On generalized quadratic APN functions

近畿大学理工学部理学科中川 暢夫 (Nobuo NAKAGAWA)

1. Generalized quadratic APN functions.

Generalized quadratic APN functions was defined by S.Yoshiara. Let F and R be vector spaces over GF(2). A function f from F to R is called almost perfect nonlinear (APN) if

$$\sharp \{x \in F | f(x+a) + f(x) = b \} \le 2$$

for every $a \in F^{\times}$ and every $b \in R$.

We define a mapping $\Delta_a(f): F \mapsto R$ for any $a \in F$ as

$$\Delta_a(f)(x) := f(x+a) + f(x)$$

(the difference function of f w.r.t. a)

f is APN iff $\Delta_a(f)$ is two to one map from F to $\mathrm{Im}(\Delta_a(f))$ for any $a \in F$ such that $a \neq 0$.

Strongly EA-equivalence of two functions f and g from F to R is defined as

$$g(x) = L \cdot f \cdot \ell(x) + A(x) \ (\forall \ x \in F)$$

where ℓ is a bijective linear mapping on F and L is a bijective linear mapping on R and A is an affine mapping from F to R.

$$F \xrightarrow{\ell} F \xrightarrow{f} R \xrightarrow{L} R$$

A function f from F to R is called quadratic if

$$f(x+y+z) + f(x+y) + f(y+z) + f(z+x) + f(x) + f(y) + f(z) + f(0) = 0$$

for all elements x, y, z of F. Define a function b_f from $F \times F$ onto R as

$$b_f(x, y) = f(x + y) + f(x) + f(y) + f(0).$$

It holds that f is quadratic iff $b_f(x, y)$ is bilinear.

Suppose that f is quadratic. Then f is APN iff the equation f(x+a) + f(x) + f(a) + f(0) = 0 has just two solutions, namely x = 0 and x = a for any $a \in F$ s.t. $a \neq 0$.

We denote the alternating tensor product of F by $F \wedge F$. A subspace W of $F \wedge F$ is called a nonpure subspace if

$$W \cap \{x \wedge y | x, y \in F \} = \{0\}.$$

The following two theorems were observed by S.Yoshiara.

Theorem 1 (cf.[10])

Let $\{e_1, e_2, \cdots, e_n\}$ be a basis of F. Then the function

$$\hat{f}: F \mapsto F \wedge F; \qquad \sum_{i=1}^{n} x_i e_i \mapsto \sum_{1 \leq i < j \leq n} x_i x_j (e_i \wedge e_j)$$

is a quadratic APN function.

Proof) Put $x = \sum x_i e_i$, $y = \sum y_i e_i$, $z = \sum z_i e_i$, for any i, $(x_i + y_i + z_i)(x_j + y_j + z_j) + (x_i + y_i)(x_j + y_j) + (x_i + z_i)(x_j + z_j) + (y_i + z_i)(y_j + z_j) + x_i x_j + y_i y_j + z_i z_j = 0$. Thus $\hat{f}(x + y + z) + \hat{f}(x + y) + \hat{f}(y + z) + \hat{f}(z + x) + \hat{f}(x) + \hat{f}(x) = 0$.

Next, suppose that $\hat{f}(x+a) + \hat{f}(x) + \hat{f}(a) = 0$ for any $a \neq 0$. We have $\hat{f}(x+a) + \hat{f}(x) + \hat{f}(a) = x \wedge a$. Hence $x \wedge a = 0$. Therefore x = 0 or x = a.

Theorem 2 (cf./10])

Let W be a nonpure subspace of $F \wedge F$ and consider the following maps.

$$\hat{f}: F \mapsto F \wedge F$$
, and $\varphi_W: F \wedge F \mapsto (F \wedge F)/W$, $u \mapsto u + W$.

then the function $f_W := \varphi_W \cdot \hat{f}$ is a quadratic APN function. Conversely suppose that f is a quadratic APN function from F to R such that b_f is surjective. Then

$$f = \bar{\gamma} \cdot f_W + A$$

holds for a suitable linear mapping γ from $F \wedge F$ onto R where $W = \operatorname{Ker}(\gamma)$ and A is an affine mapping from F to R.

We put $f := f_{\gamma,A}$ for f in above theorem.

