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Let $\mathcal{Z}_{0}$ denote the ideal of asymptotic density zero subsets of $\mathbb{N}$ ,

$\mathcal{Z}_{0}=\{X\subseteq \mathbb{N}: \lim_{narrow\infty}|X\cap n|/n=0\}$

and let $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ denote the quotient Boolean algebra. It is known
that $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ includes a measure algebra of Maharam character $2^{\aleph_{0}}$ as
a subalgebra ([3], see also [2] and [1]). In this note I will show that the
existence of a maximal measure subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ of character
strictly smaller than $2^{\aleph_{0}}$ is relatively consistent with ZFC, answering a
question of David Fremlin.

Let $S_{\kappa}$ be the forcing for adding $\kappa$ side-by-side Sacks reals, with
countable support. Let $\mathcal{D}$ be the family of all subsets of $\mathbb{N}$ that have
density. Let $\mathcal{Z}_{0}$ be the ideal of sets of asymptotic density zero. Re-
call that $I_{n}=[2^{r\iota}, 2^{n+1})$ and $\nu_{n}(A)=|A\cap I_{n}|/2^{n}$ , then $d^{*}(A)=$

$\lim\sup_{narrow\infty}\nu_{n}(A)$ and $d(A)= \lim_{narrow\infty}\nu_{n}(A)$ , if it exists. A family
of sets $\mathcal{A}$ is $\epsilon$ -independent with respect to $\mu$ if for every finite $F\subseteq \mathcal{A}$

and every $p:Farrow\{\pm 1\}$ we have $| \mu(\bigcap_{A\in F}A^{p(A)})-2^{-|F|}|\leq\epsilon$ . Here $\mu$

can be a measure or a convex mean.
If $\mathcal{A}\subseteq \mathcal{P}(\mathbb{N})$ and $m\in \mathbb{N}$ then we say that $\mathcal{A}$ is e-independent at $m$

if it is $\epsilon$-independent with respect to $\nu_{m}$ .
A family $\mathcal{A}\subseteq \mathcal{P}(\mathbb{N})$ is a maximal stochastically independent family

with respect to $d$ if it is included in $\mathcal{D}$ , stochastically independent with
respect to $d$ , and maximal with respect to these properties.

Lemma 1. A family $\mathcal{A}\subseteq \mathcal{P}(\mathbb{N})$ is stochastically independent (with
respect to d) if and only if for every finite $F\subseteq \mathcal{A}$ and every $\epsilon>0$ there
exists $n$ such that $F$ is $\epsilon$ -independent at every $m\geq n$ . $\square$

Fix an uncountable cardinal $\kappa$ .

Lemma 2. Assume $CH$. Then there is a family $\{A_{\alpha} : \alpha<\omega_{1}\}$ that is
maximal stochastically independent with respect to $d$ such that in the
extension by $S_{\kappa}$ it remains maximal.

Proof. Let $(P_{\alpha},\dot{r}_{\alpha})(\alpha<\omega_{1})$ enumerate all pairs such that $P_{\alpha}$ is a
condition in $S_{\omega}1$ and $\dot{r}_{\alpha}$ is a name for a subset of $\mathbb{N}$ . We construct
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particular for providing a direct proof of Theorem 3 from Lemma 2.
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$A_{\alpha}(\alpha<\omega_{1})$ by recursion. Assume $\mathcal{A}_{\delta}=\{A_{\alpha} : \alpha<\delta\}$ has been
constructed. Consider $(P_{\delta},\dot{r}_{\delta})$ . If $P_{\delta}$ does not force that $\mathcal{A}_{\delta}\cup\{\dot{r}_{\delta}\}$

is stochastically independent, choose any $A_{\delta}$ such that $\mathcal{A}_{\delta}\cup\{A_{\delta}\}$ is
stochastically independent.

Otherwise, find a fusion sequence $Q_{t}(t\in T)$ of conditions extending
$P_{\delta}$ indexed by a perfect tree $T\subseteq 2^{<N}$ and $\{n_{i} : i\in \mathbb{N}\}$ as follows. Let
$T_{k}$ be the k-th level of $T$ , and re-enumerate $\mathcal{A}_{\alpha}$ as $\{A_{i} : i\in \mathbb{N}\}$ . Write
$\mathcal{A}_{k}=\{A_{i}:i\leq k\}$ .

(1) $(i+1)n_{i}<n_{i+1},$ $n_{1}=1$ ,
(2) $T$ branches only at the $n_{i}+1- st$ level for $i\in \mathbb{N}$ , and only once.

Thus $|T_{n_{\iota}}|=i$ .

