)},(V’)=S_{k,V}^{(j)},(V’)=0$;

Proof. The case of $j=3,5$ , by Proposition 2.2 (iii), $V^{l}\leq^{(}c^{j)}V’$ . Hence we obtain
$I_{k,V}^{(j)},(V’)\geq 0$ and $S_{k,V}^{(j)},(V’)\leq 0$ . We consider the case of $j=1,2,4$ . Let $I_{k,V}^{(j)},(V’)=$

$t_{j}$ and assume that $t_{j}<0$ . Then, there exists $\epsilon>0$ and $t(\epsilon)\in \mathbb{R}$ such that

$t_{j}<t(\epsilon)<t+\epsilon<0$ and $V’\leq_{c}^{(j)}t(\epsilon)k+V’$ . (3.1)

By Proposition 3.2 (ii),

$I_{k,V}^{(j)},(V’)\leq I_{k,V}^{(j)},(t(\epsilon)k+V’)$ .
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Moreover, by Proposition 3.2 (i),

$I_{k,V}^{(j)},$ $(t(\epsilon)k+V’)=I_{k,V}^{(j)},$ $(V’)+t(\epsilon)$ .

Hence, we obtain $t_{j}\leq t_{j}+t(\epsilon)$ and so $t(\epsilon)\geq 0$ . This contradicts (3.1). Consequently,

we have $I_{k,V}^{(j)},$ $(V’)\geq 0$ . The case of $S_{k,V}^{(j)},$ $(V’)$ are proved in the similar way. Next, we

$0as$
sume that $V’\leq^{(}c^{j)}V’$ . By Proposition 3.2 (ii), we obtain $I_{k,V}^{(j)},$

$(V’)=S_{k,V}^{(j)},(V’)\square =$

Proposition 3.4. Let $A\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements hold:

(i) For each $j=1,$ $\ldots,$
$3,$ $A$ and $V’$ are C-bounded sets if and only if

$I_{k,V}^{(j)},(A)>-\infty$ and $S_{k,V}^{(j)},(A)<\infty$ ,

(ii) For each $j=4,5,$ $A$ and $V’$ are $(-C)$ -bounded sets if and only if
$I_{k,V}^{(j)},(A)>-\infty$ and $S_{k,V}^{(j)},(A)<\infty$ ,

Proof. In the case of $j=3,5$ , they are shown in [Theorem 3.6, 3]. The others can be
proved by similar ways in the case of $j=3,5$ , respectively. $\square$

Proposition 3.5. Let $A\in 2^{Y}\backslash t\emptyset$ }. Then, the following statements hold:

(i) For each $j=1,$ $\ldots,$
$3$ , if $A$ is C-closed, C-bounded and $V’$ is C-bounded then

$I_{k,V}^{(j)},(A)= \min\{t\in \mathbb{R}|A\leq^{(}c^{j)}tk+V’\}$ ,

$S_{k,V}^{(j)},$ $(A)= \max\{t\in \mathbb{R}|tk+V’\leq^{(}c^{j)}A\}$ ,

(ii) For each $j=4,5$ , if $A$ is $(-C)$ -closed, $(-C)$ -bounded and $V’$ is $(-C)$ -bounded
then

$I_{k,V}^{(j)},$ $(A)= \min\{t\in \mathbb{R}|A\leq^{(}c^{j)}tk+V’\}$ ,

$S_{k,V}^{(j)},(A)= \max\{t\in \mathbb{R}|tk+V’\leq^{(}c^{j)}A\}$ .

