0000000000
0 16870 20100 84-90 84

On generalized quadratic APN functions

T E KR T 22 BRI
f)i] #3K (Nobuo NAKAGAWA)

1. Generaliged quadratic APN functions.

Generalized quadratic APN functions was defined by S.Yoshiara. Let F’ and R be

vector spaces over GF(2). A function f from F to R is called almost perfect nonlinear
(APN) if
tH{z € F| f(z+a)+ f(z)=b} <2

for every a € F* and every b € It.
We define a mapping A.(f) : F— R for any a € F as

Ao(f)(z) = f(z +a) + f(2)

(the difference function of f w.r.t. a)

f is APN iff A,(f) is two to one map from F to Im(A,(f)) for any a € F such that
a # 0.
Strongly EA-equivalence of two functions f and g from F to R is defined as
glz)=L-f-¢(x)+ A(z) (Vz€F)

where ¢ is a bijective linear mapping on F and L is a bijective linear mapping on R
and A is an affine mapping from F to R.

rSrLprb R

A function f from F to R is called quadratic if

flx+y+2)+ flz+y)+ fly+2)+ fz+2z)+ f(z)+ f(y) + f(z) + f(0) =0

for all elements z, v, z of F. Define a function b; from F' x F onto R as

bi(z,y) = flz+y) + fz) + f(y) + f(0).

It holds that f is quadratic iff by(z,y) is bilinear.
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Suppose that f is quadratic. Then f is APN iff the equation f(z + a) + f(z) +
f(a) + f(0) = 0 has just two solusions, namely x = 0 and z = a for any a € F s.t.

a # 0.
We denote the alternating tensor product of F' by F' A F. A subspace W of F A F
is called a nonpure subspace if

Wn{zAy|z,ye F}={0}.
The following two theorems were observed by S.Yoshiara.

Theorem 1 (¢f.[10])
Let {e;, ez, ,en} be a basis of F. Then the function

f: Fw— FAF; Z:ce,»—) Z z;iz;(e; A ej)

1<i<j<n

is a quadratic APN function.

Proof) Put z = 5" xzie;, y = Y. vie;, 2 = Y zie;, for any 4, (x; + v + 2:) (x5 +y; + 25) +
(i +yi) (25 + y;)+ (@i + 20) (35 + 25) + (yi + 2) (Y5 + %) + TiZs + vy + z,z, = 0. Thus
faty+2)+fe+y)+ fy+2)+ flz+2) + f@) + fy) + f(2) =
Next, suppose that f(z +a) + f(z) + f(a) = 0 for any a # 0. We have f(:c+a) +
(a:)+f(a)—:c/\a, Hence z A a = 0. , Therefore z = 0 or z = a.

Theorem 2 (¢f.[10])
Let W be a nonpure subspace of F N F and consider the following maps.

f:F—FAF, and ow: FAF— (FAF)/W, u—u+ W.

then the function fw — ow - f is a quadralic APN function. Conversely suppose that
f is a quadratic APN function from F to R such that by is surjective. Then

f=%fw+A

holds for a suitable linear mapping v from F' A F onto R where W = Ker(vy) and A is
an affine mapping from F to R.

We put f := f, 4 for f in above theorem.

Proof of the first half.) Take any a # 0. Suppose that fw (z+a)+ fw(z)+ fw(a)+
fvv( )—O Thena:/\a+W—0

Thus £ A a € W and so, x A a = 0. Because W is a nonpure subspace Therefore
z=0o0rz=a.
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An automorphism g € GL(F') induces an automorphism § of F' A F' defined as

Q(Z a;jei A\ €j) = Z ai;9(e:) A gle;).

i<j i<j

Put G := { § | g € GL(F)}. For subspaces W,, W, of FAF, we defineW, is G-equivalent
to Wy iff W, = §(W)) for an automorphism g € GL(F).

Theorem 3 Suppose that f and g are quadratic APN functions from F to R such
that f = f,a and g = f 4 for 1, v are linear maps from F A F to R which kernels
are nonpure subspaces and A, A’ are affine maps from F to R. Then f is strongly
EA-equivalent to g if and only if Ker(y) is G-equivalent to Ker(7').

In the next section we know that there are nonpure subspaces of the codimension
n. Remark that (FF A F)/W = F if codim(W) = n.

We denote the set of nonpure subspaces of F' A F' which have the codimension n by
2, then the number of orbits of a permutation group (G’, Q) is equal to the number of
inequivalent quadratic APN functions on F. My aim is to obtain the number of orbits
of (G, Q).
(It seems that this is a very difficult problem!!)

2 Vector spaces of alternating bilinear forms over GF(2).

Let F be a n dimensional vector space over GF(2) whose basis is {ej, €, " ,en}
The set of alternating bilinear forms over F is a vector space of dimension n(n —1)/2
over GF(2). We denote this space by Alt(F') and the set of n x n alternating matrices
over GF(2) by A,(2).

We have

Alt(F) =2 A,(2) = FAF
B +— (B(ei, ej)) = (ai,j)e——> Z ai‘j(e,- AN 8]').
i<j
as vector spaces over GF(2) by the above correspondences.
The rank(B) for B € Alt(F) means the rank of the matrix (B(ei, ej)).

It is well known that the value of rank(B) is even for VB € Alt(F'). Nonzero pure
vectors of F' A F corespond to elements of Alt(F) with rank(B) = 2.
From now on, we will consider Alt(F') instead of F' A F.

