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In these lectures I will focus on the interaction between forcing, com-
binatorial methods and definability issues in set theory. The interplay be-
tween these topics has been remarkably fruitful, and I will illustrate it in the
following three contexts: Definable Wellorders, Cardinal Characteristics at
Uncountable Cardrnals and Models of the $Pr\cdot oper$ . Forct $ng$ Axiom. The first of
these topics is a classical one in set theory, although interesting results have
recently been proved and interesting open problems remain. The second of
these topics is quite new and provides fertile ground for the application of
new forcing methods. The last topic is more specialised but does hold some
surprises and has led to a new kind of forcing iteration.

Part 1: Definable Wellorders

In ZF, AC is equivalent to the statement:

$H(\kappa^{+})$ can be wellordered for every $\kappa$ .

A natural question is: When can we obtain a definable wellorder of $H(\kappa^{+})$ ?
By a $\Sigma_{n}$ definable wellorder of $H(\kappa^{+})$ we mean a wellorder of $H(\kappa^{+})$ which is
$\Sigma_{7l}$ definable over $H(\kappa^{+})$ with $\kappa$ as a parameter. We first note the following:
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Remarhs. 1. If $n$ is at least 3, then $\kappa$ can be eliminated, as $\{\kappa\}$ is $\Pi_{2}$

definable.
2. If $\lambda$ is a limit cardinal and $H(\kappa^{+})$ has a definable wellorder for cofinally
many $\kappa<\lambda$ , then $H(\lambda)$ has a definable wellorder: We glue together the least
definable wellorder of smaller $H(\kappa^{+})$ ’s for those $\kappa$ for which such a wellorder
exists; if $\lambda$ is a strong limit cardinal then the result is in fact a $\Sigma_{2}$ definable
wellorder of $H(\lambda)$ (without parameters). For this reason we will focus on
definable wellorders of $H(\kappa^{+})$ .

We also consider $\Sigma_{n}$ definable wellorders of $H(\kappa^{+})$ with parameters, i.e.
wellorders of $H(\kappa^{+})$ which are $\Sigma_{n}$ definable over $H(\kappa^{+})$ with arbitrary el-
ements of $H(\kappa^{+})$ as parameters

Definable wellorders and Large Cardinals

A $\Sigma_{n}$ definable wellorder of $H(\omega_{1})$ (with/without parameters) corresponds
to a $\Sigma_{n+1}^{1}$ definable wellorder of the reals (with/without real parameters). We
have:

Theorem 1 (Mansfield [25]) If there is a $\Sigma_{2}^{1}$ wellorder of the reals then every
real belongs to $L$ .
(Martin-Steel [26]) A $\Sigma_{n+2}^{1}$ wellorder of the reals is consistent with $n$ Woodin
cardmals but inconsistent $w\iota thn$ Woodin cardinals and a measurable cardinal
above them.

Do large cardinals impose a similar restriction on the existence of definable
wellorders of $H(\omega_{2})$ ? We say that a forcing is small iff it has size less than
the least inaccessible cardinal. Small forcings preserve all large cardinals.

Theorem 2 (A spero-Friedman $[2J)$ There is a small forcing which forces $CH$

and a definable wellorder of $H(\omega_{2})$ .

The above wellorder is not $\Sigma_{1}$ . In fact:

Theorem 3 (Woodin) If there is a measurable Woodin cardinal and $CH$

holds then there is no wellorder of the reals which is $\Sigma_{1}$ over $H(\omega_{2})$ in the
parameter $\omega_{1}$ .

However:
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Theorem 4 (Avraha’ $r\iota$-Shelah $[^{6}(iJ)$ There $\iota s$ a small forct $ng$ which forces the
negatZon of $CHa\uparrow\iota d$ a wellorder of the reals whtch $\iota s\Sigma_{1}$ over $H(\omega_{2})m$ the
$paramete7\omega_{1}$ .

