Coanalytic sets with Borel sections

藤田 博司 (Hiroshi Fujita) Ehime University

Fact. (Fujita and Mátrai) Let $B \subset \mathbf{R} \times \mathbf{R}$ be a Borel set such that the horizontal section B^y is Σ^0_{α} for every $y \in \mathbf{R}$. Then there is a dense G_{δ} set $D \subset \mathbf{R}$ such that $B \cap (\mathbf{R} \times D)$ is $\Sigma^0_{\alpha} \upharpoonright \mathbf{R} \times D$.

This can be proved by a straightforward induction using A.Louveau's solution ([Lo]) of the section problem of Borel sets. This fact has been used in order to solve an old problem by M.Laczkovich about differences of Borel measurable function (See [FM].)

Theorem. The following statements are equivalent:

- (1) If $A \subset \mathbf{R} \times \mathbf{R}$ is Π_1^1 and all horizontal sections A^y are Borel, then there is a dense G_δ set $D \subset \mathbf{R}$ such that $A \cap (\mathbf{R} \times D)$ is Borel;
- (2) similar, but A^y are Σ^0_{α} and $A \cap (\mathbf{R} \times D)$ is $\Sigma^0_{\alpha} \upharpoonright \mathbf{R} \times D$;
- (3) similar, but A^y are closed and $A \cap (\mathbf{R} \times D)$ is Borel;
- (4) BP(Σ_2^1), i.e., every Σ_2^1 set of reals has the property of Baire. \blacktriangleleft

PROOF. From (1) to (2): use FACT.

From (2) to (3): immediate from the case $\alpha = 1$ of (2).

From (3) to (4): given Σ_2^1 set $P \subset \mathbf{R}$, let $A \subset \mathbf{R} \times \mathbf{R}$ be Π_1^1 such that $y \in P \iff \exists x[\langle x,y \rangle \in A]$. Uniformize A by a function $f: P \to \mathbf{R}$ with Π_1^1 graph. Apply (3) to the graph of f. Then $P \cap D$ is Σ_1^1 and D is co-meager. So P has BP.

From (4) to (1): this is the main part of this note.

Let \mathbb{C} be the Cohen poset. Given a transitive model M of set theory, let Co(M) be the set of all \mathbb{C} -generic reals over M.

Lemma A. (Solovay) BP(Σ_2^1) holds if and only if Co(L[r]) is co-meager for every $r \in \mathbb{R}$.

Let WO be set the of $w \in {}^{\omega}2$ which codes a wellordering on ω . For each $q \in WO$ let ||w|| be the order-type (i.e., countable ordinal) that w codes.

Definition. A set $X \subset \mathbf{R} \times \omega_1$ is Π_2^1 in the codes if the set

$$\left\{ \langle x, w \rangle \in \mathbf{R} \times {}^{\omega} 2 \mid w \in WO, \langle x, ||w|| ra \in X \right\}$$

is (lightface) Π_2^1 .

Lemma B. Let $X \subset \mathbf{R} \times \omega_1$ be Π_2^1 in the codes. Suppose that for every $y \in \mathbf{R}$ there is $\xi < \omega_1$ such that $\langle y, \xi \rangle \in X$. Then there is a countable ordinal δ such that for every $c \in \operatorname{Co}(L)$ there is $\xi < \delta$ such that $\langle c, \xi \rangle \in X$.

PROOF OF $(4) \Longrightarrow (1)$ [taking Lemmas for granted]. We put $\mathbf{R} = {}^{\omega}\omega$ and assume A is lightface Π^1_1 . Let $f: \mathbf{R} \times \mathbf{R}$ be a recursive function such that $A = f^{-1}[WO]$. Since A^y is Borel, the image $f[A^y \times \{y\}]$ si bounded in WO, that is to say,

$$\forall y \in \mathbf{R} \exists \xi < \omega_1 \forall x \Big[\langle x, y \rangle \in A \implies ||f(x, y)|| < \xi \Big].$$

For each $\xi < \omega_1$ set

$$WO_{\xi} = \left\{ w \in WO \mid ||w|| < \xi \right\}$$

and let

$$X = \left\{ \langle y, \xi \rangle \mid f[A^y \times \{y\}] \subset WO_{\xi} \right\}.$$

Observe that X is Π_2^1 in the codes. Applying LEMMA B we find a countable ordinal δ such that

$$\forall c \in \mathrm{Co}(L) \exists \xi < \delta \Big[\langle c, \xi \rangle \in X \Big].$$

Then we have

$$A \cap (\mathbf{R} \times \operatorname{Co}(L)) = f^{-1}[\operatorname{WO}_{\delta}] \cap (\mathbf{R} \times \operatorname{Co}(L)).$$

By Lemma A there is a dense G_{δ} set $D \subset Co(L)$.

