S. Yoshiara Department of Mathematical Sciences Tokyo Woman's Christian University

This article is obtained by editing the slides of my talk given at the conference.

1 Summary

Throughout this talk,

F is a finite field of p^n elements with p a prime number,

V is the vector space underlying F (so V is of dimension n over \mathbb{F}_p).

We consider two classes of functions on V, called planar(or nonlinear (NL)) and almost perfectly nonlinear (APN), defined only when p = 2.

With each of these functions, an algebraic structure and some geometric stuctures are associated. For a planar function, the associated geometric structure is an affine plane with some transitivity. The associated algebraic structure is commutative **presemifield** iff the function is **Dembowski-Ostrom**(DO).

For an APN function, the associated geometric structure is a semibiplane. The associative algebraic structure is distributive iff the function is quadratic. For a quadratic APN function, we may associate another geometric structure, a certain dimensional dual hyperoval over \mathbb{F}_2 with second smallest ambient space.

Algebraic structures associated with planar (resp. APN) functions are realized as the epimorphic images of a vector space $W := (V \otimes V)/A(V)$ (resp. $(V \otimes V)/S(V) \cong A(V)$). The corresponding kernel K is a subspace of W of codimension n in W and contains no vectors corresponding to lines (1-dimensional subspaces) of V.

Exhausting DO PN (resp. quadratic APN) functions up to EA-equivalence is essentially equivalent to finiding all such subspaces K up to the diagonal action of GL(V).

I discuss explicit descriptions of $(V \otimes V)/S(V) \cong A(V)$ which seems efficient to examine such subspaces. My final aim is to establish the following statement:

Conjecture 1 The number of such subspaces grows exponentially as n is getting larger.

2 Highly Nonlinear Functions

2.1 Planar (or PN) and APN functions

For a function f on V and $0 \neq a \in V$, consider the map $\delta(f)_a$ on V defined by $\delta(f)_a(x) := f(x+a) - f(x)$.

If f is linear, then $\delta(f)_a$ takes a single value f(a), namely, $|\delta(f)_a(V)| = 1$ for every $0 \neq a \in V$. So the opposite property to the linearity is that $|\delta(f)_a(V)|$ is large as possible for every $0 \neq a \in V$. Observe that $|\delta(f)_a(V)| \leq |V|$ if p is odd, and $|\delta(f)_a(V)| \leq |V|/2$ if p = 2, because $\delta(f)_a(x+a) = \delta(f)_a(x+a)$ $(x \in V)$ in this case.

Definition 1 With the previous notation,

- f is called planar (or perfect nonlinear (PN)) if $|\delta(f)_a(V)| = |V|$. Equivalently, $\delta(f)_a$ is bijective for every $0 \neq a \in V$.
- f is called almost perfect nonlinear (APN) if $|\delta(f)_a(V)| = |V|/2$. Equivalently, $\delta(f)_a$ is a two to one map for every $0 \neq a \in V$.

It can be shown that if there exits a PN function on V then p is odd.

2.2 Examples of APN functions

The following maps are APN on $F \cong \mathbb{F}_{2^n}$ for every n.

$$g(x) = x^{2^{e}+1}$$
 with g.c.d.(e, n) = 1,
 $f(x) = x^3 + \sum_{i=0}^{n-1} x^{2^i}$.

The second one was found around 2007. Including this family, several infinite series of APN functions are constructed recently (see e.g. [1, Table 2]). The following is the first example of a quadratic APN map which is not graph-equivalent to any monomial map.

Example 1 [4] On $F \cong \mathbb{F}_{2^{10}}$, $f(x) = x^3 + ux^{36}$ $(u \in F)$ is APN iff $u \in \omega K^{\times} \cup \omega^2 K^{\times}$, where $K = \mathbb{F}_{2^5}$ and $\omega^3 = 1 \neq \omega \in K$.

2.3 Graph and Extended affine equivalences

Let f and g be functions on V.

