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On the decomposition numbers of J,
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Yamagata University

In this talk, I explained the way to calculate decomposition numbers by
computers. I use this for determining the decomposition numbers of the block
of defect 2 in the fourth Janko group Jy.

1 Notations

1.1 Class functions

Let G be a finite group and p is a prime. We denote by G, a set of p-regular
elements in G. We denote by CI(Y) a set of class functions on Y where Y is
G or Gp. For a p-block A of G, the set of irreducible ordinary characters and
one of indecomposable projective characters of G belong to A are denoted by
Irr(A) and IPr(A), respectively. Both of them are subsets of CI(G). Let IBr(A)
be the set of irreducible Brauer characters of G belong to A which is a subset of
CI(Gp). The number ! denotes the size of IBr(A). We can regard CI(Gp) as a
subset CI(G) via ¢(z) = 0 for ¢ € CI{Gp'), x € G\G,. For general facts about
blocks and characters we refer to [3] and [5]. .

Let X C CI(G) and R be N or Z. We denote the set of R-linear combinations

of X by the following.
ay € R}

o (Irr(A))y : a set of ordinary characters in A

xXEX

(X)p = {z axX

Then we can see that

(IBr(A))y : a set of Brauer characters in in A

(IPr(A))y : a set of projective characters in A

(Irr(A)), : a set of generalized ordinary characters in A

(IBr(A)), : a set of generalized Brauer characters in A

e (IPr(A)), : a set of generalized projective characters in A

Since Irr(A), IBr(A) and IPr(A) are linearly independent, Irr(A), IBr(A) and
IPr(A) are Z-basis of (Irr(A)),, (IBr(A)), and (IPr(A)),, respectively.
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1.2 Decomposition numbers of A

Let x € (Irr(A))y. We define

(z) = { x(z) :z€Gy

0 : else

—

then Irr(A) := {x | x € Irr(A)} is a subset of (IBr(A))y. (See Theorem 6.17 in
[5])

Definition 1.1. Let x € Irr{A) then there are non-negative integers d, 4 such

that
X= D duwo

beIBr(A)

These numbers dys are decomposition numbers of A.

Proposition 1.2. ¥, := Z dyex = IPr(A) = {¥y4 | ¢ € IBr(A)}
x €Irr( A)

We denote the inner product of characters by the following. Let A, p €

1
ClI(G); (A, p) = |_G| Z Mx)ji(zx) where i is a complex conjugate character of
geG
p. It is easy to see the following facts.

Proposition 1.3. (i) V4 € IPr(A), ¢' € IBr(A) = (¥y, ¢') = dp¢

(i1) ¢ € (IBr(A))y, mg:=(Ts,9) = o= Y med
¢€IBr(A)

(i1i) ¥ € (IPr(A))y, ng:=(¥,¢) = ¥= > ng¥y
V4eIPr(A)

From the above propositions, we can get the decomposition numbers from
indecomposable projective characters ¥4 as the following.

dx¢ = (‘Ild?a )2)

Proposition 1.4. Let ¥ € (Irr(A))y. If ¥ is 0 on G\Gp then ¥ € (IPr(A))z.
In addition if (¥,¢) 2 0 for all ¢ € IBr(G) then ® is a projective character of
G.

The following notations will allow us to simplify some proofs. Let {1 = g1,
g2+ gs} be representative of conjugacy classes of G. Let C be s x s-diagonal
matrix whose (i,7)-entry is |Cg(g:)|™*. Let M = {A1,--- , A} and N :=
{u1,- -, un} be subsets of CI(G). We denote m x s-matrix {A;(g;)} by [M].
We also denote m x n-matrix {(\;, u;)} by (M, N). From the definition of the
inner product we can see that (M, N) = [M]C [./\_/']t where N := {fi1, -+ , i }-
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2 Calculations of Basic Sets

2.1 A basic set and a system of atom

Definition 2.1. Let X = IBr(A) or IPr(A) and S be Z-basis of (X),.

S : a basic set w.r.t. X & S (X)y
S : a system of atom w.r.t. X & X C(S)y

Note that if S is a basic set and a system of atom w.r.t. X then S = X.

