MAXIMAL MEASURE ALGEBRAS IN $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$

ILIJAS FARAH

Let \mathcal{Z}_0 denote the ideal of asymptotic density zero subsets of \mathbb{N} ,

$$\mathcal{Z}_0 = \{ X \subseteq \mathbb{N} : \lim_{n \to \infty} |X \cap n| / n = 0 \}$$

and let $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ denote the quotient Boolean algebra. It is known that $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ includes a measure algebra of Maharam character 2^{\aleph_0} as a subalgebra ([3], see also [2] and [1]). In this note I will show that the existence of a maximal measure subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ of character strictly smaller than 2^{\aleph_0} is relatively consistent with ZFC, answering a question of David Fremlin.

Let \mathcal{S}_{κ} be the forcing for adding κ side-by-side Sacks reals, with countable support. Let \mathcal{D} be the family of all subsets of \mathbb{N} that have density. Let \mathcal{Z}_0 be the ideal of sets of asymptotic density zero. Recall that $I_n = [2^n, 2^{n+1})$ and $\nu_n(A) = |A \cap I_n|/2^n$, then $d^*(A) =$ $\limsup_{n \to \infty} \nu_n(A)$ and $d(A) = \lim_{n \to \infty} \nu_n(A)$, if it exists. A family of sets \mathcal{A} is ε -independent with respect to μ if for every finite $F \subseteq \mathcal{A}$ and every $p: F \to \{\pm 1\}$ we have $|\mu(\bigcap_{A \in F} A^{p(A)}) - 2^{-|F|}| \leq \varepsilon$. Here μ can be a measure or a convex mean.

If $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ and $m \in \mathbb{N}$ then we say that \mathcal{A} is ε -independent at m if it is ε -independent with respect to ν_m .

A family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is a maximal stochastically independent family with respect to d if it is included in \mathcal{D} , stochastically independent with respect to d, and maximal with respect to these properties.

Lemma 1. A family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is stochastically independent (with respect to d) if and only if for every finite $F \subseteq \mathcal{A}$ and every $\varepsilon > 0$ there exists n such that F is ε -independent at every $m \ge n$.

Fix an uncountable cardinal κ .

Lemma 2. Assume CH. Then there is a family $\{A_{\alpha} : \alpha < \omega_1\}$ that is maximal stochastically independent with respect to d such that in the extension by S_{κ} it remains maximal.

Proof. Let $(P_{\alpha}, \dot{r}_{\alpha})$ $(\alpha < \omega_1)$ enumerate all pairs such that P_{α} is a condition in S_{ω_1} and \dot{r}_{α} is a name for a subset of \mathbb{N} . We construct

I would like to thank David Fremlin for conversations on this topic, and in particular for providing a direct proof of Theorem 3 from Lemma 2.

ILIJAS FARAH

 A_{α} ($\alpha < \omega_1$) by recursion. Assume $\mathcal{A}_{\delta} = \{A_{\alpha} : \alpha < \delta\}$ has been constructed. Consider $(P_{\delta}, \dot{r}_{\delta})$. If P_{δ} does not force that $\mathcal{A}_{\delta} \cup \{\dot{r}_{\delta}\}$ is stochastically independent, choose any A_{δ} such that $\mathcal{A}_{\delta} \cup \{A_{\delta}\}$ is stochastically independent.

Otherwise, find a fusion sequence Q_t $(t \in T)$ of conditions extending P_{δ} indexed by a perfect tree $T \subseteq 2^{<\mathbb{N}}$ and $\{n_i : i \in \mathbb{N}\}$ as follows. Let T_k be the k-th level of T, and re-enumerate \mathcal{A}_{α} as $\{A'_i : i \in \mathbb{N}\}$. Write $\mathcal{A}'_k = \{A'_i : i \leq k\}$.

- (1) $(i+1)n_i < n_{i+1}, n_1 = 1,$
- (2) T branches only at the $n_i + 1$ -st level for $i \in \mathbb{N}$, and only once. Thus $|T_{n_i}| = i$.
- (3) $Q_t \leq Q_s$ if $s \subseteq t$.
- (4) the fusion $Q = \bigcup_{f \in [T]} \bigcap_{n=1}^{\infty} Q_{f \upharpoonright n}$ is a condition in \mathcal{S}_{ω_1} .
- (5) If $t \in T_{n_i}$, then Q_t forces that $\mathcal{A}'_i \cup \{\dot{r}\}$ is 2^{-i} -independent at every $m \ge n_{i+1}$.
- (6) If $t \in T_{n_i}$, then Q_t decides $\dot{r} \cap I_m$ for all $m < n_{i+1}$.