Definition 2 We say that f is graph-equivalent (or CCZ-equivalent) to g if there are \mathbb{F}_p -linear maps α , β , γ and δ on V and $c, d \in V$ s.t. $(x, y) \mapsto (x^{\alpha} + y^{\gamma}, x^{\beta} + y^{\delta}) + (c, d)$ is a bijection on $V \oplus V$ sending $\Gamma_f = \{(x, f(x)) \mid x \in V\}$ to Γ_q .

If we may take $\gamma = 0$ in the above, f is called **extended affine**(**EA**)-equivalent to g. Thus f is EA-equivalent to g if $g(x^{\alpha} + c) = x^{\beta} + d + f(x)^{\delta}$ for every $x \in V$.

2.4 Some properties on equivalence

Proposition 1 (Some properties on equivalence) If f is PN (resp. APN), then a function g graph-equivalent to f is PN (resp. APN).

If p is odd, then a function graph-equivalent to f is also EA-equivalent to f. If f is DO, then any function EA-equivalent to f is DO.

Thus in odd characteristic case, the concept of graph-equivalence coincides with that of EA-equivalence. If p = 2, there are examples of graph-equivalent APN functions which are EA-inequivalent.

2.5 DO functions and quadratic functions

Definition 3 A function f on a field $F \cong \mathbb{F}_{p^n}$ is called **Dembowski-Ostorm**(**DO**), if f is represented by a polynomial in F[X] of shape

$$a + \sum_{i=0}^{n-1} a_i X^{p^i} + \sum_{0 \le i < j \le n-1} a_{ij} X^{p^i + p^j}.$$

If p = 2, a DO function is referred to as a quadratic function.

3 Structures associated with planar functions

3.1 A geometric interpretation of a planar function

Let f be a function on V. Define an incidence structure $\mathbb{I}(f)$ as follows: the set of **points** is $V \oplus V$, and the set of **lines** is $\{L(a,b), L(c) \mid a, b, c \in V\}$, where L(a,b) and L(c) are just symbols indexed by $(a,b) \in V^2$ and $c \in V$. Incidence is given by $(x,y) \in L(a,b)$ iff y - b = f(x - a), and $(x,y) \in L(c)$ iff x = c. The following is easy to varie (a g [2])

The following is easy to verify (e.g.[2]).

Proposition 2 (A geometric interpretation of a PN function) Let f be a function on V. Then f is PN iff $\mathbb{I}(f)$ is an affine plane.

3.2 Algebraic structure associated with a DO planar function

For a function f on V and $0 \neq a \in V$, we consider the following structure on V.

Definition 4 (Algebraic structure $\mathbb{A}(f)$) $\mathbb{A}(f) := (V; +, \circ_f)$, where $\circ_f = \circ$ is an operation on V defined by $x \circ y := f(x+y) + f(x) + f(y) + f(0)$ $(x, y \in V)$.

If f is DO and planar (so p is odd), then the algebraic structure $\mathbb{A}(f)$ is a commutative **presemifield**, whose definition will be given below (notice that this definition involves the even characteristic case).

Definition 5 A presemifield V is a set with operations + and \circ , satisfying:

(S1) (V, +) is a group with identity element 0.

(S2)
$$x \circ (y+z) = x \circ y + x \circ z$$
 and $(x+y) \circ z = x \circ z + y \circ z$ for all $x, y, z \in V$.

(S3) $x \circ y = 0$ implies x = 0 or y = 0.

Let f be a DO planar function on V. Then (S2) follows from the assumption that f is DO. (S3) is equivalent to the condition that $\delta_y(f) = f(x+y) + f(y) = f(x) + f(0)$ has a single solution x for each $0 \neq y \in V$, which is the definition of a PN function.

3.3 Coulter-Henderson's result

In fact, Coulter-Henderson showed that the concept of commutative presemifields with p odd is equivalent to the concept of DO planar functions. See [2] for the details.

4 Structures associated with APN functions

4.1 Geometric interpretation of APN functions

Let f be a function on V. Define an incidence structure $\mathbb{I}(f)$ as follows: the set of **points** is $V \oplus V$, and the set of **blocks** is $\{B(a,b) \mid a,b \in V\}$, where B(a,b) is just a symbol indexed by $(a,b) \in V^2$. Incidence is given by $(x,y) \in B(a,b)$ iff y-b = f(x-a) + f(0). (Notice the similarity of the incidence to that of $\mathbb{A}(f)$ for PN functions.)