This leaves the following open problem:

Question 1. Is there a small forcing which forces a $\Sigma_{2}$ wellorder of $H(\omega_{2})$ ?

I’ll say something now about the proof of Theorem 2. It has two ingredi-
ents, Canomcal Functzon coding and Strongly type-guessing coding (A spero).

Canonical Function coding

For each $\alpha<\omega_{2}$ choose $f_{\alpha}$ : $\omega_{1}arrow\alpha$ onto and define $g_{\alpha}$ : $\omega_{1}arrow\omega_{1}$ by:

$g_{\alpha}(\gamma)=$ ordertype $f_{\alpha}[\gamma]$ .

$g_{\alpha}$ is a (canonical function” for $\alpha$ .

Now code $A\subseteq\omega_{2}$ by $B\subseteq\omega_{1}$ as follows:

$\alpha\in A$ iff $g_{\alpha}(\gamma)\in B$ for a club of $\gamma$ .

Assuming GCH, the forcing to do this is $\omega$-strategically closed and $\omega_{2}- cc$ .

Aspero coding

A club-sequence in $\omega_{1}$ of height $\tau$ is a sequence $\vec{C}=(C_{\delta}|\delta\in S)$ where
$S\subseteq\omega_{1}$ is stationary and each $C_{\delta}$ is club in $\delta$ of ordertype $\tau.\vec{C}$ is strongly
type-guessing iff for every club $C\subseteq\omega_{1}$ there is a club $D\subseteq\omega_{1}$ such that for
all $\delta$ in $D\cap S$ , ordertype $(C\cap C_{\delta}^{+})=\tau$ , where $C_{\delta}^{+}$ denotes the set of successor
elements of $C_{\delta}$ . An ordinal $\gamma$ is perfect iff $\omega^{\gamma}=\gamma$ .

Lemma 5 (A spero) Assume $GCH$. Let $B\subseteq\omega_{1}$ . Then there is an $\omega-$

strategically closed, $\omega_{2}$ -cc forct $ng$ that forces; $\gamma\in B$ iff the $\gamma$ -th perfect ordinal
$\iota s$ the height of a strongly type-guessing club sequence.
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Now to prove Theorem 2, proceed as follows: Assume GCH. Write $H(\omega_{2})$

as $L_{\omega_{2}}[A],$ $A\subseteq\omega_{2}$ . Use Canonical Function coding to code $A$ by $B\subseteq$

$\omega_{1}$ . And use Asper6 coding to code $B$ definably over $H(\omega_{2})$ . There is a
problem however: $B$ only codes $H(\omega_{2})$ of the ground model, not $H(\omega_{2})$ of
the extension!

The solution is to perform both codings ($(simultaneously$” The forcing is
a hybrid forcing, situated halfway between iteration and product.

Now we look beyond $\omega_{2}$ .

Theorem 6 (Asper6-Friedman [lJ) There is a class forcing which forces
$GCH$, preserves all supercompact cardinals (as well as a proper class of n-
huge cardinals for each n) and adds a definable wellorder of $H(\kappa^{+})$ for all
regular $\kappa\geq\omega_{1}$ .

Using the Remark 2 from the start our discussion of definable wellorders,
we then have:

Corollary 7 There is a class forcing which forces $GCH$, preserves all su-
percompact cardirials (as well as a proper class of n-huge cardinals for each
n$)$ and adds a (parameter-free) definable wellorder of $H(\delta)$ for all cardinals
$\delta\geq\omega_{2}$ which are not successors of singulars.

What about successors of singulars? Here there is an obstruction:

Theorem 8 (Asper6-Friedman [1]) Suppose that there is a $j$ : $L(H(\lambda^{+}))arrow$

$L(H(\lambda^{+}))$ fixing $\lambda$ , with critical point less than $\lambda$ . Then there is no definable
wellorder of $H(\lambda^{+})$ with parameters.