This can be accomplished by using the standard means. That such sequences can be found is the only property of S_{κ} that we shall need.

Enumerate each T_{n_i} as $t_1^i, \ldots t_i^i$, and write $t_j^i = t_i^i$ for j > i. Now pick A_{δ} so that for all i and $j < n_{i+1} - n_i$ we have

(7)
$$A_{\delta} \cap I_{n_i+j} = u_j^i$$
, where $Q_{t_i^i} \Vdash \dot{r} \cap I_{n_i+j} = u_j^i$.

Then for every *i* the family $\mathcal{A}'_i \cup \{A_\delta\}$ is 2^{-i} -independent at each $m \ge n_{i+1}$, hence $\mathcal{A}_\delta \cup \{A_\delta\}$ is stochastically independent.

It remains to prove that $\mathcal{A} = \{A_{\alpha} : \alpha < \omega_1\}$ is maximal in the extension by \mathcal{S}_{κ} . We need to prove that for every name \dot{r} for a subset of \mathbb{N} and every condition P, P does not force that $\mathcal{A} \cup \{\dot{r}\}$ is independent. Assume otherwise. We may assume $\kappa = \omega_1$, by picking an elementary submodel M of a sufficiently large H_{λ} such that M is closed under ω -sequences, of size \aleph_1 , and large enough, and intersecting \mathcal{S}_{κ} with M.

Fix δ such that $(P_{\delta}, \dot{r}_{\delta}) = (P, \dot{r})$. We claim that Q as in (4) forces that $\{A_{\delta}, \dot{r}\}$ is not independent. Otherwise some $R \leq Q$ decides i such that $\{A_{\delta}, \dot{r}\}$ are 1/4-independent at all $m \geq n_i$. But some Q_t , for $t \in T_{n_i}$ is compatible with R, and by (7) it forces that $A_{\delta} \cap I_m = \dot{r} \cap I_m$ for some $m \geq n_i$, a contradiction.

Theorem 3. Assume CH. Then there is a subalgebra \mathcal{B} of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ such that (\mathcal{B}, d) is a measure algebra of Maharam character \aleph_1 and in the extension by \mathcal{S}_{κ} it is a maximal subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ with this property.

After preliminary lemmas, we give two proofs of this theorem. The first one is shorter and it uses Lemma 2, while the second one provides a more robust object and involves an extension of the proof of Lemma 2 that may be of an independent interest.

Lemma 4. If $A \in \mathcal{D}$ and $f: A \to \mathbb{N}$ is a strictly increasing surjection, then $d^*(f(B)) = d^*(B)d(A)$.

Proof. Let $A = \{n_i : i \in \mathbb{N}\}$ be its increasing enumeration, and let $g \colon \mathbb{N} \to \mathbb{N}$ be such that $g(m) = |A \cap m|$. and let $B = \{n_i : i \in C\}$. Then $d^*(B) = \limsup_j |B \cap j|/j = \limsup_j |B \cap j|/g(j) \cdot g(j)/j$. But $\lim_j g(j)/j = d(A)$, and $\limsup_j |B \cap j|/g(j) = d^*(C)$.

A proof of Theorem 3 using Lemma 2. By Lemma 2, in the extension by S_{κ} there is a maximal stochastically independent family \mathcal{A} of size \aleph_1 . By [4, §491], \mathcal{A} generates a subalgebra \mathcal{B}_0 of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ that is isomorphic to a measure algebra of character \aleph_1 , and the measure on \mathcal{B} is given by d. Let \mathcal{B}' be a maximal subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ that includes \mathcal{B} and such that (\mathcal{B}', d) is a measure algebra.