Proposition 3 [9] For a function f on V, f is APN iff the incidence structure $\mathbb{I}(f)$ is the incidence graph of a semibiplane. Two APN functions f and g are graph-equivalent iff $\mathbb{I}(f)$ is isomorphic to $\mathbb{I}(g)$ as graphs.

The later part of the proposition was observed by several researchers, including Dillon and Pott [6]. Here we recall a formal definition of a semibiplane.

Definition 6 An incidence structure $(\mathcal{P}, \mathcal{B}; *)$ is called a **semibiplane** if for any two distinct elements in \mathcal{P} (resp. \mathcal{B}) there are exactly 0 or 2 elements of \mathcal{B} (resp. \mathcal{P}) incident with both of them, and its incidence graph is connected, where the incidence graph of $(\mathcal{P}, \mathcal{B}; *)$ is the graph on $\mathcal{P} \cup \mathcal{B}$ in which two vertices are ajacent if the corresponding elements are incident in $(\mathcal{P}, \mathcal{B}; *)$.

4.2 A geometric interpretation of quadratic APN functions

Theorem 1 [8] Let f be a function on V with $\dim(V) = n$ over \mathbb{F}_2 . Then f is quadratic APN iff the associated structure S[f] is a **DHO** over \mathbb{F}_2 (with ambient space of dimension 2n if $n \geq 3$). Two quadratic APN functions f and g are extended affine equivalent iff S[f] is isomorphic to S[g] as dimensional dual hyperovals.

We recall a formal definition of a DHO (dimensional dual hyperoval).

Definition 7 A collection S of (d + 1)-dimensional subspaces of a vector space W over \mathbb{F}_q is called a d-dimensional dual hyperoval (DHO) over \mathbb{F}_q , if any two distinct members of S intersect at a 1-dimensional subspace, any three mutually distinct members of S intersect at the zero subspace, and $|S| = ((q^{d+1} - 1)/(q - 1)) + 1$.

A subspace of W spanned by all members of S is called the **ambient space** of S.

5 Universal algebraic observations

In the algebraic structure $\mathbb{A}(f)$ defined for a function f on F (or its underlying space V), the multiplication \circ is given by $x \circ y = f(x+y) + f(x) + f(y) + f(0)$. In particular, \circ is commutative: $x \circ y = y \circ x$.

If f is DO, then \circ satisfies the left and the right distributive lows. If f is PN (so that p is odd), then $x \circ y = 0$ iff x = 0 or y = 0. Remark in this case, $x \circ x \neq 0$ for $x \neq 0$. If f is APN (so that p = 2), then $x \circ y = 0$ iff x = 0 or y = 0 or x = y.

Summarizing, we have

Proposition 4 (Algebraic structures for PN and APN functions) Assume that f is a function defined on a finite vector space V over \mathbb{F}_p with p odd (resp. p = 2). Then f is DO and PN (resp. quadratic APN) iff algebraic system $\mathbb{A}(f)$ satisfies the following (A1)-(A4) (resp. (A1),(A2),(A3') and (A4)):

(A1) (V; +) is a vector space over \mathbb{F}_{p} .

 $(A2) \circ is left and right distributive.$

(A3) $x \circ y = 0$ if and only if x = 0 or y = 0.

(A3') $x \circ y = 0$ if and only if x = 0 or y = 0, or x = y.

 $(A4) \circ is symmetric.$

If f is DO PN (so p is odd), the axioms (A1)-(A4) are nothing more than axioms for commutative presemifield.

In the rest of this section, we consider an arbitrary algebraic structure $(V; +, \circ)$ satisfying either axioms (A1)–(A4) (so it is just a commutative semifield) or axioms (A1),(A2),(A3') and (A4). This algebraic consideration allows us to involve commutative presemifields in characteristic p = 2. This also makes clear the relation between commutative semifields in characteristic 2 and the algebraic structure corresponding to quadratic APN functions.