Proof. In the case of $j=3,5$ , they are shown in [Proposition 3.2, 3]. The others can
be proved by similar ways in the case of $j=3,5$ , respectively. $\square$

Proposition 3.6. Let $A,$ $B\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements hold:

(i) For each $j=1,2,3$ , if $B$ is C-closed and $A\leq_{intC}^{(j)}B$ then

$I_{k,V}^{(j)},(A)<I_{k,V}^{(j)},(B)$ and $S_{k,V}^{(j)},(A)<S_{k,V}^{(j)},(B)$ ,

(ii) For each $j=4,5$ , if $A$ is $(-C)$ -closed and $A\leq_{intC}^{(j)}B$ then

$I_{k,V}^{(j)},(A)<I_{k,V}^{(j)},(B)$ and $S_{k,V}^{(j)},(A)<S_{k,V}^{(j)},(B)$ .
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Proof. First, we prove (i). Assume that $B$ is C-closed and $A\leq_{intC}^{(j)}B$ . We consider
the case of $j=3$ . Let $t_{A}$ $:=I_{k,V’}^{(3)}(A)$ and $t_{B}$ $:=I_{k,V}^{(3)},$ $(B)$ . Then, for any $\epsilon>0$ there
exists $t(\epsilon)\in \mathbb{R}$ such that

$t_{B}<t(\epsilon)<t_{B}+\epsilon$ and $B\leq_{c}^{(3)}t(\epsilon)k+V’$ .

Since $A\leq_{intC}^{(3)}B$ ,

$t(\epsilon)k+v\in B+C\subset A+$ int$C=$ int $(A+C)$ ,

for all $v\in V’$ . Hence, there exists absorbing open neighborhood of zero $G$ such that

$t(\epsilon)k+v+G\subset$ int$A+C$ .

Since $G$ is absorbing, there exists $t_{0}>0$ such that $-t_{0}k\in G$ and so we obtain

$(t(\epsilon)-t_{0})k+v+G\subset$ int$A+C$ .

Hence we have
$t_{A}\leq t(\epsilon)-t_{0}<t_{B}+\epsilon-t_{0}$ .

Since $\epsilon$ is an arbitrary, we obtain $t_{A}\leq t_{B}-t_{0}<t_{B}$ . The proof of $S_{k,V}^{(3)}$ , and the other
cases can be proved in a similar way. Also, the proof of (ii) is shown similarly. $\square$

Remark 3.1. In Proposition 3.6, the conditions of C-closed or $(-C)$-closed are nec-
essary. Consider the case of $j=3$. Let $A,$ $B\subset Y\backslash \{\emptyset\}$ with $A\neq$ intA and
$B+C=$ int$(A+C)$ , and let $t_{A}:=I_{k,V}^{(3)},$ $(A)$ and $t_{B};=I_{k,V}^{(3)},(B)$ . Then, since $C$

containing zero and $B+C=$ int$(A+C)$ , we obtain $A\leq_{c}^{(3)}B$ and so $t_{A}\leq t_{B}$ by
Proposition 3.2 (ii). We assume that $t_{A}<t_{B}$ . Then, there exists $\overline{t}\in \mathbb{R}$ such that
$t_{A}<\overline{t}<t_{B}$ and $A\leq_{c}^{(3)}\overline{t}k+V’$ . Let $t_{0}:= \frac{1}{2}\overline{t}+\frac{1}{2}t_{B}$ . By Proposition 3.1,

$A\leq_{c}^{(3)}t_{0}k+V’$ and $B\not\leq_{c}^{(3)}t_{0}k+V’$ .

Hence, there exists $t_{0}k+v\in t_{0}k+V’$ such that

$t_{0}k+v\in A+C$ and $t_{0}k+v\not\in B+C$. (3.2)

Since $k\in$ int $C$ and $C$ is a convex cone, ( $t_{0}-t]k\in$ int $C$ . Hence, $(t_{0}-t]k+v\in V‘+$int$C$

and so we have

$t_{0}k+v\in\overline{t}k+V’+$ int$C\subset A+C+$ int$C=$ int$(A+C)=B+C$.

This contradicts (3.2). Consequently, $I_{k,V}^{(3)},$ $(A)=I_{k,V}^{(3)},(B)$ for any $k\in$ int$C$ although
$A\leq_{intC}^{(3)}B$ . The other cases are similar, too.
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4 Optimality conditions for set-valued optimization
Let $V’\in 2^{Y}\backslash \{\emptyset\}$ and direction $k\in$ int $C$ . For any $x\in X$ and for each $j=1,$ $\ldots,$

$6$ ,
we consider the following composite functions:

$(I_{k,V}^{(j)}, \circ F)(x):=I_{k,V}^{(j)},(F(x))$ ,

$(S_{k,V}^{(j)}, \circ F)(x):=S_{k,V}^{(j)},(F(x))$ .