PROOF OF LEMMA B. Let $\varphi(y,w)$ be a Π_2^1 formula such that

$$\langle y, \xi \rangle \in X \iff \exists w \in WO \Big[\xi = ||w|| \land \varphi(y, w) \Big]$$

 $\iff \forall w \in WO \Big[\xi = ||w|| \implies \varphi(y, w) \Big].$

Then we have, by the assumption of the lemma,

(*)
$$\forall y \exists \xi < \omega_1 \forall w \Big[w \in WO \land ||w|| = \xi \implies \varphi(y, w) \Big].$$

Let $\varphi^*(y,\xi)$ stand for " $\forall w \cdots$ " part of (*). Then $\varphi^*(y,\xi)$ is absolute for every proper class model in which ξ is countable.

Let $c \in Co(L)$ and suppose that $\langle c, \xi \rangle \in X$. Let $g : \omega \to \xi$ be $Coll(\xi)$ -generic over L[c]. Then

$$L[c,q] \models \varphi^*(c,\xi)$$

so that there are forcing conditions $p \in \mathbb{C}$ and $q \in \text{Coll}(\xi)$ such that c meets p, g meets q and

$$\langle p, q \rangle \Vdash_{\mathbb{C} \times \text{Coll}(\xi)} L[\dot{c}, \dot{g}] \models \varphi^*(\dot{c}, \check{\xi}).$$

Then by absoluteness of forcing relations,

$$L \models \left[\langle p, q \rangle \Vdash_{\mathbb{C} \times \text{Coll}(\xi)} \varphi^*(\dot{c}, \check{\xi}) \right].$$

By homogeneity of the poset $Coll(\xi)$,

$$L \models \left[\langle p, \emptyset \rangle \Vdash_{\mathbb{C} \times \text{Coll}(\xi)} \varphi^*(\dot{c}, \check{\xi}) \right].$$

where \emptyset is the weakest member of $Co(\xi)$.

For each $\xi < \omega_1$ let

$$Y_{\xi} = \Big\{ p \in \mathbb{C} \ \Big| \ L \models \Big[\langle p, \emptyset \rangle \ \|_{\mathbb{C} \times \operatorname{Coll}(\xi)} \ \varphi^*(\dot{c}, \check{\xi}) \ \Big] \, \Big\}.$$

Then $\bigcup_{\xi<\omega_1} Y_{\xi}$ is pre-dense in \mathbb{C} . By ccc, there is $\delta<\omega_1$ such that $\bigcup_{\xi<\delta} Y_{\xi}$ is already pre-dense in \mathbb{C} .

Daisuke Ikegami observed that \mathbb{C} in Lemma B can be replaced by other alboreal Suslin ccc forcing notions. Daisuke also pointed out that Sacks forcing does not satisfy Lemma B nor clause (3) of Theorem.

By Montgomery's result on the category quantifier, we obtain

Corollary. Assume BP(Σ_2^1). Let $A \subseteq \mathbb{R} \times \mathbb{R}$ be Π_1^1 such that A^y is Σ_{α}^0 for every $y \in \mathbb{R}$. Then the set

$$\exists^* A = \left\{ x \in \mathbf{R} \mid A_x \text{ is non-meager} \right\}$$

is Σ_{α}^{0} .

Question. Does the last statement imply $BP(\Sigma_2^1)$?

References

[FM] H.Fujita and T.Mátrai, On the difference property of Borel measurable functions, Fund. Math. to appear.

[Lo] A.Louveau, A separation theorem for Σ_1^1 , Trans. Amer. Math. Soc. **260** (1980), 363–378.