By axiom (A3) (resp. (A3')) and (A4), the form $V \times V \ni (x, y) \mapsto x \circ y \in V$ is an **symmetric** (resp. **alternating**) bilinear map on V. From the universality of tensor product, there is an \mathbb{F}_p -linear surjection $\tilde{\rho}$ from $V \otimes V$ onto V such that $\tilde{\rho}(x \otimes y) = x \circ y$ for all $x, y \in V$.

As \circ is symmetric, $\tilde{\rho}$ vanishes on the subspace A(V) of $V \otimes V$ consisting of $x \oplus y + y \oplus x$ for **distinct** $x, y \in V$: $A(V) := \langle x \otimes y + y \otimes x | x, y \in V \rangle$. (Notice that $x \otimes x + x \otimes x = 0$ for x = y, if p = 2.) Thus $\tilde{\rho}$ induces a surjective linear map ρ from $V \otimes V/A(V)$ onto V.

If f is quadratic APN, \circ vanishes on the larger subspace S(V) of $V \otimes V$ spanned by A(V) and $V^{(2)} = \{x \otimes x \mid x \in V\}$: namely, $S(V) = \langle x \otimes y + y \otimes x, x \times x \mid x, y \in V \rangle$. Thus $\tilde{\rho}$ induces a surjective linear map ρ from $V \otimes V/S(V)$ onto V.

The kernel $K := \text{Ker}(\rho)$ has codimension n in $(V \otimes V)/A(V)$ or $(V \otimes V)/S(V)$, according as \circ satisfies (A1)-(A4) or (Ai) (i = 1, 2, 4) and (A3'). Moreover, K has the following property by axiom (A3), where $x \otimes y \in V \otimes V$ is identified with its image $(x \otimes y) + A(V)$ in $(V \otimes V)/A(V)$:

$$K \cap \{x \otimes y \mid x, y \in V\} = \{0\}.$$

If f is quadratic APN, then the following property follows from (A3'), where $x \otimes y$ ($\in V \otimes V$) is identified with its image $(x \otimes y) + S(V)$ in $(V \otimes V)/S(V)$: (notice that as $x \otimes x \in V^{(2)}$, we only need $x \otimes y$ for distinct $x, y \in V$.)

$$K \cap \{x \otimes y \mid x \neq y \in V\} = \{0\}.$$

Conversely, if a subspace K of $W := (V \otimes V)/A(V)$ satisfies

 $\operatorname{codim}(K) = \dim(W) - \dim(K) = n \text{ and } K \cap \{x \otimes y \mid x, y \in V\} = \{0\}.$

then the operation \circ on (V; +) defined by $x \circ y := \alpha((x \otimes y) + K)$ for $x, y \in V$ satisfies the axiom of a commutative presemifield, where α is any isomorphism of W/K with V.

Similar conclusion holds for $\overline{W} := (V \otimes V)/S(V)$. Namely, if a subspace K of $\overline{W} := (V \otimes V)/S(V)$ satisfies the following two properties

 $\operatorname{codim}(K) = \dim(\bar{W}) - \dim(K) = n \text{ and } K \cap \{x \otimes y \mid x \neq y \in V\} = \{0\}.$

then the operation \circ on (V; +) defined by $x \circ y := \alpha((x \otimes y) + K)$ for $x, y \in V$ satisfies the axioms (A1),(A2),(A3') and (A4), where α is any isomorphism of \overline{W}/K with V.

A canonical form of quadratic APN functions

5.1 Canonical form of a quadratic APN function

Now we return to the case when $\circ = \circ_f$ is detemined by a quadratic function f on V: $x \circ_f y = f(x + y) + f(x) + f(y) + f(0)$. Notice that \circ_f coincides with \circ_g iff f + g is an affine function on V. Hence the conclusion of previous section shows the following canonical description of quadratic APN functions, because A(V) can be identified with $(V \otimes V)/S(V)$ via $x \wedge y \mapsto x \otimes y + S(V)$.

This result was first obtained by examining the universal DHO of $\mathcal{S}[f]$.