Proof of the first half.) Take any $a \neq 0$. Suppose that $f_W(x+a) + f_W(x) + f_W(a) + f_W(0) = 0$. Then $x \wedge a + W = 0$.

Thus $x \wedge a \in W$ and so, $x \wedge a = 0$. Because W is a nonpure subspace. Therefore x = 0 or x = a.

An automorphism $g \in GL(F)$ induces an automorphism \hat{g} of $F \wedge F$ defined as

$$\hat{g}(\sum_{i < j} a_{i,j} e_i \wedge e_j) := \sum_{i < j} a_{i,j} g(e_i) \wedge g(e_j).$$

Put $\widehat{G} := \{ \widehat{g} \mid g \in GL(F) \}$. For subspaces W_1, W_2 of $F \wedge F$, we define W_1 is \widehat{G} -equivalent to W_2 iff $W_2 = \widehat{g}(W_1)$ for an automorphism $g \in GL(F)$.

Theorem 3 Suppose that f and g are quadratic APN functions from F to R such that $f = f_{\gamma,A}$ and $g = f_{\gamma',A'}$ for γ,γ' are linear maps from $F \wedge F$ to R which kernels are nonpure subspaces and A,A' are affine maps from F to R. Then f is strongly EA-equivalent to g if and only if $Ker(\gamma)$ is \widehat{G} -equivalent to $Ker(\gamma')$.

In the next section we know that there are nonpure subspaces of the codimension n. Remark that $(F \wedge F)/W \cong F$ if $\operatorname{codim}(W) = n$.

We denote the set of nonpure subspaces of $F \wedge F$ which have the codimension n by Ω , then the number of orbits of a permutation group (\hat{G}, Ω) is equal to the number of inequivalent quadratic APN functions on F. My aim is to obtain the number of orbits of (\hat{G}, Ω) .

(It seems that this is a very difficult problem!!)

2 Vector spaces of alternating bilinear forms over GF(2).

Let F be a n dimensional vector space over GF(2) whose basis is $\{e_1, e_2, \dots, e_n\}$. The set of alternating bilinear forms over F is a vector space of dimension n(n-1)/2 over GF(2). We denote this space by Alt(F) and the set of $n \times n$ alternating matrices over GF(2) by $A_n(2)$.

We have

$$Alt(F) \cong \mathbf{A}_n(2) \cong F \wedge F$$
$$B \longleftrightarrow \left(B(e_i, e_j)\right) := \left(a_{i,j}\right) \longleftrightarrow \sum_{i < j} a_{i,j}(e_i \wedge e_j).$$

as vector spaces over GF(2) by the above correspondences.

The rank(B) for $B \in Alt(F)$ means the rank of the matrix $(B(e_i, e_j))$.

It is well known that the value of rank(B) is even for $\forall B \in Alt(F)$. Nonzero pure vectors of $F \wedge F$ corespond to elements of Alt(F) with rank(B) = 2.

From now on, we will consider Alt(F) instead of $F \wedge F$.

Theorem 4 (Delsarte and Goethals(cf.[5]))

Let B be any element of Alt(F) where F be the finite field $GF(2^n)$. Then B(x,y) is represented as

$$B(x,y) = \operatorname{Tr}(L_B(x)y)$$

where

$$L_B(x) = \sum_{i=1}^r (\beta_i x^{2^i} + (\beta_i x)^{2^{2r+1-i}})$$

and $\beta_i \in F$ for $1 \le i \le r$ in the case m=2r+1.

$$L_B(x) = \sum_{i=1}^{r-1} (\beta_i x^{2^i} + (\beta_i x)^{2^{2r-i}}) + \beta_r x^{2^r}$$

and $\beta_i \in F$ for $1 \le i \le r-1$ and $\beta_r \in GF(2^r)$ in the case m=2r.

Tr is the absolute trace mapping, namely $\operatorname{Tr}(a) = a + a^2 + a^{2^2} + \cdots + a^{2^{n-1}}$. We note that $L_B \in \operatorname{End}(F)$. We write $B = B(\beta_1, \dots, \beta_r)$ because B is determined by β_1, \dots, β_r .