The reason for this is that by Kunen’s argument refuting the existence of
a nontrivial elementary embedding of $V$ into $V$ , the hypotheses of Theorem
8 imply that there can in fact be no wellorder of $H(\lambda^{+})$ inside the model
$L(H(\lambda^{+}))$ . But the following remains open:

Question 2. Is there a small forcing that adds a definable wellorder of
$H(\aleph_{\omega+1})$ with parameters?

Regarding $\Sigma_{1}$ definable wellorders:
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Theorem 9 ($Fr\iota$ edman-Holy [14]) There $\iota s$ a class forct $ngwh\iota ch$ forces $GCH_{f}$

preserves all supercompact cardrnals (as well as a proper class of n-huge cardi-
nals for each n) and adds a $\Sigma_{1}$ definable wellorder of $H(\kappa^{+})$ with parameters
for all regular $\kappa\geq\omega_{1}$ .

This result is based on a stronger result, which shows that one can in fact
force a strong form of condensation for a predicate on $A$ on $\kappa^{+}$ which codes
$H(\kappa^{+})$ , assuming that $\kappa$ is regular and uncountable. However if one is not
allowed arbitrary parameters, then the following is still open:

Question 3. Is there a small forcing that adds a $\Sigma_{1}$ definable wellorder of
$H(\omega_{3})$ ?

Definable wellorders and Forcing Axioms

I’ll next look at definable wellorders in the presence of generalisations of
Martin’s axiom, such as BPFA (the Bounded Proper Forcing Axiom) and
BMM (the Bounded Martin’s Maximum). For the definition of these axioms
please look ahead to the start of Part 3 of these notes.

Theorern 10 ($Fr^{v}i$ edman $[lOJ)$ MA is consistent with a $\Sigma_{3}^{1}$ wellorder of the
reals (assurning only $ConZFC$).
(Cazcedo-Friedman $[6J)$ BPFA $+\omega_{1}=\omega_{1}^{L}$ (which is consistent relative to a
reflecting cardrnal) zmplies that there is a $\Sigma_{3}^{1}$ wellorder of the reals.

Theorem 11 $(H_{J}orth[23J)$ Assuming not $CH$ and every real has a $\#_{\rangle}$ there
is no $\Sigma_{3}^{1}$ wellorder of the reals.

Question 4. Does BPFA $+(0^{\#}$ does not exist” imply that there is a $\Sigma_{3}^{1}$

wellorder of the reals?
Question 5. Is BMM consistent with a projective wellorder of the reals?
(PFA is not.)

Surprisingly, the following appears to be unresolved (but should not be dif-
ficult):

Question 6. Is MA consistent with the nonexistence of a projective wellorder
of the reals (relative to Con ZFC)?
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For $H(\omega_{2})$ :

Theorem 12 (Cazcedo-Velickovic $[7J)$ BPFA $+\omega_{1}=\omega_{1}^{L}$ zmplies that there
is a $\Sigma_{1}$ definable wellorder of $H(\omega_{2})$ .

Theorem 13 (Larson [24]) Relative to a supercompact limit of supercom-
pacts, there is a model of MM with a definable wellorder of $H(\omega_{2})$ .

The forcing axioms mentioned have little effect at cardinals past $\omega_{2}$ . In-
deed the above results easily imply the following for larger $H(\kappa)$ :

Theorem 14 MA is consistent with a definable wellorder of $H(\kappa^{+})$ for all
$\kappa$ .
(Reflecting cardinal) BSPFA is consistent with a definable wellorder of $H(\kappa^{+})$

for all $\kappa$ .
(A supercompact limit of supercompacts) MM is consistent with a definable
wellorder of $H(\kappa^{+})$ for all regular $\kappa\geq\omega_{1}$ .

Definable Wellorders and Cardinal Characteristics

This adds to large cardinals and forcing axioms a new context for the
study of definable wellorders. The general question is: To what extent are
the known results about cardinal characteristics on $\omega$ consistent with the ex-
istence of a projective wellorder of the reals? A general method for attacking
such questions is provided by:

The Template iteration $\mathbb{T}[12]$ : This is a countable support, $\omega_{2}- cc$ iteration
which adds a $\Sigma_{3}^{1}$ wellorder of the reals (and a $\Sigma_{1}$ wellorder of $H(\omega_{2})$ ). The
iteration is not proper, but is S-proper for certain stationary $S\subseteq\omega_{1}$ .