Let \mathcal{B}_A denote the factor algebra, $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$. Assume there is a nonzero $A \in \mathcal{B}_0$ such that $(\mathcal{B}_0)_A = \mathcal{B}'_A$. Let $A = \{n_i : i \in \mathbb{N}\}$ be its increasing enumeration. The map $\Phi : \mathcal{P}(A) \to \mathcal{P}(\mathbb{N})$ defined by

$$\Phi(\{n_j : j \in C\}) = C$$

satisfies the formula $d(A)d^*(\Phi(B)) = d^*(B)$, by Lemma 4. Therefore it sends $(\mathcal{B}_0)_A$ to a subalgebra of $\mathcal{P}(\mathbb{N})/\mathcal{Z}_0$ that is its maximal measure subalgebra of Maharam character \aleph_1 .

We may therefore assume that for every nonzero $A \in \mathcal{B}_0$ the relative Maharam type of \mathcal{B}_A over $(\mathcal{B}_0)_A$ is infinite. By [3, §333], there is a partition of unity A_i $(i \in \mathbb{N})$ such that each \mathcal{B}_{A_i} is relatively Maharam homogeneous and atomless. Therefore by applying Maharam's theorem we may find $A \in \mathcal{B} \setminus \mathcal{B}_0$ such that $\mathcal{A} \cup \{A\}$ is stochastically independent, contradicting the maximality of \mathcal{A} .

Lemma 5. Assume A_0, \ldots, A_{n-1} are stochastically independent in some atomless measure space (X, μ) and B is a measurable set of measure 1/2 such that for every Boolean combination C of A_0, \ldots, A_{n-1} we have $\mu(B\Delta C) \ge \varepsilon$ for some $\varepsilon > 0$. Then there is A_n stochastically independent with A_0, \ldots, A_{n-1} and such that $\mu(A_n \cap B) \le 1/2 - \varepsilon$.

Proof. Let $C_s = \bigcap_{i=0}^{n-1} A_i^{s(i)}$ for $s: n \to \{\pm 1\}$. Choose A_n so that $\mu(A_n \cap C_s) = 1/2$ and $\mu(A_n \cap C_s \cap B)$ is minimal for all s.

A proof of Theorem 3 using the proof of Lemma 2. Let $(P_{\alpha}, \dot{r}_{\alpha})$ ($\alpha < \omega_1$) enumerate all pairs such that P_{α} is a condition in \mathcal{S}_{ω_1} and \dot{r}_{α} is a name for a subset of \mathbb{N} . We construct A_{α} ($\alpha < \omega_1$) by recursion. Assume $\mathcal{A}_{\delta} = \{A_{\alpha} : \alpha < \delta\}$ has been constructed. Consider $(P_{\delta}, \dot{r}_{\delta})$.

ILIJAS FARAH

If P_{δ} forces that \dot{r} belongs to the measure algebra generated by \mathcal{A}_{δ} , or if it does not force that $d(\dot{r}) = 1/2$, then choose any A_{δ} such that $\mathcal{A}_{\delta} \cup \{A_{\delta}\}$ is stochastically independent.

Otherwise, some $P \leq P_{\delta}$ forces that \dot{r} does not belong to the measure algebra generated by \mathcal{A}_{δ} . If in the forcing extension for every m there is a Boolean combination C_m of elements of \mathcal{A}_{δ} such that $d(C_m \Delta \dot{r}) \leq 2^{-m}$, then $D = \bigcup_m \bigcap_{n=m}^{\infty} C_m$ satisfies $d(D\Delta \dot{r}) = 0$. Therefore we may extend P further to decide a rational number $\varepsilon > 0$ such that for every finite Boolean combination C of elements of \mathcal{A}_{δ} we have $d(C\Delta \dot{r}) \geq \varepsilon$. Find a fusion sequence Q_t ($t \in T$) of conditions extending P indexed by a perfect tree $T \subseteq 2^{<\mathbb{N}}$ and $\{n_i : i \in \mathbb{N}\}$ as follows. Let T_k be the k-th level of T, and re-enumerate \mathcal{A}_{α} as $\{A'_i : i \in \mathbb{N}\}$. Write $\mathcal{A}'_k = \{A'_i : i \leq k\}$.

- (8) $2(i+1)n_i < n_{i+1}, n_1 = 1,$
- (9) T branches only at the $n_i + 1$ -st level for $i \in \mathbb{N}$, and only once. Thus $|T_{n_i}| = i$.
- (10) $Q_t \leq Q_s$ if $s \subseteq t$.
- (11) the fusion $Q = \bigcup_{f \in [T]} \bigcap_{n=1}^{\infty} Q_{f \restriction n}$ is a condition in \mathcal{S}_{ω_1} .
- (12) If $t \in T_{n_i}$, then for every Boolean combination C of elements of \mathcal{A}'_i , the condition Q_t forces that

$$\max(\nu_m(C\Delta \dot{r}), \nu_m(d(C \setminus \dot{r}))) \ge \varepsilon/2$$

for every $m \ge n_{i+1}$.

