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Abstract

In his famous cyclotomic paper {9] R.M. Wilson gave a difference family construction over fnitc
ficlds which was subsequently extended to commutative rings with unity by S. Furino [5].
Here we prove that the constructions of both Wilson and Furino are obtainable as special cases
of a more general difference family construction over groups G admitting an automorphism group
with suitable properties. In particular, we prove that the existence of a Frobenius group with abelian
complement of order k and kernel G of order v implies the existence of a disjoint (v, k, k — 1) difference
family over G. Equivalently, it implies the existence of a (v, k, k — 1) near resolvable design admitting
G as an automorphism group acting sharply transitively on the points.

1 Preliminaries

This paper gives some difference family constructions in groups G exploiting suitable properties of Aut(G),
the automorphism group of G.

Our main result contains, as particular cases, a difference family construction over finite ficlds by R.M.
Wilson [9] and its generalization over commutative rings with unity by S. Furino [5).

We shall use the following exponential notation. For g € G and ¢ € Aul(G), the image of g under ¢ is
denoted by g®. If ® is a subset of Aut(G), then g® denotes the set {g®|# € ®}. Hence, in the case where
® is a subgroup of Aut(G), g% is the orbit of g under ®.

An element ¢ € Aut(G) is said to be semiregular on G if it fixes only the identity element of G. A subset
or multisubset ® of Aut((G) is semiregular on G if every ¢ € ® — {id¢} is such.

Let G be a group and let A be a subgroup of Aut(G). By A.G we denote the group with elements in the
cartesian product set A x G and composition law defined by the rule

(e, 2).(8,9) = (af, 2Py) Vo, B € AV, y € G.

If A is semiregular on G, then A.G is said to be a Frobenius group with kernel G and complement A.

As a classical example of Frobenius group we may take the group of affinities of a finite field F,, namely
the group A.G where G and A respectively are the additive and multiplicative group of F;.
For general background on Frobenius groups see e.g. [7].

Throughout the paper, every union will be understood as multiset union and the union of x copies of a
multiset A will be denoted by #A.
Given a subset B of a group G, by list of differences from B one means the multiset
AB = {bc= ) |b,c € B,b# ¢} when G is multiplicative
or the multiset
AB ={b-c¢|b,c € B,b # c} when G is additive.
Let R be a ring with unity and let U(R) be the group of units of R. Of course u € U(R) may be

considered as an automorphism of the additive group of R, the action of u being defined by r* = ru for
any 7 € R. We note that if B is a subset of U(R), then to speak of AB is ambiguous. In fact in this case
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both of the above expressions of ADB make sensc. To avoid this ambiguity, we denote them by Ay B and
AR B respectively.
We point out the following elementary observations.

Proposition 1.1 Let R be a ring with unity. If B is a subset of U(R) such that AgB is also contained
in U(R), then Ay B is semiregular on the additive group of K.

Proof. An element of Ay B is of the form bc™! with b and ¢ distinct elements of B. If we have
x(be™1) = x for some z € R, then we have xb = x:c and hence x(b— ¢) =0. But b—c€ ArB C U(R) so
that we necessarily have z = 0, i.e. x is the identity element of the additive group of R. O

Proposition 1.2 If ® is a subset of a group G such that A® is semiregular on G, then any set of the
form ¢® with g a nonidentity element of G has the same size as ®.

Proof. It suffices to notc that if ¢ is a non-identity element of G, then for distinct elements ¢ and 9 of
& we have g # ¢g¥ otherwise ¢1)~! should be an element of A® fixing g. O

If F is a family of subsets of a group G then the list AF of dilferences from F is defined by AF = U AF.
Fer

A (v, k, )) difference family (briefly DF) over a group G of order v is a multiset F of k-subsets of G called

base blocks such that AF covers G — {1} exactly A times. In other words, each element z of G — {1} is

representable in exactly A ways in the form x = ab~! with both a and b belonging to some base block.

Such a difference family generates the 2 — (v, k. A) design (G, devF) where devF is the development of F,

i.c. the multiset defined by devF = {F + g|F € F,g9 € G}.

A difference family is said to be disjoint when its base blocks are pairwise disjoint.

