ON EXISTENCE OF A CLASS OF NON-COMMUTATIVE ASSOCIATION SCHEMES

KIJUNG KIM

Department of Mathematical Sciences, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan

ABSTRACT. We investigate a relationship between symmetric generalized conference matrices and association schemes with some conditions.

1. INTRODUCTION

Let X be a finite set and G a set of binary relations on X which partitions $X \times X$. For each $g \in G$ we set

$$g^* := \{ (x, y) \mid (y, x) \in g \}.$$

For each $x \in X$ and $g \in G$ we set

$$xg := \{ y \in X \mid (x, y) \in g \}.$$

We say that (X, G) is an association scheme (or shortly, scheme) if it satisfies the following conditions:

(i) $1_X := \{(x, x) \mid x \in X\}$ is a member of G;

(ii) For each $g \in G g^*$ is a member of G;

(iii) For all $d, e, f \in G | xd \cap ye^* |$ is constant whenever $(x, y) \in f$.

The constant is denoted by a_{def} , and $\{a_{def}\}_{d,e,f\in G}$ are called the *intersection numbers* of G. For each $g \in G$ we abbreviate $a_{gg^*1_X}$ as n_g , which is called the *valency* of g. In particular, G is called *thin* if every valency of G is one.

We define TS to be the set of all elements g in G such that there exist elements r in T and s in S with $a_{rsg} \neq 0$. The set TS is called the *complex product* of T and S.

A subset H of G is called *closed* if $HH \subseteq H$, *normal* if gH = Hg for each $g \in G$.

Let H be a closed subset of S. According to [3] we say that $Y \subseteq X$ is a *transversal* of H in X if $|xH \cap Y| = 1$ for each $x \in X$.

For each $g \in G$, we define the *adjacency matrix* of g as follows:

$$(\sigma_g)_{x,y} := \begin{cases} 1 & \text{if } (x,y) \in g; \\ 0 & \text{otherwise} \end{cases}$$

where the rows and columns of σ_g are indexed by the elements of X.

A generalized conference matrix over a finite group F of order f is a $(nf + 2) \times (nf + 2)$ matrix $C = [c_{ij}]$ with $c_{ii} = 0$ and $c_{ij} \in F$ such that for distinct *i* and *h*, the multiset $\{c_{ij}c_{hj}^{-1} \mid j \neq i, j \neq h\}$ contains n-copies of every element of *F*.

2. Construction of symmetric conference matrices from Association schemes

Let (X, G) be an association scheme of order p(np+2), where p is an odd prime and n is a positive integer.

Suppose that there exists a normal thin-closed H of G such that

 $\sigma_{g_i}\sigma_{h_1} = \sigma_{g_{i+1}}, \quad \sigma_{h_1}\sigma_{g_{i+1}} = \sigma_{g_i}, \quad \sigma_{g_i} = \sigma_{g_i^*} \text{ and } \\ \sigma_{g_i}\sigma_{g_j} = (np+1)\sigma_{h_1}^{j-i} + n(\sigma_{g_0} + \dots + \sigma_{g_{p-1}}) \\ \text{, where } H = \{h_0, h_1, \dots, h_{p-1}\}, \ G - H = \{g_0, g_1, \dots, g_{p-1}\}.$

Then we can define a symmetric generalized conference matrix as follows:

Let Y be a transversal of H in X. For distinct x, y in Y, there exists a element i_{xy} of Z_p such that $(xH \times yH) \cap g_0 = \{(xh_1^a, yh_1^{i_{xy}-a}) \mid a \in Z\}.$

Define a $|Y| \times |Y|$ matrix M such that $M_{xx} = 0$ and $M_{xy} = \epsilon^{i_{xy}}$, where ϵ is a primitive p-th root of unity.

Then M is a symmetric generalized conference matrix.

3. Construction of association schemes from symmetric conference matrices

Suppose that M is a $(np + 2) \times (np + 2)$ symmetric generalized conference matrix such that $M_{xx} = 0$ and $M_{xy} = \epsilon^{i_{xy}}$, where ϵ is a primitive p-th root of unity and i_{xy} is a element of Z_p .