In this section, we consider some scalar optimization problems where objective
functions are unified types of scalarizing functions, and investigate the relation of the
solution between these problems and (j-SVOP).

Theorem 4.1. ([3]) Assume that $F$ is C-closed, C-bounded valued on $X$ and $x_{0}\in X$ .
Let $k\in$ intC. Then $x_{0}$ is a solution of (3-SVOP) if and only if $x_{0}$ is a solution of the
following scalar optimization problem:

(3–SOP) $\{\begin{array}{l}{\rm Min}(I_{k,F(x_{0})}^{(3)}oF)(x)Subjecttox\in X\end{array}$

and if $x\in X$ then

$I_{k,F(x_{0})}^{(3)}F(x)=0$ $if$ and only $if$ $F(x_{0})\leq_{c}^{(3)}F(x)$ and $F(x)\leq^{(}c^{3)}F(x_{0})$ .

Corollary 4.1. Assume that $F$ is $(-C)$ -closed, $(-C)$ -bounded valued on $X$ and $x_{0}\in$

X. Let $k\in$ intC. Then $x_{0}$ is a solution of (5-SVOP) if and only if $x_{0}$ is a solution
of the following scalar optimization problem:

$(5-SOP)\{\begin{array}{l}{\rm Min}(I_{k,F(x_{0})}^{(5)}oF)(x)Subjecttox\in X\end{array}$

and if $x\in X$ then

$(I_{k,F(x_{0})}^{(5)}\circ F)(x)=0$ if and only if $F(x_{0})\leq^{(}c^{5)}F(x)$ and $F(x)\leq_{c}^{(5)}F(x_{0})$ .

Proof. We assume that $x_{0}$ is a solution of (5-SVOP). Then, for any $x\in X\backslash \{x_{0}\}$

$F(x)\leq_{c}^{(5)}F(x_{0})$ implies $F(x_{0})\leq^{(}c^{5)}F(x)$ .

By Proposition 3.2 and 3.3, we obtain $(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})=0$ and

$F(x)\not\leq_{c}^{(5)}F(x_{0})$ implies $(I_{k,F(x_{O})}^{(5)}\circ F)(x)\geq 0=(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})$ . (4.1)
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Moreover, by Proposition 3.2 (ii) we have

$F(x_{0})\leq_{c}^{(5)}F(x)$ implies $(I_{k,F(x_{O})}^{(5)}\circ F)(x_{0})\leq(I_{k,F(x_{0})}^{(5)}\circ F)(x)$. (4.2)

Hence, by (4.1) and (4.2) we obtain $(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})\leq(I_{k,F(x_{0})}^{(5)}\circ F)(x)$ for any
$x\in X\backslash \{x_{0}\}$ . Consequently, $x_{0}$ is a solution of (5-SOP).

Conversely, we assume that $x_{0}$ is a solution of (5-SOP). Then, $(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})\leq$

$(I_{k,F(x_{0})}^{(5)}\circ F)(x)$ for any $x\in X\backslash \{x_{0}\}$ . Suppose that $x_{0}$ is not a solution of (5-SVOP).
Then, there exist $\overline{x}\in X\backslash \{x_{0}\}$ such that

$F(x)\leq_{c}^{(5)}F(x_{0})$ and $F(x_{0})\not\leq_{c}^{(5)}F(x)$ . (4.3)

By Proposition 3.3, $(I_{k,F(x_{0})}^{(5)}oF)(x_{0})=0$ and so we obtain

$0=(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})\leq(I_{k,F(x_{0})}^{(5)}\circ F)(\overline{x})$ . (4.4)

Moreover, by Proposition 3.2 (ii)

$(I_{k,F(x_{0})}^{(5)}oF)(\overline{x})\leq(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})=0$ . (4.5)