Proposition 2.2. Let BS := {p;} and PS:={¥;} be basic sets w.r.t. IBr(A)
and IPr(A), respectively. Then there are system of atoms BA := {¥}} and
PA:={¢;} w.r.t. IBr(A) and IPr(A) such that

(i) (Wi, ¥5) = (i, 9;) = b

l
(i) ¢ € IBr(A),m; == (Uy, @) = ¢ =Y m; ¥}

i=1

l
(iii) U € IPr(A),n; = (¥, ;) = ¥ = Y nip}
i=1

Proof: From the definition of BS and PS, there are | X [-matrices U and V
over N such that [BS| = U[IBr(A4)] and [PS] = V[IPr(A4)]. Since BS and PS is
Z-basis, U~ and V! are matrices over Z. Let we define BA and PA which
are satisfied [BA] = V~![IBr(A)] and [PA] = U~ ![IPr(A)]. Then BA and PA
are Z-basis of (IBr(A)), and (IPr(A));, respectively. From Proposition 1.3
(i), (IPr(A),IBr(A)) = I, where I; is the identity matrix. Thus (PA,BS) =
[PA|C[BS]t = U~ (IPr(A),IBr(A))U = I, and similarly for (BA,PS). So (i)
is followed. Since BA is Z-basis of (IBr(A)),, there are some integers m; such

l l
that ¢ = > m;V¥; for any ¢ € IBr(A). Thus (¥;,¢) = > m; (T, U5 =m,
j=1 =1
from (i). JIn particular, m; = (¥;,¢) = 0 because of Plfoposition 1.3 (i) and
U; € (IPr(A))y. So BA is a system of atom w.r.t. IBr(A). We can apply the
same argument to PA. O

There are the following relations among (PA)y, (IPr(A))y and (PS)y ((BS)y»
(IBr(A))y and (BA)y).

(PA)y 2 ¥; (@i %) = bij wi € (BS)y
U N
(IPr(A))y > ¥¢ (g, d") = dpgr ¢ € (IBr(A))y
U N
(PS)N2 ¥ (s, UF) = 0y Ur € (BA)y

First of all, we construct PS, PA, BS and BA. We determine IBr(A) and
IPr(A) by improving the two basic sets BS and PS.
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2.2 Parts of characters

Definition 2.3. Let X = IBr(A) or IPr(A), and T = {\;} be a system of atom

!
w.r.t. X. Let p € (X)y and p = ka)\k (mr € N)
k=1

!
¢ : a part ofu@u’zZm;C/\k (0 £ mj, £ my, my, € N)
k=1
Since indecomposable direct summands ¥4 of ¥ are in (7T), they are parts of
¥. So it might be possible to investigate indecomposable direct summands of ¥
from parts of ¥. From Proposition 1.3, we can get the following proposition. We
apply this proposition for checking indecomposability of projective characters.

Proposition 2.4. Let ¥ € (IPr(A))y- if for any parts ¥’ of ¥ where ¥’ # 0, ¥,
there is a ¢ € (IBr(A))y such that (¥, @) £ 0 or (¥—¥' ¢) £ 0 then
¥ ¢ IPr(A).

3 Investigation of projective summands

3.1 Multiplicity of projective direct summands

Let B and P be a set of all computed Brauer and projective characters and
BS = {¢;} and PS = {¥,} be basic sets. We can obtain BS and PS as subsets
B and P.

Definition 3.1. Let J C {1,--- ,l} such thati € J < ¥, € IPr(A). Possible
multiplicities of direct summands ¥; in ¥; are

o (g J)

6ij (Z,]Gj)

maz{n € N | (¥; —n¥;,¢) 20, V¢ € B}
(teJ, jgT)

Note that m,; is depend on P, B and PS.

Definition 3.2. Let ¥ € (IPr(A)),.
V: multiplicity free & ¥ = nip} + --- + nyp; such that n; € {0,1}
where PA = {¢}} is a system of atom corresponding to PS in Proposition 2.2.

It is easy to see that if ¥ € (IPr(A))y is multiplicity free then (¥, W¥y) is O
or 1 for ¥4 € IPr(A).
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3.2 A bit of Brauer characters

Definition 3.3. Let ¢ € BS and ¥; € PS such that (¥;,9) 2 0
In case that i € J so ¥; is indecomposable.

(' : a part of ¢

’ 1 (k=i)
l ng = : .
@Izzn;‘;\llz . a bit 0f<P<:>ﬁ k { 0 (ke J\{i})

k=1 ng S Mik (k& J)
YU € P; (¥,¢') 20 and
{ (Y, p—¢') 20

If ¥; = ¥, then the irreducible Brauer character ¢ is a bit of .

Definition 3.4. Let ¢ € BS and ¥; € PS such that (¥;,9) 2 0
In case that i € J but ¥; is multiplicity free.