A group of multipliers of a difference family F over a group G, is a subgroup M of Aut(G) such that

F* € devF for any FF € F and any p € M.

It is straightforward to check that if M is a group of multipliers of F, then M.G is an automorphism

group of (G, devF).

For general background on difference families one can see [1] or [2].

2 The theorem of Wilson

In his fundamental cyclotomic paper [9], R.M. Wilson proved the following result.

Theorem 2.1 Let k > 1 and A > 0 be integers such that 2\ is a multiple of either k or k — 1. Then, for
prime powers ¢ > k + 1, the necessary condition

AMg—1)=0(modk(k — 1))
for the existence of a (q,k,A)-DF is ulso sufficient.
Observe that by replicating m times each base block of a (v, k, A)-DF one obviously obtains a (v, k, Am)-

DF. With this in mind, it is easy to recognize that the above theorem may be equivalently formulated as
follows.

Theorem 2.2 For any prime power q > k+1 there ezist (g, k, c(k—1))- and (q, k+1,e(k+1))-DF’s where
e= m Also, in the case of both ¢ and k odd, there ezist (g, k, ﬂkT_-ll)— and (g, k+1, ﬂ%l)-DF’s.

Sketch of proof. Let F be a union of e distinct cosets of the group, say H, of f—roots of unity and let
S be a set of representatives for the cosets of H. Then, F = {sF|s € S} and 7' = {sFU {0}|s € S}
are (g, k,e(k — 1))- and (g, k + 1,e(k + 1))-DF’s respectively.

When both ¢ and k are odd we may take S of the form S, U S; with |S;]| = |S2| = l2£| For i = 1,2 the
families F; = {sF|s € S;} and F’'; = {sF U {0} | s € S;} are (q,k, e(";,;l—))- and (¢, k + 1, Sﬂc2+—12)-DF’S
respectively. 0
Note, in particular, that applying the above theorem with ¢ = 3 (mod 4) and k = 9;—1 one recovers the
(g, %1, i’f—’) Paley difference sets.
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3 The theorem of Furino

The difference family construction over finite ficlds by R.M. Wilson was extended to commutative rings
with unity by S. Furino [5]. His main result may be reformulated as follows.

Theorem 3.1 Let R be a commutative ring with unity, |R| = v, and let F be a k-subset of U(R) which
is union of e distinct cosets of a subgroup B of U(R) (hence |B| = k/e). Let us denote by S a complete
system of representatives for the B-orbits on R — {0} (that is, S is a subset of R with the property that
for any r € R — {0} there is ezactly one pair (s,b) € S x B such that r = sb). Then, in the hypothesis
that ArF C U(R), we have that the families F = {sF|s € S} and F' = {sF U {0} |'s € S} respectively
are (v, k,e(k — 1))- and (v,k + 1,e(k + 1))-DF’s over the additive group of R.

Furino also observes that when k is odd and R has no involutions, then F and F' are splittable into two
(v, k, #)- and (v, k + 1, ﬂ—'i;—ll) difference families respectively.

4 A more general construction

We will recover both the constructions of Wilson and Furino as particular cases of the following new
general construction.

Theorem 4.1 Let B.G be a Frobenius group with abelian complement B and kernel G of order v.

Let C be the centralizer of B in Aut(G) and let ® be a k-subset of C which is union of e distinct cosets
of B in C and such that A® is semireqular on G.

Then there ezist (v, k,e(k —1))- and (v,k + 1,e(k + 1))-DF’s over G.

With the additional hypothesis that both v and k are odd and that G is wbelian, the above difference
families split into two (v, k, —"’”‘%ﬂ)— and (v, k + 1, ‘—“‘2—+—Q) difference families, respectively.

Proof. Let S be a complete system of representatives for the B-orbits on G — {1}. We prove that
F = {s?|s € S} is a (v, k,e(k — 1))-DF over G.

First of all, since A® is semircgular on G, by Proposition 1.2, any member of F actually is a k-subset of
G.

By definition, we have ® = ©B where © is a sel, of e distinct representatives for the cosets of B in C.