This leads to the broad project of mixing the template iteration with a
variety of iterations for controlling cardinal characteristics. Results obtained
in this way are the following:

Theorem 15 (Fischer-Friedman $[9J)$ Each of the following is consistent with
a $\Sigma_{3}^{1}$ wellorder of the reals: $0<c,$ $b<a=s,$ $b<\mathfrak{g}$ .
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Here, $b=$ the bounding nuniber, $\mathfrak{a}=$ the almost disjointness number, $\mathfrak{s}=$

the splitting number aiid $\mathfrak{g}=$ the groupwise density number. What allows
these results to go through is that the template iteration $\mathbb{T}$ is $\omega^{\omega}$ bounding
and cari be mixed with any countable support proper iteration of posets of
size $\omega_{1}$ .

One can also ask for projective wrtnesses to cardinal characteristics. A
sample result:

Theorem 16 (Friedman-Zdomskyy [21]) It is consistent that $a=\omega_{2}$ and
there $\iota s$ an infinite $\Pi_{2}^{1}$ maximal almost disjoint family.

Question 7. Is it consistent with $a=\omega_{2}$ that there is an infinite $\Sigma_{2}^{1}$ maximal
almost disjoint family?

Definable Wellorders can be consider in many other contexts as well. Here
are some sample open problems:

Questions.
8. Is it consistent that for all infinite regular $\kappa$ , GCH fails at $\kappa$ and there is
a definable wellorder of $H(\kappa^{+})$ ?
9. Is the tree property at $\omega_{2}$ consistent with a projective wellorder of the
reals?
10. Is it consistent that the nonstationary ideal on $\omega_{1}$ is saturated and there
is a $\Sigma_{4}^{1}$ wellorder of the reals?
11. [16] shows that it is consistent for GCH to fail at a measurable cardinal $\kappa$

while there is a definable wellorder of $H(\kappa^{+})$ . Is this consistent if one requires
$2^{\kappa}$ to be greater than $\kappa^{++}$ ?

Part 2; Cardinal Characteristics at $\kappa$

Cardmal characteristics on $\omega$ is a vast subject. Some examples of such char-
acteristics appear in Blass’ survey article for the Handbook of Set Theory:

$\mathfrak{a},$ $b,$ $0,$ $\mathfrak{e},$ $\mathfrak{g},$
$\mathfrak{h},$ $i,$ $m,$ $\mathfrak{p},$ $\mathfrak{r},$ $\mathfrak{s},$ $t,$ $\iota\iota$

These are all at most $c$ , the cardinality of the continuum.
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Now suppose that $\kappa$ is regular and uncountable. We consider analogues of
some of the above for $\kappa$

$a(\kappa),$ $b(\kappa),$ $\mathfrak{d}(\kappa)\ldots$

Why is this worth doing? Here are four reasons:

1. Higher iterated forcing: Cardinal Characteristics at $\omega$ are to countable
support iterations what Cardinal Characteristics at $\kappa$ are to $\kappa$-supported
iterations. The theory of iterations with uncountable support is an interesting
and developing area in the theory of iterated forcing.

2. The large cardinal context: Cardinal Characteristics at a measurable car-
dinal present interesting new challenges, mixing iterated forcing techniques
with elementary embedding techniques.

3. Global behaviour as $\kappa$ varies, internal consistency: There are sometimes
interesting interactions between cardinal characteristics at different cardinals.
Also, one can ask for inner models exhibiting global behaviours of cardinal
characteristics $($

($internal$ consistency”), which as in the large cardinal context
demand a mix of iterated forcing and elementary embedding techniques.