Hence, by (4.4) and (4.5) we obtain $(I_{k,F(x_{O})}^{(5)}\circ F)(\overline{x})=(I_{k,F(x_{0})}^{(5)}\circ F)(x_{0})=0$, and so
we have

$F(\overline{x})\leq_{c}^{(5)}F(x_{0})$ and $F(x_{0})\leq_{c}^{(5)}F(\overline{x})$ .
This ContradiCtS $($ 4.3 $)$ . ConSequently, $x_{0}$ iS a Solution of $($ 5-SVOP$)$ . 口

Corollary 4.2. Assume that $F$ is $(-C)$ -closed, $(-C)$ -bounded valued on $X$ and $x_{0}\in$

X. Let $k\in$ intC. For each $j=1,4$, if $x_{0}$ is a solution of the following scalar
optimization problem:

($j$ -SOP) $\{\begin{array}{l}{\rm Min} I_{k,F(x_{0})}^{(j)}F(x)Subject to x\in X\end{array}$

and for any $x\in X$

$I_{k,F(x_{0})}^{(j)}F(x)=0$ $if$ and only if $F(x_{0})\leq_{c}^{(j)}F(x)$ and $F(x)\leq_{c}^{(j)}F(x_{0})$ ,

then $x_{0}$ is a solution of (j-SVOP).

PrOOf We Can prOVe this Corollary by a Similar Way in Corollary 4.2. 口

Corollary 4.3. Assume that $F$ is C-closed, C-bounded valued on $X$ and $x_{0}\in X$ .
Let $k\in$ intC. If $x_{0}$ is a solution of the following scalar optimization problem:

$(2-SOP)\{\begin{array}{l}{\rm Min} I_{k,F(x_{0})}^{(2)}F(x)Subject to x\in X\end{array}$
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and for any $x\in X$ then

$I_{k,F(x_{0})}^{(2)}F(x)=0$ $if$ and only $if$ $F(x_{0})\leq_{c}^{(2)}F(x)$ and $F(x)\leq_{c}^{(2)}F(x_{0})$ ,

then $x_{0}$ is a solution of (2-SVOP).

Proof. We can prove this corollary by a similar way in Corollary 4.2. $\square$

Remark 4.1. In the case of $j=1,2,4$ , even if $x_{0}\in X$ is a solution of (j-SVOP), $x_{0}$

is not necessary a solution of each scalar optimization problem (j-SOP) in Corollary
4.2 and 4.3. We consider the case of $j=1$ . Let $X=\mathbb{R},$ $Y=\mathbb{R}^{2},$ $C=\mathbb{R}+$ ,

$A:=\{(\begin{array}{l}a_{1}a_{2}\end{array})(a_{1}-1)^{2}+(a_{2}-1)^{2}=1\}$ ,

$B:=\{(\begin{array}{l}b_{1}b_{2}\end{array})0\leq b_{1}\leq 1,$ $b_{2}=-b_{1}+1\}$ ,

and $k=(\begin{array}{l}11\end{array})$ . Then, we consider a set-valued map $F:Xarrow 2^{Y}$

$F(x):=\{\begin{array}{l}A (x\geq 0),B (x<0).\end{array}$

Since $A\not\leq_{c}^{(1)}B$ and $B\not\leq_{c}^{(1)}$ $A$ we obtain (l)-Min $F(X)=X$ . Let $x_{1}=1,$ $x_{2}=-1$ and
we consider $I_{k,F(x_{i})}^{(1)}$ . Then, $(I_{k,F(1)}^{(1)}\circ F)(1)=2$ and $(I_{k,F(1)}^{(1)}\circ F)(-1)=1$ . Hence, $x_{1}$

is not a solution of (I-SOP) although $x_{1}$ is a solution of (I-SVOP). This example is
the counter example of the other cases, too.