Theorem 4 (Delsarte and Goethals(cf.[5]))
Let B be any element of Alt(F) where F be the finite field GF(2"). Then B(xz,y) is
represented as

B(z,y) = Tr(Lp(z)y)
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where

Lp(z) =D _(Ba” + (B2)™7)

and B; € F for 1 <i<r in the case m=2r+1.

Lp(z) =Y (Biz® + (Bx)* ") + Bra”
1=1

and B; € F for 1 <i<r—1 and B, € GF(2") in the case m=2r.

Tr is the absolute trace mapping, namely Tr(a) = a + a2 + a¥ + .-+ a®"". We
note that Lg € End(F). We write B = B(f, -+, ;) because B is determined by
Bi,+ B

The correspondence B(f1,---,5;) <> (81, -+, Br) gieves an isomorphism as vector
spaces between Alt(F) «» F x --- x F (r times) if n = 2r + 1, Alt(F) & F x --- %
F x GF(2") (r — 1 times of F,1 time of GF(27)) if n = 2r.

A non-pure subspace of F' A F coresponds to a subspace W of Alt(F') satisfying
rank(B) > 2 for all nonzero element B € W.

Theorem 5 (Delsarte and Goethals(cf.[5]))
Let W be a non-pure subspace of Alt(F) where F := GF(2"). Then dim(W) < (n? —
n)/2 —n.

We call W is a maximal non-pure subspace if the equality holds in the above
theorem.

Let W be a maximal non-pure subspace of Alt(F'). Then fy is a quadratic APN
function on F' because that R is isomorphic to (F'A F)/W.
For a r indeterminates polynomial g(zy,- - ,z,), we set

Wi(g(By,---,B;) =0):=={B(Br,-+-, ) | g(B1,- -+, B;) = 0}.

We have W (8, = 0) is a maximal nonpure subspace if gcd(e,n) = 1 as we note soon
after.

Especially W(3; = 0) is a maximal nonpure subspace and W (8, = 0) and W (3, =
0) are maximal nonpure subspaces if n is odd.

3 Pure vectors of Alt(F)
We have a necessary and suficient conditions such that B := B(S,-- -, 8,) is puer as
follows.
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Theorem 6 (1) Let m = 2r + 1. Suppose that 5 # 0. Then rank(B) = 2, (i.e.B is
pure)
if and only if

BaBE + BBy = BiBisr for 2<t <7 —1

and B8% + B1BE_, = BB,

(2) Let m = 2r. Suppose that By # 0. Then rank(B) = 2, (i.e.B is pure)
if and only if
BBl + 1By = BiBesr for 2<t <r -1,

2 4 2 p27+!
BBy + BrBr—y = ByBr_1
22r—t+! 2')r-—t+l

+ B1Bi+1 2,33 t—1 for 2<t<r-1.

2r—t+41

and ,62,8?

I computed the rank of vectors in maximal nonpure subspaces W (8, = 0), W(8; +

Tr(B3) = 0) and W(B; + Trr(B3) = 0) where Trr(z) = S°i_4 2% for n = 27, at
F = GF(25),GF(27), GF(2%) and GF(2°) by MAGMA.

On GF(2%),
| | rank 2| rank 4 | rank 6 |
W (6 = 0) 0 315 | 196
W (B, + Tr(B3) =0) |0 315 196
W (B, + Trr(B%) =0) [ 10 297 204
On GF(27),
[ | rank 2 | rank 4 [ rank 6 |
W (B, = 0) 0 2667 | 13716
W (B, + Tr(Bs) = 0) | 0 2667 | 13716
On GF(2%),
| | rank 2 | rank 4 | rank 6 |rank 8 |
W(p, = 0) 0 22491 | 583780 | 442304
W(B + Tr(B3) =0) |0 22491 | 583780 | 442304
W (B, + Trr(B; = 0) | 24 22499 | 583236 | 442816
On GF(2%),
| [rank 2 |rank 4 [rank 6 [rank8 |
W(B; = 0) 0 182427 | 21370020 | 112665280
W(B = Tr(Bs)) | 0 182427 | 21370020 | 112665280
The following nice observation was done by Yoshiara using dual basis of {e;,--- ,e,}

with respect to the trace mapping.
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Any pure vector z Ay in F A F corresponds to (B, ,06;) = (zy? + 2% y)i,.
T Ay o (zy? + 2%y, oyt + 2ty, 2y® + 2By, 2yt + 2%, ).

Hence ifu € W (B, = 0)N{zAy | z,y € F} thenu = 72 +1(a?" +a) = 0 where a = y/z,
and a® "1 =1ifz # 0, y # 0. Then clearly a = 1 iff ged(2¥ — 1,2" — 1) = 1. Therefore
a = 1 iff ged(k,n) = 1. It implies that W (B, = 0) is a maximal nonpure subspace

if and only if ged(n,k) = 1. Then fw(z) = £2*t1 which are well knowm as Gold
functions.

Yoshara also pointed out that fy (x) = 2 + tr(z®) for W := W (B, + tr(83) = 0).

Lastly we consider the following statement. Take a positive integer r such that
r > 3.

(V) Tr((u+ u?)~') = Tr(u) holds for any u € GF(2%) such that u # 0,u # 1.

If the statement (Q) is true for some r, then W(B; + Trr(83) = 0) is a maxi-
mal subspace and the corresponding function f(z) = z® + Trr(z°) is a APN func-
tion on GF(2%). Anyhow it seems that the cardinality of W (8, + Trr(8;) = 0) N
PV (Alt(GF(2?")) is relative small where PV (AIt(F)) is the set of pure vectors of

Alt(F).
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