4. Solve problems at $\kappa$ that are unsolved at $\omega$ : In at least one case, the natural
analogue of an unsolved problem at $\omega$ can be solved at an uncountable regular
$\kappa$ , which at least gives us a feeling of progress.

I’ll illustrate these themes with some examples. First let’s consider the
most fundamental of all cardinal characteristics, the cardinal characteristic
$2^{\kappa}$ .

Global behavzour:

Theorem 17 (Corollary to Easton’s Theorem) It is consistent that $2^{\alpha}=$

$\alpha^{++}$ for all regular $\alpha$ .

To prove this, Easton used an Easton product of the forcings Cohen $(\alpha, \alpha^{++})$

(this adds $\alpha^{++}$ many $\alpha$-Cohen subsets of $\alpha$ , for each regular $\alpha$ ).
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Internal consistency:

Theorem 18 $(Fnedman- OndreJ^{ovi\acute{c}}[17])$ Assuming that $0^{\#}$ exists, there is
$an$ inner model in which $2^{\alpha}=\alpha^{++}$ for all regular $\alpha$ .

The Easton product does not work for this result, as it can be shown
that the existence of $0^{\#}$ rules out the existence of generics over $L$ for $\alpha-$

Cohen forcing when $\alpha$ has uncountable cofinality in $V$ . Instead, one uses a
Reverse Easton iteration of the Cohen $(\alpha, \alpha^{++})$ forcings.

Large cardrnal context:

Theorem 19 (Woodin) Assume that $\kappa$ is hypermeasurable. Then in a forc-
ing extension, $\kappa$ is measurable and $2^{\kappa}=\kappa^{++}$ .

By “hypermeasurable” I mean $H(\kappa^{++})$-hypermeasurable, i.e., there is an
elementary embedding $j$ : $Varrow M$ with critical point $\kappa$ such that $H(\kappa^{++})$

belongs to $M$ . Woodin used a Reverse Easton iteration of the Cohen $(\alpha, \alpha^{++})$

forcings for $\alpha\leq\kappa,$ $\alpha$ inaccessible, followed by Cohen $(\kappa^{+}, \kappa^{++})$ . But we11 see
later that the proof is much easier if we replace Cohen by Sacks. This was
discovered by considering our next cardinal characteristic, the dominating
number $0(\kappa)$ :

Global Behaviour:

Theorem 20 (Cummings-Shelah $[8J)$ It is consistent that $\mathfrak{d}(\alpha)=\alpha^{+}<z^{\alpha}$

for all regular $\alpha$ .

The forcing used is a Reverse Easton iteration of a product of $\alpha$-Cohen
forcings followed by an $\alpha^{+}$ -iteration of $\alpha$-Hechler forcings.
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Large cardmal context;

Theorem 21 (Friedman-Thompson [18]) Assume that $\kappa$ is hypermeasur-
able. Then in a $gener\iota c$ extension, $\kappa\iota s$ measurable and $\mathfrak{d}(\kappa)=\kappa^{+}<z^{\kappa}$ .

The forcing used is a Reverse Easton iteration of $\alpha$-Sacks products, $\alpha\leq\kappa$ ,
$\alpha$ inaccessible. Two interesting points are:

$i$ . If you try this with $\kappa$-Cohen and $\kappa$-Hechler instead of $\kappa$-Sacks then you
need some supercompactness; hypermeasurability is insufficient.

ii. The proof is easier than Woodin’s proof, which only gives $\kappa^{+}<2^{\kappa}$ and
not $0(\kappa)<2^{\kappa}$ .

Global Behaviour in the Large Cardinal Context

Theorem 22 (Friedman-Thompson [1 $9J)$ Assume that $\kappa$ is hypermeasur-
able. Then in a generic extension, $\kappa$ is measurable and $0(\alpha)=\alpha^{+}<2^{\alpha}$

for$\cdot$ all regular $\alpha$ .