The correspondence $B(\beta_1, \dots, \beta_r) \leftrightarrow (\beta_1, \dots, \beta_r)$ gieves an isomorphism as vector spaces between $Alt(F) \leftrightarrow F \times \dots \times F$ (r times) if n = 2r + 1, $Alt(F) \leftrightarrow F \times \dots \times F \times GF(2^r)$ (r - 1 times of F, 1 time of $GF(2^r)$) if n = 2r.

A non-pure subspace of $F \wedge F$ coresponds to a subspace W of Alt(F) satisfying rank(B) > 2 for all nonzero element $B \in W$.

Theorem 5 (Delsarte and Goethals(cf.[5]))

Let W be a non-pure subspace of Alt(F) where $F := GF(2^n)$. Then $dim(W) \le (n^2 - n)/2 - n$.

We call W is a **maximal non-pure subspace** if the equality holds in the above theorem.

Let W be a maximal non-pure subspace of Alt(F). Then f_W is a quadratic APN function on F because that R is isomorphic to $(F \wedge F)/W$.

For a r indeterminates polynomial $g(x_1, \dots, x_r)$, we set

$$W(g(\beta_1, \dots, \beta_r) = 0) := \{B(\beta_1, \dots, \beta_r) \mid g(\beta_1, \dots, \beta_r) = 0\}.$$

We have $W(\beta_e = 0)$ is a maximal nonpure subspace if gcd(e, n) = 1 as we note soon after.

Especially $W(\beta_1 = 0)$ is a maximal nonpure subspace and $W(\beta_2 = 0)$ and $W(\beta_r = 0)$ are maximal nonpure subspaces if n is odd.

3 Pure vectors of Alt(F)

We have a necessary and sufficient conditions such that $B := B(\beta_1, \dots, \beta_r)$ is puer as follows.

Theorem 6 (1) Let m = 2r + 1. Suppose that $\beta_1 \neq 0$. Then rank(B) = 2, (i.e. B is pure)

if and only if

$$\beta_2 \beta_t^2 + \beta_1 \beta_{t-1}^4 = \beta_1^2 \beta_{t+1} \text{ for } 2 \le t \le r - 1$$

and $\beta_2 \beta_r^2 + \beta_1 \beta_{r-1}^4 = \beta_1^2 \beta_r^{2^{r+1}}$.

(2) Let m = 2r. Suppose that $\beta_1 \neq 0$. Then rank(B) = 2, (i.e.B is pure) if and only if

$$\begin{split} \beta_2\beta_t^2 + \beta_1\beta_{t-1}^4 &= \beta_1^2\beta_{t+1} \text{ for } 2 \leq t \leq r-1, \\ \beta_2\beta_r^2 + \beta_1\beta_{r-1}^4 &= \beta_1^2\beta_{r-1}^{2^{r+1}} \\ \text{and } \beta_2\beta_t^{2^{2r-t+1}} + \beta_1\beta_{t+1}^{2^{2r-t+1}} &= \beta_1^2\beta_{t-1}^{2^{2r-t+1}} \text{ for } 2 \leq t \leq r-1. \end{split}$$

I computed the rank of vectors in maximal nonpure subspaces $W(\beta_1 = 0)$, $W(\beta_1 + \text{Tr}(\beta_3) = 0)$ and $W(\beta_1 + \text{Trr}(\beta_3) = 0)$ where $\text{Trr}(x) = \sum_{i=0}^{r-1} x^{2^{2^i}}$ for n = 2r, at $F = GF(2^6)$, $GF(2^7)$, $GF(2^8)$ and $GF(2^9)$ by MAGMA. On $GF(2^6)$,

	rank 2	rank 4	rank 6
$W(\beta_1=0)$	0	315	196
$W(\beta_1 + \operatorname{Tr}(\beta_3) = 0)$	0	315	196
$W(\beta_1 + \operatorname{Trr}(\beta^3) = 0)$	10	297	204

On $GF(2^7)$,

	rank 2	rank 4	rank 6
$W(\beta_1=0)$	0	2667	13716
$W(\beta_1 + \operatorname{Tr}(\beta_3) = 0)$	0	2667	13716

On $GF(2^8)$,

	rank 2	rank 4	rank 6	rank 8
$W(\beta_1 = 0)$	0	22491	583780	442304
$W(\beta_1 + \operatorname{Tr}(\beta_3) = 0)$	0	22491	583780	442304
$W(\beta_1 + \mathrm{Trr}(\beta_3 = 0))$	24	22499	583236	442816

On $GF(2^9)$,

	rank 2	rank 4	rank 6	rank 8
$W(\beta_1=0)$	0	182427	21370020	112665280
$W(\beta_1 = \operatorname{Tr}(\beta_3))$	0	182427	21370020	112665280

The following nice observation was done by Yoshiara using dual basis of $\{e_1, \dots, e_n\}$ with respect to the trace mapping.