(3) $Q_{t}\leq Q_{s}$ if $s\subseteq t$ .
(4) the fusion $Q= \bigcup_{f\in[T]}\bigcap_{n=1}^{\infty}Q_{frn}$ is a condition in $S_{\omega_{1}}$ .
(5) If $t\in T_{n_{\iota}}$ , then $Q_{t}$ forces that $\mathcal{A}_{i}’\cup\{\dot{r}\}$ is $2^{-i}$-independent at

every $m\geq n_{i+1}$ .
(6) If $t\in T_{n_{\iota}}$ , then $Q_{t}$ decides $\dot{r}\cap I_{m}$ for all $m<n_{i+1}$ .

This can be accomplished by using the standard means. That such
sequences can be found is the only property of $S_{\kappa}$ that we shall need.

Enumerate each $T_{n_{\iota}}$ as $t_{1}^{i},$ $\ldots t_{i}^{i}$ , and write $t_{j}^{i}=t_{i}^{i}$ for $j>i$ . Now pick
$A_{\delta}$ so that for all $i$ and $j<n_{i+1}-n_{i}$ we have

(7) $A_{\delta}\cap I_{n.+j}=u_{j}^{i}$ , where $Q_{t_{j}^{i}}|\vdash\dot{r}\cap I_{n_{i}+j}=u_{j}^{i}$ .

Then for every $i$ the family $\mathcal{A}_{i}’\cup\{A_{\delta}\}$ is $2^{-i}$-independent at each $m\geq$

$n_{i+1}$ , hence $\mathcal{A}_{\delta}\cup\{A_{\delta}\}$ is stochastically independent.
It remains to prove that $\mathcal{A}=\{A_{\alpha} :$ a $<\omega_{1}\}$ is maximal in the

extension by $S_{\kappa}$ . We need to prove that for every name $\dot{r}$ for a subset of
$\mathbb{N}$ and every condition $P,$ $P$ does not force that $\mathcal{A}\cup\{\dot{r}\}$ is independent.
Assume otherwise. We may assume $\kappa=\omega_{1}$ , by picking an elementary
submodel $M$ of a sufficiently large $H_{\lambda}$ such that $M$ is closed under
$\omega$-sequences, of size $\aleph_{1}$ , and large enough, and intersecting $S_{\kappa}$ with $M$ .

Fix $\delta$ such that $(P_{\delta},\dot{r}_{\delta})=(P,\dot{r})$ . We claim that $Q$ as in (4) forces
that $\{A_{\delta},\dot{r}\}$ is not independent. Otherwise some $R\leq Q$ decides $i$ such
that $\{A_{\delta},\dot{r}\}$ are 1/4-independent at all $m\geq n_{i}$ . But some $Q_{t}$ , for
$t\in T_{n_{\iota}}$ is compatible with $R$ , and by (7) it forces that $A_{\delta}\cap I_{m}=\dot{r}\cap I_{m}$

for some $m\geq n_{i}$ , a contradiction. $\square$

Theorem 3. Assume $CH$. Then there is a subalgebm $\mathcal{B}$ of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$

such that $(\mathcal{B}, d)$ is a rneasure algebm of Maharam character $\aleph_{1}$ and in
the extension by $S_{h}$ it is a maximal subalgebm of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ with this
property,

After preliminary lemmas, we give two proofs of this theorem. The
first one is shorter and it uses Lemma 2, while the second one provides
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a more robust object and involves an extension of the proof of Lemma 2
that may be of an independent interest.

Lemma 4. If $A\in \mathcal{D}$ and $f:Aarrow \mathbb{N}$ is a strictly increasing surjection,
then $d^{*}(f(B))=d^{*}(B)d(A)$ .

Proof. Let $A=\{n_{i} : i\in \mathbb{N}\}$ be its increasing enumeration, and let
$g:\mathbb{N}arrow \mathbb{N}$ be such that $g(m)=|A\cap m|$ . and let $B=\{n_{i}:i\in C\}$ .
Then $d^{*}(B)= \lim\sup_{j}|B\cap j|/j=\lim\sup_{j}|B\cap j|/g(j)\cdot g(j)/j$ . But
$\lim_{j}g(j)/j=d(A)$ , and $\lim\sup_{j}|B\cap j|/g(j)=d^{*}(C)$ . $\square$

A proof of Theorem 3 using Lemma 2. By Lemma 2, in the extension
by $S_{\kappa}$ there is a maximal stochastically independent family $\mathcal{A}$ of size
$\aleph_{1}$ . By [4, \S 491], $\mathcal{A}$ generates a subalgebra $\mathcal{B}_{0}$ of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ that is
isomorphic to a measure algebra of character $\aleph_{1}$ , and the measure on
$\mathcal{B}$ is given by $d$ . Let $\mathcal{B}’$ be a maximal subalgebra of $\mathcal{P}(\mathbb{N})\mathcal{Z}_{0}$ that
includes $\mathcal{B}$ and such that $(\mathcal{B}’, d)$ is a measure algebra.