Here one needs (a Reverse Easton iteration of) an $\alpha$-Sacks product at
inaccessible $\alpha\leq\kappa$ , an $\alpha$-Cohen product followed by $\alpha$-Hechler iteration at
successors of non-inaccessibles, and something new at $\alpha^{+},$ $\alpha$ inacessible (an
$\alpha^{+}$ -Cohen product followed by a mixture of an $\alpha$-Sacks product and $\alpha^{+_{-}}$

Hechler iteration).

Remark. Friedman-Honzik [15] works out Easton’s Theorem in the large
cardinal setting. A sample result is: Suppose that $F$ is an Easton function
of the form $F(\kappa)=$ the least $\lambda$ such that $H(\lambda^{+})\models\varphi(\kappa)$ for some formula $\varphi$ .
Then there is a cofinality-preserving forcing that realises the Easton function
$F$ at all regulars and preserves the measurability of $\kappa$ whenever $\kappa$ is $F(\kappa)-$

hypermeasurable.

Question 12. What Global Behaviours for $0(\alpha)$ are possible when there is a
measurable cardinal?

We now look at the cardinal characteristic CofSym $(\alpha)$ . Let Sym $(\alpha)$ de-
note the group of permutations of $\alpha$ under composition. Then CofSym $(\alpha)$
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denotes tlte least $\lambda$ sucli that Sym $(\alpha)$ is the union of a strictly increasing
$\lambda$-chain of subgroups.

Sharp and Thonias [27]: CofSym $(\alpha)$ can be anything reasonable.

But its Global Behaviour is nontrivial!

Theorem 23 (Sharp-Thomas [27]) $(a)$ Suppose that $\alpha<\beta$ are regular and
$GCH$ holds. Then $m$ a $cofinal\iota ty$-preserving forcing extension, $CofSym(\alpha)=$

$\beta$ .
$(b)$ If $CofSym(\alpha)>\alpha^{+}$ then $CofSym(\alpha^{+})\leq CofSym(\alpha)$ .

Question 13. Is it consistent that CofSym $(\omega)=$ CofSym $(\omega_{1})=\omega_{3}$ ?

CofSym has been studied in the Large Cardinal setting:

Theorem 24 (Friedman-Zdomskyy [20]) Suppose that $\kappa$ is hypermeasurable.
Then in a forcing extension, $\kappa$ is measurable and $CofSym(\kappa)=\kappa^{++}$ .

As in earlier cases, the obvious approach does not work: The forcing
used in [27] adds a dominating real and therefore supercompactness would
be needed to adapt it to the context of measurable cardinals. Instead, we use
an iteration of Miller $(\kappa)$ (with continuous club-splitting) and a generalisation
of Sacks $(\kappa)$ , based on a different proof of the Sharp-Thomas result that is
found in [28]. The proof also introduces yet another cardinal characteristic,
$\mathfrak{g}_{ci}(\kappa)$ , the groupwise density number for continuous partitions.

I turn now to the relationship between $\mathfrak{a}(\kappa)$ and $0(\kappa)$ . The former is the
minimum size of a (size at least $\kappa$ ) maximal almost disjoint family of subsets
of $\kappa$ An old open problem is the following:

Question 14. Does $\mathfrak{d}(\omega)=\omega_{1}$ imply $\alpha(\omega)=\omega_{1}$?

Suprisingly, this has been solved at uncountable cardinals!

Theorem 25 (Blass-Hyttinen-Zhang $[5J)$ For uncountable $\alpha,$ $0(\alpha)=\alpha^{+}$ im-
plies $\mathfrak{a}(\alpha)=\alpha^{+}$
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Are there other open questions for $\omega$ which can be solved for uncountable
cardinals? Here are some sample problems:

Questzon 15. Can $\mathfrak{p}(\kappa)$ be less than $t(\kappa)$ ? Maybe it will help to assume that
$\kappa$ is a large cardinal.
$Quest\iota on16$ . Can $\mathfrak{s}(\kappa)$ be singular?