It is easy to see that for any s € S we have

As® = U [sd’(s_l)@]B

($,0)ELXO
bH#8

Hence we have:

ar=ast= U U

ses (5.0)ELXxO s€8§
PF0

Now note that for any fixed pair (¢,0) € & x © with ¢ # 0 the list {s®(s7!)?|s € S} is a complete

system of representatives for the B-orbits on G' — {1}. To show this, it suffices to prove that if s and

L are distinct elements of S, then s?(s7!)? and t?(¢t=1)? belong to distinct B-orbits. In fact, assuming

the contrary, we would have [s?(s™1)?)? = t#(¢t~1)? for some B € B so that, taking into account that

B¢ = 3 and 63 = 30 since @ is contained in the centralizer of B, we have (t7's?)? = (¢71s”)?. Then,

since B is semiregular on G and ¢ # 6, we have t~1s% = 1, i.e., s = t which, by definition of S, would

imply s = t, a contradiction.

By the above paragraph, for any pair (¢, 0) € ®x© with ¢ # 6 we have U [s?(s71)?]B = G — {1}. Hence,
sES

since |{(¢,0) € ® x ©| ¢ # 0}| = e(k — 1), we have AF = *-)(G - {1}), i.e. Fis a (v, k,e(k - 1))-

difference family over G.

Now, let F' be the family obtained by appending the identity element of G to each base block of F,

namely 7' = {s® U {1} |s € S}. We have:
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AF =AF U | {s,s71}?
seS

Recalling that ® = BO, we have U s® = U U (sa)B.
sES SES BEBO
On the other hand it is easy to scc that for any fixed 8 € © the list {s? [s € S} is a complete system of

representatives for the B-orbits on G — {1} so that U (s°)B = G - {1}. Hence, since |®| = e, we have

SES
U UG =G -{1}).
sES €O
It follows that U {5,571}® = 2¢(G — {1}) and hence that AF’ covers G — {1} exactly e(k + 1) times.
sES
Now assume that kv is odd and that G is abelian. By the first hypothesis we can choose as system

S of representatives for the B-orbits on G — {1} a set of type S; U Sz with |S)] = |S2] = J%I and
52“-:{5*1'5651}. .
This is because if s € G — {1}, then s and s~ are in distinct B-orbits otherwise we should have s? = s~1
for a suitable § € B. This would imply s = (sﬁ—l)-l, i.e. s#7' =571 so that, since B is semiregular on
G, we would have § = 37!, Hence /3 = idg or 3 is an involution. But 3 = idg would imply s = s~!
which is absurd since v is odd and 8 cannot be an involution since k is odd.

We have F = FyUF, where, fori = 1,2, F; = {s?|s € S;}. Also, since C is abelian, we have AF; = AF,.
Then, since AF = “k=1)(G — {1}), we have AF; = *~1)/2(G — {1}) for i = 1,2. This means that each
Fiis a (v, k, 1) DF. _

Analogously, it is easy to see that each of the families 7/, = {s*U{1}|s € S;},i=1,2is a (v, k+1, "‘(k—;ll)-
DF. m]

Taking into account of Proposition 1.1, it is easy to see that the theorem of Furino is a particular
case of the above theorem.

Applying Theorem 4.1 with B = {1} we get the following corollary.

Corollary 4.2 If G is a group of order v admitting a k-set ® of automorphisms such that A® is semireg-
ular on G, then there exists a (v, k,k(k — 1))-DF over G.

Furino states the above corollary only in the case where G is the additive group of a commutative ring
R with unity and ® is a subset of U(R).

Corollary 4.3 Let A.G be a Frobenius group with kernel G of order v and abelian complement A of

order > k. Then there exist (v, k,e(k — 1))- and (v, k + 1,e(k + 1))-difference familics over G where
— k

€= Gedtk,JAD "

Proof. It suffices to apply Theorem 4.1 taking as B a subgroup of A of order % (which exists since A

is abelian and f divides its order) and taking as ® a union of ¢ distinct cosets of B in A. m]

Note that taking G and A as the additive and the multiplicative groups of a finite field, the above
corollary gives exactly our equivalent reformulation of Theorem 2.2 of Wilson’s Theorem 2.1.
A particular but remarkable case of Corollary 4.3 is the following.

Corollary 4.4 If A.G is a Frobentus group with kernel G of order v and abelian complement A of order
k, then there ezist (v, k,k — 1)- and (v, k + 1,k + 1)-difference families over G.