Let Γ be the set of all \mathbb{F}_2 -linear surjections γ from A(V) to V with $\operatorname{Ker}(\gamma) \cap \{a \land b \mid a, b \in V\} = \{0\}$, and let Af be the set of \mathbb{F}_2 -affine maps on V. Fix a basis $\{e_i\}_{i=1}^n$ for V over \mathbb{F}_2 . For every (γ, α) of $\Gamma \times Af$, the following map $f_{\gamma,\alpha}$ is quadratic APN on V:

$$f_{\gamma,\alpha}: a = \sum_{i=1}^n a_i e_i \mapsto \sum_{1 \le i < j \le n} a_i a_j (e_i \land e_j)^{\gamma} + a^{\alpha}.$$

Theorem 2 [10] Every quadratic APN map on L is uniquely written as $f_{\gamma,\alpha}$ for (γ, α) . Namely, there is a bijection between the set of quadratic APN maps on L and the set $\Gamma \times Af$.

5.2 Equivalence

Theorem 3 [10] For two quadratic APN maps $f_{\gamma,\alpha}$ and $f_{\gamma',\alpha'}$, they are EA-equivalent iff Ker(γ) and Ker(γ') belong to the same orbit under the diagonal action of GL(V): $g(a \wedge b) = g(a) \wedge g(b)$ $(a, b \in V)$.

5.3 Core problem

Thus, finding all the EA-equivalence classes of quadratic APN maps on V is equivalent to finding all GL(V)-orbit on the set of subspaces K of $(V \otimes V)/S(V) =: \overline{W}$ such that:

$$\operatorname{codim}(K) = \dim(\overline{W}) - \dim(K) = n \text{ and } K \cap \{a \land b \mid a \neq b \in V\} = \{0\}$$

We call a subspace K of \overline{W} with the above property line-skew.

When p = 2, $\overline{W} = (V \otimes V)/S(V)$ is a quotient of $W = (V \otimes V)/A(V)$.

(Question) Are there some relations between subspaces K of codimension n in W which yield commutative semifields (namely, $K \cap \{x \otimes y \mid x, y \in V\} = \{0\}$) and subspaces \bar{K} of codimension n in \bar{W} which yield quadratic APN functions (namely, $\bar{K} \cap \{x \otimes y \mid x \neq y \in V\} = \{0\}$).

6 Some explicit description of A(V)

6.1 Alternating form scheme Alt(V)

We assume that p = 2. Then $(V \otimes V)/S(V) \cong A(V)$ by identifying $x \otimes y + S(V)$ with $x \wedge y := x \otimes y + y \otimes x$.

A(V) can also be identified with the space Alt(V) of all alternating bilinear forms on V, by identifying $x \wedge y$ with the alternating form of rank 1 with f(x, y) = 1. Here the rank of an alternating form f is $(\dim(V) - \dim Rad(f))/2$.

Recall that Alt(V) is an association scheme with respect to the distance δ given by $\delta(f,g) =$ the rank of f-g. Thus a subspace K of Alt(V) of codimension n is line-skew iff it does not contain form of rank 1 iff any two distinct forms of K are at distance at least 2.

6.2 Line skew subspace as designs in Alt(V)

Delsarte and Goethals [3] investigated a subset D of Alt(V) in which two distinct elments are at distance at least d. They obtained the bound $|D| \leq 2^{n(n+1-2d)/2}$ or $|D| \leq 2^{(n-1)(n+2-2d)/2}$ according as n is odd or even. As $\dim(K) = \dim(Alt(V)) - n = n(n-3)/2$, this bound is attained by K if n is odd.

With current terminologies in algebraic combinatorics, we have:

Proposition 5 (Line-skew space as Delsarte design) Assume that n = 2m + 1 is odd. A subspace K of Alt(V) is line-skew iff it is a (m-1)-design in Alt(V) in the sense of Delsalte.

The previous theorem gives us several strong information about a line-skew subspace, if $\dim(V) = n$ is odd (e.g. [7]). However, so far I could not obtain explicit informations on the numbers of such spaces.

6.3 Another explicit description of Alt(V)

We identify V with the field $F \cong \mathbb{F}_{2^n}$, and denote by $F_0 \cong \mathbb{F}_{2^{n/2}}$ the subfield of F of degree 2 if n is even. We set $l = \lfloor n/2 \rfloor$.