More open Questions,
17. (Without la ge cardinals) Is $b(\kappa)<a(\kappa)$ consistent for an uncountable $\kappa$ ?
18. Which Global Behaviours for $b(\alpha),$ $0(\alpha)$ are internally consistent? Cummings-
Shelah answered this for ordinary consistency.
19. (Without supercompactness) Can $\mathfrak{s}(\kappa)$ be greater than $\kappa^{+}$ ? Zapletal
showed that one (almost) needs a hypermeasurable.
20. Is it consistent that CofSym $(\kappa)=\kappa^{+++}$ for a measurable $\kappa$?

Part 3: Some models of $PFA$ and BPFA

Let $C$ be a class of forcings.

FA $(C)$ is the Forcing Axiom for $C$ : For $P$ in $C$ , there is a filter on $P$ which
hits $\omega_{1}$ -many predense sets in $P$ .

BFA $(C)$ is the Bounded Forcing Axiom for $C$ : For $P$ in $C$ , there is a filter
which hits $\omega_{1}$ -many predense sets of size $\leq\omega_{1}$ in $P$ .

PFA $=$ FA(Proper) $=$ the Proper Forcing Axiom,
BPFA $=$ BFA$(Proper)=$ the Bounded Proper Forcing Axiom.

Useful Fact. (Bagaria, Stavi-V\"a\"an\"anen) BPFA is equivalent to the $\Sigma_{1}$ ele-
mentarity of $H(\omega_{2})^{V}$ in $H(\omega_{2})^{V[G]}$ for all proper $P$ and P-generic $G$ .

Theorem 26 $(a)$ (Baumgartner [4]) If there is a supercompact then $PFA$

holds in a proper forcing extension.
$(b)$ (Goldstern-Shelah [22]) If there is a reflecting cardinal $(i.e.$ , a regular $\kappa$

such that $H(\kappa)\prec\Sigma_{2}V)$ then BPFA holds in a proper forcing extension.

Cardinal Minimality

$V$ is cardinal minimal iff whenever $M$ is an inner model with the correct
cardinals (i.e., Card$M=$ Card$V$ ) then $M=V$ .
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A “local” version: Fix a cardinal $\kappa$ . $V$ is $k\overline{\iota}$ -mrmmal iff whenever $M$ is an
inner model with the correct cardinals $\leq ki$ then $H(\kappa)^{\Lambda l}=H(\kappa)$ .

Examples
$L$ is trivially cardinal minimal.
Let $x$ be $\kappa$-Sacks, $\kappa$-Miller or $\kappa$-Laver over $L$ . Then $L[x]$ is not cardinal
minimal, because $L$ and $L[x]$ have the same cardinals.
Let $f$ : $\kappaarrow\kappa^{+}$ be a minimal collapse of $\kappa^{+}$ to $\kappa$ over $L$ . Then $L[f]$ is
cardinal minimal.

More interesting examples are given by the core models.

Theorem 27 Let $K$ be the core model for a measurable, hypermeasurable,
strong or Woodin cardinal. Then $K$ is cardinal minimal. In fact, $K$ is $\kappa-$

minimal for all $\kappa\geq\omega_{2}$ .

$\omega_{1}$ -minimality fails for core models, and in fact whenever $0^{\#}$ exists:

Theorem 28 Suppose that $o\#$ exists. Then $V$ is not $\omega_{1}$ -minimal. In fact,
there is an inner model $M$ with the correct $\omega_{1}$ which is a forcing extension
of $L$ .

Other sources of cardinal minimality are models of forcing axioms.

SPFA $=$ FA(Semiproper) $=$ the Semiproper Forcing Axiom
BSPFA $=$ BFA $(Semiproper)=$ the Bounded Semiproper Forcing Axiom

Theorem 29 (Velickovic $[29J)$ Suppose that SPFA holds. Then $V$ is $\omega_{2^{-}}$

minimal.