Let $\mathcal{B}_{A}$ denote the factor algebra, $\mathcal{B}_{A}=\{B\cap A:B\in \mathcal{B}\}$ . Assume
there is a nonzero $A\in \mathcal{B}_{0}$ such that $(\mathcal{B}_{0})_{A}=\mathcal{B}_{A}$ . Let $A=\{n_{i} : i\in \mathbb{N}\}$

be its increasing enumeration. The map $\Phi:\mathcal{P}(A)arrow \mathcal{P}(\mathbb{N})$ defined by
$\Phi(\{n_{j}:j\in C\})=C$

satisfies the formula $d(A)d^{*}(\Phi(B))=d^{*}(B)$ , by Lemma 4. Therefore
it sends $(\mathcal{B}_{0})_{A}$ to a subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_{0}$ that is its maximal measure
subalgebra of Maharam character $\aleph_{1}$ .

We may therefore assume that for every nonzero $A\in \mathcal{B}_{0}$ the relative
Maharam type of $\mathcal{B}_{A}$ over $(\mathcal{B}_{0})_{A}$ is infinite. By [3, \S 333], there is a
partition of unity $A_{x}(i\in \mathbb{N})$ such that each $\mathcal{B}_{A_{i}}$ is relatively Maharam
homogeneous and atomless. Therefore by applying Maharam’s theorem
we may find $A\in \mathcal{B}\backslash \mathcal{B}_{0}$ such that $\mathcal{A}\cup\{A\}$ is stochastically independent,
contradicting the maximality of $\mathcal{A}$ . $\square$

Lemma 5. Assume $A_{0},$
$\ldots,$

$A_{\tau\iota-1}$ are stochastically independent in some
atomless measure space $(X, \mu)$ and $B$ is a measurable set of measure
1/2 such that for every Boolean combination $C$ of $A_{0},$

$\ldots,$
$A_{n-1}$ we have

$\mu(B\triangle C)\geq\epsilon$ for some $\epsilon>0$ . Then there is $A_{n}$ stochastically indepen-
dent with $A_{0},$

$\ldots,$
$A_{n-1}$ and such that $\mu(A_{n}\cap B)\leq 1/2-\epsilon$ .

Proof. Let $C_{s}= \bigcap_{i=0}^{n-1}A_{i}^{s(i)}$ for $s:narrow\{\pm 1\}$ .Choose $A_{n}$ so that $\mu(A_{n}\cap$

$C_{6})=1/2$ and $\mu(A_{n}\cap C_{6}\cap B)$ is minimal for all $s$ . $\square$

A proof of Theorem 3 using the proof of Lemma 2. Let $(P_{\alpha},\dot{r}_{\alpha})(\alpha<$

$\omega_{1})$ enumerate all pairs such that $P_{\alpha}$ is a condition in $S_{\omega_{1}}$ and $\dot{r}_{\alpha}$ is
a name for a subset of $\mathbb{N}$ . We construct $A_{\alpha}(\alpha<\omega_{1})$ by recursion.
Assume $\mathcal{A}_{\delta}=\{A_{\alpha} : \alpha<\delta\}$ has been constructed. Consider $(P_{\delta},\dot{r}_{\delta})$ .
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If $P_{\delta}$ forces that $\dot{r}$ belongs to the measure algebra generated by $\mathcal{A}_{\delta}$ ,
or if it does not force that $d(r)=1/2$ , then choose any $A_{\delta}$ such that
$\mathcal{A}_{\delta}\cup\{A_{\delta}\}$ is stochastically independent.

Otherwise, some $P\leq P_{\delta}$ forces that $\dot{r}$ does not belong to the measure
algebra generated by $\mathcal{A}_{\delta}$ . If in the forcing extension for every $m$ there
is a Boolean combination $C_{m}$ of elements of $\mathcal{A}_{\delta}$ such that $d(C_{m}\triangle\dot{r})\leq$

$2^{-m}$ , then $D= \bigcup_{m}\bigcap_{n=m}^{\infty}C_{m}$ satisfies $d(D\triangle\dot{r})=0$ . Therefore we may
extend $P$ further to decide a rational number $\epsilon>0$ such that for every
finite Boolean combination $C$ of elements of $\mathcal{A}_{\delta}$ we have $d(C\triangle\dot{r})\geq\epsilon$ .
Find a fusion sequence $Q_{t}(t\in T)$ of conditions extending $P$ indexed
by a perfect tree $T\subseteq 2^{<N}$ and $\{n_{i} : i\in \mathbb{N}\}$ as follows. Let $T_{k}$ be
the k-th level of $T$ , and re-enumerate $\mathcal{A}_{\alpha}$ as $\{A_{i}’ : i\in \mathbb{N}\}$ . Write
$\mathcal{A}_{k}=\{A_{i}’:i\leq k\}$ .