’

@' : a part of ¢

! n, =1 (k=1)
cp’:Zn;c\I!;;: a bit of p & ¢ nj < myy (ke J)
k=1 YU € P;(¥,¢') 20 and
(T, 0p—¢) 20
Ify; = Z as¥y is multiplicity free then there are some ¢ (ap = 1)

¢€lBr(A)
which are bits of ¢.

3.3 Calculations of possible direct summands

Definition 3.5. Let U, be indecomposable or multiplicity free in PS and ¢ € BS
such that (¥;, ) 2 0. For ¥ € P,

m(U;, U, ) := min{ (¥, @) | ¢ : abit of o w.r.t. U;}

Let ¥4 be one of summands of ¥;. Since some ¢’ must be ¢, m(¥;, ¥, ) is
a lower bound of the multiplicity of projective summand ¥, in ¥ from 1.3(iii).
Thus next proposition is followed.

Proposition 3.6. Let Z(V;, V) := {m(¥;,V,¢) | ¢ € BS, (¥;, p) 2 0} then
U — 2V, € (IPr(A))y where

_} max(Z(¥;,¥)) ¥; : indecomposable
T min(Z (¥, ) U, : multiplicity free

By this proposition, we can get a lower bound of the multiplicity of projective
summand ¥; in ¥. If we get enough B and P, this lower bound gets near to
the multiplicity of projective summand. But there is no guarantee that we can
get the multiplicity of projective summand.



4 Use MOC for J;

MOC(MOdular Characters)-system(7] is the program which calculates irre-
ducible Brauer characters and indecomposable projective characters from ordi-
nary characters. MOC is developed by G. Hiss, C. Jansen, K. Lux and R. Parker
in 1993. Recently MOC is implemented in GAP system by F. Noeske.

Let G be J4 and H and K be maximal subgroups of G which are isomorphic
to 21 : My4 and 2&“2.3]\'/[22 : 2. The character table of J; can be found in the
ATLAS(1]. The character tables of H and K are known and stored in the GAP
library of character tables [2]. All 3-decomposition numbers of H and K have
been determined [6]. So we can get enough Brauer and projective characters of
G by tensored characters of G and induced characters from H and K.

4.1 the block of J;

Let Ay be the block of defect 2 in G. The set of ordinary irreducible characters
Irr(A2) is {x14,X21, X25, X27> X28> X305 X31, X35, X41 }-

For a projective character ¥ of G, we denote by ¥.A; the projective sum-
mand which belong to A;. Let 14 and ¥ be projective characters in blocks of
defect 1 of G. Let x3 and x4 be ordinary characters in G. Let &3, €13, mg and
715 be projective characters in blocks of defect 1 of H and K.

We can get the following projective characters in Asg.

V) = (Ya®@x3). A2, Vg := (Ya®@x4). A2, U3 := (Y6 ®x3).A2, Vg := (£§). A2,
\I/5 = (f%)AQ, ‘I’G = (ng)Ag and \1’7 = (ng)Ag

Next table show that coefficients of linear combinations by IBr(As3).

Proj. Coeff. of ordi. char. in A,

v, [ 1T 00 01 1 0 0 1 |]|Mult. Free
v, [ 001 2 3 2 4 3 6 |

Uy [ 0001 0 1 0 1 1 |]|Indec

Uy [ 01 1 01 1 2 2 2 || Mult Free
Uy [ 00013 1 3 1 3 ]

Vg [ 001 2 2 2 3 3 5 ]

v, [ 2 6 5 4 7 12 10 15 16 ]

We can get a multiplicity free character Wg := ¥y + W3 — Vg by FBA(See
Algorithm 5.1.3 in [4]) with ¥s.

Using Proposition 3.6, we also get projective characters Vg :=Wg—W¥3, ¥1g:=
\1’7—4‘113, ‘1111 = ‘116-2‘118, ‘1/12 = \1/10—5‘114 and \I’13 = \1112—2‘1’1.

Thus we can get the following projective characters and check that all of
them are indecomposable by Proposition 2.4.
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Proj. Coeff. of ordi. char. in Ag

¥; ([ 1 0001100 1 ]
T3 [[ 010001010 ]
¥ |[[ 001 00011 1 ]
¥s |[[ 00010101 1 |
g |[ 00 0 01 01 0 1]

T

Thus the decomposition matrix of A, is the following.

( 1 00 0O \
01 0 0O
0 01 0O
0 0010
1 0 0 0 1
11010
0 01 01
01 1 10

\101 1 1/
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