The following proposition, where we use the same notation as in Theorem 4.1, gives us more informations
about the automorphism group of the designs associated with the obtained (v, k,e(k — 1))- and (v, k +
1,e(k + 1))-DF’s.

Proposition 4.5 Let M be the normalizer of < ® > in Aut(G). Then both (G,devF) and (G, devF’)
admit M.G as an automorphism group.
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Proof. Let us consider, for instance, the design (G, devF). Let s® be a block of F, let p € M, and let ¢
be the element of S representing the B-orbit containing s#. Since M normalizes < & >, we have oy = ud
so that (s®)* = (s*)® = t® which also is a block of F. It follows that M is a group of multipliers of F
and hence that M.G is a group of automorphisms of (G, devF). O

5 An application to near resolvable designs

We recall that a (v, k, k — 1)-near resolvable design (bricfly NRB) is a triple (V, B, R) where (V,B) is a
2 — (v,k,k — 1) design and R is a partition of B (near resolution) into v classes (near parallel classes)
each of which consists of ”—Zl— pairwise disjoint blocks.

An automorphism group of such an NRB is a group of permutations on V leaving invariant R. We
say that (V, B, R) is regular over a group G if it admits G as an automorphism group acting regularly on
the points.

It is an easy matter to prove the following proposition.

Proposition 5.1 There exists a regular (v,k,k — 1)-NRB over a group G if and only if there ezists a
disjoint (v, k,k — 1)-DF over G.

More precisely, the regular (v,k,k — 1)-NRB’s over G are, up to isomorphisms, all the triples of type
(G,devF,R) where F is a disjoint (v,k,k —1)-DF and R = {{Fg|F € F} | g € G}.

In view of the above proposition it is natural to say that a disjoint (v, k, k — 1)-DF is the starter parallel
class of its associated NRB.

Since the (v, k,k — 1)-DF’s of Corollary 4.4 are disjoint (their base blocks are the A-orbits on G — {1})
we may state the following theorem.

Theorem 5.2 If there exists a Frobenius group with abelian complement A of order k and kernel G of
order v, then there exists a regular (v, k,k — 1)-NRB over G admitting the set of A-orbits on G — {1} as
a starter near parallel class.

As a consequence, if v is an integer of the form ¢;q2...g, where the ¢;’s are prime powers = 1 (mod k)
then there exists a regular (v, k, k — 1)-NRB over the additive group G(v) of the Galois ring of order v,
that is the direct product of the fields of orders q, ..., ¢gn. In fact it is easy to see that G(v) possesses a
semiregular group of automorphisms of order k. ‘

This has been already observed by Furino [6] and it may be obtained also combining the theorem of
Wilson 2.1 with a recursive technique making use of the concept of difference matriz [3). But Theorem
5.2 allows to get many new NRB’s, even over nonabelian groups. In fact, it is known that there exist
Frobenius groups with abelian complement and nonabelian kernel (see, e.g. [8]).

Example 1.

Let G = Z4; x Z4 and let a be the automorphism of G defined by a(x,y) = (y,3z + 3y). One can see
that the group A = {id, o, o} generated by « acts semiregularly on G — {0} so that A.G is a Frobenius
group.

Applying Theorem 5.2 we have that the set of A-orbits on G — {0}

F = {01, 13,30}, {10,03,31}, {11, 12, 21}, {20, 02, 22},{23,33,32}}
is the starter near parallel class of a regular (16,3,2)-NRB over G.

Example 2.

Let G be the additive group of the ring R = Myx2(Z2) of square matrices of order 2 with entries in
1 0 0 1 1 1 01 )

Zy. Let A = {(O 1) , (1 1) , (1 0)} be the subgroup of U(R) generated by (1 1). One can

check that A is semiregular on G so that A.G is a Frobenius group.

Then, applying Theorem 5.2 we have that
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7= {{
{51
{69690

is the starter near parallel class of a regular (16,3,2)-NRB over G.

We finally point out that many regular (¢, k,k — 1)-NRB’s over Fj2 with k a multiple of ¢ — 1 are
obtainable using a difference family construction given in (4].
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