Define $\sigma_{h_1} := I_{np+2} \otimes P$ and $\sigma_{g_0} := [B_{xy}]$, where P and B_{xy} are permutation matrices of Z_p defined by $a \mapsto a + 1$ and $a \mapsto i_{xy} - a$, respectively.

Then there exist an association scheme of order p(np+2).

Remark 3.1. In [2], it is known that there exist some symmetric conference matrices.

4. Observation of character table

In this section, we investigate algebraic aspect of an association scheme defined in section 2. In [4], it is well-known that the matrix $(\sum_{g \in G} \frac{a_{g^*egf}}{n_g})_{ef}$ has rank |Irr(RG)|, where R is algebraically closed.

This fact implies that the number of Irr(RG) is $2 + \frac{p-1}{2}$.

Central primitive idempotents of RG are as follows.

 $b_{1} = \frac{1}{p(np+2)}\sigma_{G}, \ b_{2} = \frac{1}{p}\sigma_{H} - \frac{1}{p(np+2)}\sigma_{G}$ $c_{1} = e_{1} + e_{p-1}, \quad c_{2} = e_{2} + e_{p-2}, \quad \cdots, \quad c_{\frac{p-1}{2}} = e_{\frac{p-1}{2}} + e_{\frac{p+1}{2}}$ $, \text{where } e_{1} = \frac{1}{p}(\sigma_{h_{0}} + \varepsilon\sigma_{h_{1}} + \ldots + \varepsilon^{p-1}\sigma_{h_{p-1}})$ $e_{2} = \frac{1}{p}(\sigma_{h_{0}} + \varepsilon^{2}\sigma_{h_{1}} + \ldots + \varepsilon^{p-2}\sigma_{h_{p-1}})$ \dots $e_{p-2} = \frac{1}{p}(\sigma_{h_{0}} + \varepsilon^{p-2}\sigma_{h_{1}} + \ldots + \varepsilon^{2}\sigma_{h_{p-1}})$ $e_{p-1} = \frac{1}{p}(\sigma_{h_{0}} + \varepsilon^{p-1}\sigma_{h_{1}} + \ldots + \varepsilon\sigma_{h_{p-1}})$

Character table of (X, G)

ſ	h_0	h_1	•••	h_{p-1}	g_0		g_{p-1}	m
χ_1	1	1		1	np+1		np+1	1
χ_2	1	1		1	-1	•••	-1	np+1
ψ_1	2	$\varepsilon + \varepsilon^{p-1}$	•••	$\varepsilon^{p-1} + \varepsilon$	0	•••	0	np+2
ψ_2	2	$\varepsilon^2 + \varepsilon^{p-2}$	•••	$\varepsilon^{p-2}+\varepsilon^2$	0	•••	0	np+2
ψ_3	2	$\varepsilon^3 + \varepsilon^{p-3}$		$\varepsilon^{p-3} + \varepsilon^3$	0		0	np+2
•	•		•••				•••	•
$\psi_{rac{p-3}{2}}$	2	$\varepsilon^{\frac{p-3}{2}} + \varepsilon^{\frac{p+3}{2}}$		$\varepsilon^{\frac{p+3}{2}} + \varepsilon^{\frac{p-3}{2}}$	0		0	np+2
$\psi_{\frac{p-1}{2}}$	2	$\varepsilon^{\frac{p-1}{2}} + \varepsilon^{\frac{p+1}{2}}$		$\varepsilon^{\frac{p+1}{2}} + \varepsilon^{\frac{p-1}{2}}$	0		0	np+2

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government[NRF-2009-352-C00003].

References

 E. Bannai, T. Ito, Algebraic Combinatorics I:Association Schemes, Benjamin / Cummings, Menlo Park, CA, 1984.

- [2] C.J. Colbourn, J.H. Dinitz, Handbook of combinatorial designs, CRC Press, 2007.
- [3] M. Rassy, P.-H. Zieschang, Basic structure theory of association schemes, Math. Z. 227 (1998), 391-402.
- [4] P.-H. Zieschang, An Algebraic Approach to Association Schemes, Lecture Notes in Mathematics 1628, Springer, 1996.
- [5] P.-H. Zieschang, Theory of association schemes, Springer Monograph in Mathematics, Springer, 2005.

E-mail address: kijung@shinshu-u.ac.jp