(8) 2 $(i+1)n_{i}<n_{i+1},$ $n_{1}=1$ ,
(9) $T$ branches only at the $n_{i}+1- st$ level for $i\in \mathbb{N}$ , and only once.

Thus $|T_{n_{t}}|=i$ .
(10) $Q_{t}\leq Q_{s}$ if $s\subseteq t$ .
(11) the fusion $Q= \bigcup_{f\in[T]}\bigcap_{n=1}^{\infty}Q_{frn}$ is a condition in $S_{\omega_{1}}$ .
(12) If $t\in T_{n_{t}}$ , then for every Boolean combination $C$ of elements of

$\mathcal{A}_{i}$ , the condition $Q_{t}$ forces that

$\max(\nu_{m}(C\triangle\dot{r}), \nu_{m}(d(C\backslash \dot{r})))\geq\epsilon/2$

for every $m\geq n_{i+1}$ .
(13) $\mathcal{A}_{i}$ is $2^{-i-1}$ -independent at each $m\geq n_{i+1}$ .
(14) If $t\in T_{n_{i}}$ , then $Q_{t}$ decides $\dot{r}\cap I_{m}$ for all $m<n_{i+1}$ .

This can be accomplished by using the standard means. That such
sequences can be found is the only property of $S_{\kappa}$ that we shall need.

Enumerate each $T_{n_{i}}$ as $t_{1}^{i},$ $\ldots t_{i}^{i}$ , and write $t_{j}^{i}=t_{i}^{i}$ for $j>i$ . Now pick
$A_{\delta}$ so that for all $i$ and $j<n_{i+1}-n_{i}$ we have $($ let $m=n_{i}+j)$

(15) $A_{\delta}$ is $2^{-i}$-independent with $\mathcal{A}_{i}$ at $m$ , and
(16) If $j<i$ , then $Q_{t_{j}^{i}}|\vdash\nu_{m}(A_{\delta}\cap\dot{r})\leq 1/2-\epsilon/2+2^{-i}$ ,
(17) If $j\geq i$ , then $Q_{t_{j-i}^{l}}|\vdash\nu_{m}(A_{\delta}\backslash \dot{r})\leq 1/2-\epsilon/2+2^{-i}$ .

This can be achieved by using a discrete version of Lemma 5. Then
for every $i$ the family $\mathcal{A}_{i}’\cup\{A_{\delta}\}$ is $2^{-i}$-independent at each $m\geq n_{i+1}$ ,
hence $\mathcal{A}_{\delta}\cup\{A_{\delta}\}$ is stochastically independent.

It remains to prove that the algebra $\mathcal{B}$ generated by $\mathcal{A}=\{A_{\alpha}$ : $\alpha<$

$\omega_{1}\}$ is maximal in the extension by $S_{\kappa}$ . We will prove that for every
name $\dot{r}$ for a subset of $\mathbb{N}$ and every condition $P,$ $P$ either forces that $\dot{r}$

belongs to $\mathcal{B}$ or some extension of $P$ forces that $A_{\delta}\cap\dot{r}\not\in \mathcal{D}$ .
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Assume otherwise, and let $(P,\dot{r})$ be a pair such that $P$ forces that $\dot{r}$

does not belong to $B$ and that $\dot{r}\cap A_{\delta}$ is in $\mathcal{D}$ for all $\delta$ . We may assume
that $P|\vdash d(\dot{r})=1/2$ and $\kappa=\omega_{1}$ .

Fix $\delta$ such that $(P_{\delta},\dot{r}_{\delta})=(P,\dot{r})$ . Let $\epsilon>0$ be as in the construction
of $A_{\delta}$ . Then $Q$ as in (11) forces that $d(A_{\delta}\cap r)$ is not defined. Otherwise
some $R\leq Q$ forces that for some rational $a\in[0,1]$ we have $|d(A_{\delta}\cap$

$\dot{r})-a|<\epsilon/8$ . By extending $R$ further, we may decide $i$ such that for
all $m\geq n_{i}$

(18) $R|\vdash|\nu_{m}(A_{\delta}\cap\dot{r})-a|<\epsilon/8$ .
We may assume that $i$ is large enough so that $2^{-i}<\epsilon/4$ . But some $Q_{t}$

for $t\in T_{n}$ . is compatible with $R$ , and by (16) and (17) it forces that
there are $m$ and $m’$ greater than $n_{i}$ such that

$R|\vdash|\nu_{m}(A_{\delta}\cap\dot{r})-\nu_{m’}(A_{\delta}\cap\dot{r})|\geq 2\epsilon/2-2^{-i+1}>\epsilon/2$ .

But this contradicts (18). ロ
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