Any pure vector $x \wedge y$ in $F \wedge F$ corresponds to $(\beta_1, \dots, \beta_r) = (xy^{2^k} + x^{2^k}y)_{k=1}^r$.

$$x \wedge y \leftrightarrow (xy^2 + x^2y, xy^4 + x^4y, xy^8 + x^8y, xy^{16} + x^{16}y, \cdots).$$

Hence if $u \in W(\beta_k = 0) \cap \{x \land y \mid x, y \in F\}$ then $u = x^{2^k+1}(a^{2^k} + a) = 0$ where a = y/x, and $a^{2^k-1} = 1$ if $x \neq 0$, $y \neq 0$. Then clearly a = 1 iff $\gcd(2^k - 1, 2^n - 1) = 1$. Therefore a = 1 iff $\gcd(k, n) = 1$. It implies that $W(\beta_k = 0)$ is a maximal nonpure subspace if and only if $\gcd(n, k) = 1$. Then $f_W(x) = x^{2^k+1}$ which are well known as Gold functions.

Yoshara also pointed out that $f_W(x) = x^3 + tr(x^9)$ for $W := W(\beta_1 + tr(\beta_3) = 0)$. Lastly we consider the following statement. Take a positive integer r such that r > 3.

(\heartsuit) $Tr((u+u^2)^{-1}) = Tr(u)$ holds for any $u \in GF(2^{2r})$ such that $u \neq 0, u \neq 1$.

If the statement (\heartsuit) is true for some r, then $W(\beta_1 + \operatorname{Trr}(\beta_3) = 0)$ is a maximal subspace and the corresponding function $f(x) = x^3 + \operatorname{Trr}(x^9)$ is a APN function on $GF(2^{2r})$. Anyhow it seems that the cardinality of $W(\beta_1 + \operatorname{Trr}(\beta_3) = 0) \cap PV(Alt(GF(2^{2r}))$ is relative small where PV(Alt(F)) is the set of pure vectors of Alt(F).

References

- [1] L. Budaghyan, C. Carlet and G.Leander, A class of quadratic APN binomials inequivalent to power functions, submitted.
- [2] L. Budaghyan, C. Carlet and A. Pott, New Classes of Almost Bent and Almost Perfect Nonlinear Functions, *IEEE Trans. Inform. Theory*, vol. 52, no. 3 (2006) 1141-1152.
- [3] L. Budaghyan, C. Carlet and N. Nakagawa, private communications, 2007.
- [4] L.Budaghyan and T Helleseth, New perfect nonlinear multinomials over $\mathbf{F}_{p^{2k}}$ for any odd prime p, submitted.
- [5] P.Delsarte and J.M.Goethals, Alternating Bilinear Forms over GF(q), Journal of combinatorial theory (A) 19,26-50(1975).
- [6] Y.Edel, G.Kyureghyan and A.Pott, A new APN function which is not equivalent to a power mapping, *IEEE Trans. Inform. Theory*, vol 52 (2006) 744-747.
- [7] Y.Edel and A.Pott, A new almost perfect nonlinear function which is not quadratic, submitted.
- [8] N.Nakagawa and S.Yoshiara, A construction of differentially 4-uniform functions from commutative semifields of characteristic 2,in the proceeding of WAIFI07, Springer Lecture Notes in Computer Science, 4547 (2007) 134-146.

- [9] N.Nakagawa, On functions of finite fields, Available at http://www.math.is.tohoku.ac.jp/taya/sendaiNC/2006/report/nakagawa.pdf
- [10] S. Yoshiara, On dual hyperovals of splite type, preprint.