There is a related result for BPFA:

Theorem 30 ($Ca$zcedo-Velickovic $[7J)$ Suppose that BPFA holds. Then $V$ is
$\omega_{2}$ -minimal with respect to inner models satisfying BPFA: If $M$ is an inner
model satisfying BPFA with the correct $\omega_{2}$ then $H(\omega_{2})^{M}=H(\omega_{2})$ .

The above results are optimal in the following sense:
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Theorem 31 (Friedman [1 $3J)(a)$ Suppose that there is a supercompact.
Then $m$ some forcing extension, $PFA$ holds and the universe $\iota s$ not $\omega_{2^{-}}$

mmlmal.
$(b)$ Suppose that there is a reflecting cardinal. Then $m$ some forcing exten-
sion, BPFA holds and the un verse $\iota s$ not $\omega_{2}$ -minimal.

The proofs are based on:

Lemma 32 (Collapsing to $\omega_{2}$ with “finite conditions” [11]) Assume $GCH$.
Suppose that $\kappa$ is inaccessible and $S$ denotes $[\kappa]^{\omega}$ of V. Then there is a
forcing $P$ such that:
$(a)P$ forces $\kappa=\omega_{2}$ .
$(b)P$ is S-proper, and hence preserves $\omega_{1}$ , in any extension of $V$ in which $S$

remains stationary.

We sketch the proof of Theorem 31(a). Suppose that $\kappa$ is supercom-
pact. Collapse $\kappa$ to $\omega_{2}$ with finite conditions, producing $V[F]$ . Now perform
Baumgartner’s PFA iteration, but at stage $\alpha<\omega_{2}$ , choose a forcing in the
model $V[F[\alpha, G_{\alpha}]$ which is S-proper there; argue that it is also S-proper in
$V[F, G_{\alpha}]$ . Important: Only use names from $V[Fr\alpha, G_{\alpha}]$ , to keep the forcing
small! (This is the method of “Diagonal Iteration“.) Then verify that PFA
(indeed FA($S$ –Proper)) holds in $V[F, G]$ . As $\kappa=\omega_{2}$ holds both in $V[F]$

and in $V[F, G]$ , this shows that $V[F, G]$ is not $\omega_{2}$ -minimal.

How do we collapse an inaccessible $\kappa$ to $\omega_{2}$ with finite conditions? Here
is a brief sketch (for more details see [11]).

Let $\#:[\kappa]^{\omega}arrow\kappa$ be injective. $P$ consists of all pairs $p=(A, S)$ such that:

1. $A$ is a finite set of disjoint closed intervals $[\alpha, \beta],$ $\alpha\leq\beta<\kappa$ , cof $(\alpha)\leq\omega_{1}$ .
2. $S$ is a finite subset of $[\kappa]^{\omega}$ $(^{(}$ side conditions”).
3. Technical (see [11]).
4. Let $F$ be the set of uncountable cofinality $\alpha$ for $[\alpha, \beta]$ in $A$ , together with
$\kappa$ . The height of $x\in S$ is the least element of $F$ greater than $\sup x$ . Then:
$i$ . (Closure under truncation) $x$ in $S,$ $\alpha$ in $F$ implies $x\cap\alpha$ in $S$ .
ii. (Almost an $\in$-chain) If $x,$ $y\in S$ have the same height then $\#(x)\in y$ ,
$\#(y)\in x$ or $x=y$ .
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The forciiig is $i-C^{\cdot}C$ and adds a club in $\vdash\dot{\iota}$ consisting only of ordinals of cofinality
$\leq\omega_{1}$ . So $h$ beconies $\omega_{2}$ .

Questions,
21. Suppose that BSPFA holds. Then is $V\omega_{2}$-minimal with respect to inner
models satisfying BSPFA?
22. Is there a forcing which collapses an inaccessible to $\omega_{3}((with$ finite con-
ditions” ?

In conclusion I would like to say that it was a pleasure for me to deliver
these lectures to the stimulating Japanese set theory community, and I look
forward to further collaborations between the G\"odel Center and Japan!
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