Theorem 4.2. Assume that $F$ is C-closed, C-bounded valued on $X,$ $V’\in 2^{Y}\backslash \{\emptyset\}$

is C-bounded, and $x_{0}\in X.$ Let $k\in$ intC. For each $j=1,$ $\ldots,$
$3,$ $x_{0}$ is a solution of

the following scalar optimization problem then $x_{0}$ is a weak solution of (.7-SVOP):

$(j-SOP)\{\begin{array}{l}{\rm Min} I_{k,V}^{(j)},F(x)Subject to x\in X.\end{array}$

Proof. We assume that $x_{0}$ is a solution of (j-SOP). Then, for any $x\in X\backslash \{x_{0}\}$

$(I_{k,V}^{(j)}, \circ F)(x_{0})\leq(I_{k,V}^{(j)}, \circ F)(x)$ . (4.6)

Suppose that $x_{0}$ is not a weak solution of (j-SVOP). Then, there exists $\overline{x}\in X\backslash \{x_{0}\}$

such that
$F(\overline{x})\leq_{intC}^{(j)}F(x_{0})$ and $F(x_{0})\not\leq_{intC}^{(j)}F(\overline{x})$ .

By Proposition 3.6 (i), $(I_{k,V}^{(j)}, \circ F)(\overline{x})<(I_{k,V}^{(j)}, \circ F)(x_{0})$ . This contradicts (4.6). Con-
sequently, $x_{0}$ is a weak solution of (j-SVOP). $\square$
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Corollary 4.4. Assume that $F$ is $(-C)$ -closed, $(-C)$ -bounded valued on $X_{f}V’\in$

$2^{Y}\backslash \{\emptyset\}$ is $(-C)$ -bounded and $x_{0}\in X.$ Let $k\in$ intC. For each $j=4,5$ , if $x_{0}$ is
a solution of the following scalar optimization problem then $x_{0}$ is a weak solution of
$(\dot{f}^{SVOP):}$

($j$ -SOP) $\{\begin{array}{l}{\rm Min} I_{k,V}^{(j)},F(x)Subjectto x\in X.\end{array}$

Proof. We can prove this corollary by a similar way in Theorem 4.2. $\square$

Theorem 4.3. Assume that $F$ is C-closed, C-bounded valued on $X,$ $V’\in 2^{Y}\backslash \{\emptyset\}$ is
C-bounded and $x_{0}\in X$ . Let $k\in$ intC. For each $j=1,$ $\ldots,$

$3,$ $x_{0}$ is a unique solution
of the following scalar optimization problem then $x_{0}$ is a solution of (j-SVOP):

($j$ -SOP) $\{\begin{array}{l}{\rm Min} I_{k,V}^{(j)},F(x)Subjectto x\in X.\end{array}$

Proof. We assume that $x_{0}$ is a unique solution of (j-SOP). Then, for any $x\in X\backslash \{x_{0}\}$

$(I_{k,V}^{(j)}, \circ F)(x_{0})\leq(I_{k,V}^{(j)}, \circ F)(x)$ .

Suppose that $x_{0}$ is not a solution of (j-SVOP). Then, there exists $\overline{x}\in X\backslash \{x_{0}\}$ such
that

$F(\overline{x})\leq_{c}^{(j)}F(x_{0})$ and $F(x_{0})\not\leq_{c}^{(j)}F(\overline{x})$ .

By Proposition 3.2 (ii), $(I_{k,V}^{(j)}, oF)(\overline{x})\leq(I_{k,V}^{(j)}, oF)(x_{0})$ . Hence $\overline{x}$ is a solution of (j-
SOP). This is a contradiction to the uniqueness of $x_{0}$ . Consequently, $x_{0}$ is a solution
of (j-SVOP). $\square$

Corollary 4.5. Assume that $F$ is $(-C)$ -closed, $(-C)$ -bounded valued on $X,$ $V’\in$

$2^{Y}\backslash \{\emptyset\}$ is $(-C)$ -bounded and $x_{0}\in X.$ Let $k\in$ intC. For each $j=4,5$ , if $x_{0}$ is a
unique solution of the following scalar optimization problem then $x_{0}$ is a solution of
(j-SVOP):

$(j-SOP)\{\begin{array}{l}{\rm Min} I_{k,V}^{(j)},F(x)Subject to x\in X.\end{array}$

Proof. We can prove this corollary by a similar way in Theorem 4.3. $\square$
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