- (13) \mathcal{A}'_i is 2^{-i-1} -independent at each $m \ge n_{i+1}$.
- (14) If $t \in T_{n_i}$, then Q_t decides $\dot{r} \cap I_m$ for all $m < n_{i+1}$.

This can be accomplished by using the standard means. That such sequences can be found is the only property of S_{κ} that we shall need.

Enumerate each T_{n_i} as $t_1^i, \ldots t_i^i$, and write $t_j^i = t_i^i$ for j > i. Now pick A_{δ} so that for all i and $j < n_{i+1} - n_i$ we have (let $m = n_i + j$)

- (15) A_{δ} is 2^{-i} -independent with \mathcal{A}'_i at m, and
- (16) If j < i, then $Q_{t_j^i} \Vdash \nu_m(A_\delta \cap \dot{r}) \le 1/2 \varepsilon/2 + 2^{-i}$,
- (17) If $j \ge i$, then $Q_{t_{j-i}^i} \Vdash \nu_m(A_\delta \setminus \dot{r}) \le 1/2 \varepsilon/2 + 2^{-i}$.

This can be achieved by using a discrete version of Lemma 5. Then for every *i* the family $\mathcal{A}'_i \cup \{A_\delta\}$ is 2^{-i} -independent at each $m \ge n_{i+1}$, hence $\mathcal{A}_{\delta} \cup \{A_{\delta}\}$ is stochastically independent.

It remains to prove that the algebra \mathcal{B} generated by $\mathcal{A} = \{A_{\alpha} : \alpha < \omega_1\}$ is maximal in the extension by \mathcal{S}_{κ} . We will prove that for every name \dot{r} for a subset of \mathbb{N} and every condition P, P either forces that \dot{r} belongs to \mathcal{B} or some extension of P forces that $A_{\delta} \cap \dot{r} \notin \mathcal{D}$.

Assume otherwise, and let (P, \dot{r}) be a pair such that P forces that \dot{r} does not belong to B and that $\dot{r} \cap A_{\delta}$ is in \mathcal{D} for all δ . We may assume that $P \Vdash d(\dot{r}) = 1/2$ and $\kappa = \omega_1$.

Fix δ such that $(P_{\delta}, \dot{r}_{\delta}) = (P, \dot{r})$. Let $\varepsilon > 0$ be as in the construction of A_{δ} . Then Q as in (11) forces that $d(A_{\delta} \cap \dot{r})$ is not defined. Otherwise some $R \leq Q$ forces that for some rational $a \in [0, 1]$ we have $|d(A_{\delta} \cap \dot{r}) - a| < \varepsilon/8$. By extending R further, we may decide i such that for all $m \geq n_i$

(18) $R \Vdash |\nu_m(A_\delta \cap \dot{r}) - a| < \varepsilon/8.$

We may assume that *i* is large enough so that $2^{-i} < \varepsilon/4$. But some Q_t for $t \in T_{n_i}$ is compatible with R, and by (16) and (17) it forces that there are *m* and *m'* greater than n_i such that

$$R \Vdash |\nu_m(A_\delta \cap \dot{r}) - \nu_{m'}(A_\delta \cap \dot{r})| \ge 2\varepsilon/2 - 2^{-i+1} > \varepsilon/2.$$

But this contradicts (18).

REFERENCES

- [1] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Memoirs of the American Mathematical Society, vol. 148, no. 702, 2000.
- [2] _____, Analytic Hausdorff gaps II: the density zero ideal, Israel J. Math. 154 (2006), 235-246.
- [3] D.H. Fremlin, Measure theory, vol. 3, Torres-Fremlin, 2002.
- [4] _____, Measure theory, vol. 4, Torres-Fremlin, 2003.

Department of Mathematics, York University, Toronto, Matematicki Institut, Kneza Mihaila 35, Belgrade, and Fields Institute, Toronto

E-mail address: ifarah@mathstat.yorku.ca

URL: http://www.mathstat.yorku.ca/~ifarah