Then Alt(V) is isomorphic to $V^l = V^m = \{(b_k)_{k=1}^l \mid b_k \in V\}$ if n = 2m + 1 is odd, and to the subspace of V^l with b_l lies in F_0 if n = 2m + 2 is even.

The explicit isomorphism can be described. In particular,

Proposition 6 (Subsets corresponding to rank 1 forms) the set of rank 1 alternating forms corresponds to $\mathcal{L} := \{(x^{2^{k+1}}(y+y^{2^{k}}))_{k=1}^{l} \mid x, y \in F \setminus \mathbb{F}_2\}.$

6.4 Some line-skwe subspaces

For every $1 \le e \le l$ coprime with *n*, the *e*-th entry $x^{2^e+1}(y+y^{2^e})$ is nonzero for any vector $(x^{2^k+1}(y+y^{2^k}))_{k=1}^l$ of \mathcal{L} . Thus the subspace K_e of V^l consisting of all vectors (b_k) with $b_k = 0$ does not contain any vector of \mathcal{L} . As K_e has codimension *n* in Alt(V) (identified with the subspace of V^l described above), K_e is a line-skew subspace. The

canonical projection map $\rho : Alt(V) \to Alt(V)/K_e$ composed with an identification $Alt(V)/K_e \ni (b_k)_{k=1}^l + K_e \mapsto b_k \in V$ gives $x \wedge y \mapsto x^{2^e}y + xy^{2^e}$. Hence this corresponds to the Gold function $g(x) = x^{2^e+1}$.

We also have line-skew subspace K consisting of $(b_k)_{k=1}^l$ with $b_1 + \sum_{i=0}^{n-1} b_3^{2^i}$. This

gives the APN map $f(x) = x^3 + \sum_{i=0}^{n-1} (x^9)^{2^i}$. When n = 10, $K = \{(b_k)_{k=1}^5 \mid b_1 = ub_3^4\}$ is a line-skew subspace yielding APN function $e(x) = x^3 + ux^{36}$.

6.5Some comments

The last description of Alt(V) seems explicit enough to find 'easy' examples of skew-free subspaces, and so quadratic APN functions.

Recently, Dillon, Edel and Pott [5] introduce the idea of 'switching' of APN functions, and produces many new examples of APN functions (including non-quadratic examples). In my setting, switching relation may be interpreted as two line-skew subspaces sharing a hyperplane. I am wondering if this suggests some new direction to generalize the idea of switching.

References

- [1] L.Budaghyan and C.Carlet, Classes of quadratic APN trinomials and hexanomials and related structures, *IEEE Trans. Inf. Theory*, **54**(5), 2354-2357 (2008):
- [2] R.S.Couletr and M.Henderson, Commutative presemifields and semifields, Adv. Math 217 (2008), 282-304.
- [3] P.Delsarte and J.M.Goethals, Alternating bilinear forms over GF(q), Journal of Combin. Theory (A) 19, 26–50 (1975).
- [4] Y.Edel, G.Kyureghyan and G.Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52, 744-747 (2006).
- [5] Y.Edel and A.Pott, A new almost perfect nonlinear function which is not quadratic, Advances in Mathematics of Communications, 3, 59-81 (2009). doi:10.3934/amc.2009.3.59
- [6] F.Göloğlu and A.Pott, Almost perfect nonlinear functions: a possible geometric approach, in Coding Theory and Cryptography II, S.Nikova, B.Preneel, L.Strorme and J.Thas eds., Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten, 2007, pp. 75 - 100.
- [7] A.Munemasa, An analogue of t-designs in the association schemes of alternating forms, Graphs and Combinatorics 2, 259–267 (1986).
- [8] S.Yoshiara, Dimensional dual hyperovals associated with quadratic APN functions, Innovations in Incidence Geometry, 8, 147-169 (2008).
- [9] S.Yoshiara, Notes on APN functions, semibiplanes and dimensional dual hyperovals, submitted for publication, 2009.
- [10] S.Yoshiara, Notes on split dimensional dual hyperovals, preprint, 2009.