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1 Summary
Throughout this talk,

$F$ is a finite field of $p^{n}$ elements with $p$ a prime number,
$V$ is the vector space underlying $F$ (so $V$ is of dimension $n$ over $\mathbb{F}_{p}$).

We consider two classes of functions on $V$ , called planar(or nonlinear (NL)) and
almost pefectly nonlinear (APN), defined only when $p=2$ .

With each of these functions, an algebraic structure and some geometric stuctures are
associated. For a planar function, the associated geometric structure is an affine plane
with some transitivity. The associated algebraic structure is commutative presemifield
iff the function is Dembowski-Ostrom(DO).

For an APN function, the associated geometric structure is a semibiplane. The asso-
ciative algebraic structure is distributive iff the function is quadratic. For a quadratic
APN function, we may associate another geometric structure, a certain dimensional dual
hyperoval over $\mathbb{F}_{2}$ with second smallest ambient space.

Algebraic structures associated with planar (resp. APN) functions are realized as the
epiinorphic images of a vector space $W$ $:=(V\otimes V)/A(V)$ $($ resp. $(V\otimes V)/S(V)\cong A(V))$ .
The corresponding kernel $K$ is a subspace of $W$ of codimension $n$ in $W$ and contains no
vectors corresponding to lines (l-dimensional subspaces) of $V$ .

Exhausting DO PN (resp. quadratic APN) functions up to EA-equivalence is essen-
tially equivalent to finiding all such subspaces $K$ up to the diagonal action of $GL(V)$ .

I discuss explicit descriptions of $(V\otimes V)/S(V)\cong A(V)$ which seems efficient to
examine such subspaces. My final aim is to establish the following statement:

Conjecture 1 The number of such subspaces grows $e\uparrow ponentially$ as $n$ is.qettinq larqer.

2 Highly Nonlinear Functions

2.1 Planar(or PN) and APN functions
For a function $f$ on $V$ and $0\neq a\in V$ , consider the map $\delta(f)_{a}$ on $V$ defined by $\delta(f)_{a}(x)$ $:=$

$f(x+a)-f(x)$ .
If $f$ is linear, then $\delta(f)_{a}$ takes a single value $f(a)$ , namely, $|\delta(f)_{a}(V)|=1$ for every

$0\neq a\in V$ . So the opposite property to the linearity is that $|\delta(f)_{a}(V)|$ is large as possible
for every $0\neq a\in V$ . Observe that $|\delta(f)_{a}(V)|\leq|V|$ if $p$ is odd, and $|\delta(f)_{a}(V)|\leq|V|/2$

if $p=2$ , because $\delta(f)_{a}(x+a)=\delta(f)_{a}(x+a)(x\in V)$ in this case.
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Definition 1 With the previous notation,

$\bullet$ $f$ is called planar (or perfect nonlinear (PN)) $if|\delta(f)_{a}(V)|=|V|$ .
Equivalently, $\delta(f)_{a}$ is bijective for every $0\neq a\in V$ .

$\bullet$ $f$ is called almost perfect nonlinear(APN) $if|\delta(f)_{a}(V)|=|V|/2$ .
Equivalently, $\delta(f)_{a}$ is a two to one map for every $0\neq a\in V$ .

It can be shown that if there exits a PN function on $V$ then $p$ is odd.

2.2 Examples of APN functions
The following maps are APN on $F\cong \mathbb{F}_{2^{n}}$ for every $n$ .

$g(x)$ $=$ $x^{2^{e}+1}$ with g.c.$d.(e, n)=1$ ,

$f(x)$ $=$ $x^{3}+ \sum_{i=0}^{n-1}x^{2^{i}}$

The second one was found around 2007. Including this family, several infinite series of
APN functions are constructed recently (see e.g. [1, Table 2]). The following is the first
example of a quadratic APN map which is not graph-equivalent to any monomial map.

Example 1 $[ 4\int$ On $F\cong \mathbb{F}_{2^{10}}$ , $f(x)=x^{3}+ux^{36}(u\in F)$ is $APNi\beta\cdot u\in\omega K^{\cross}\cup\omega^{2}K^{\cross}$ ,
where $K=\mathbb{F}_{2^{5}}$ and $\omega^{3}=1\neq\omega\in K$ .

2.3 Graph and Extended affine equivalences

Let $f$ and $g$ be functions on $V$ .

Definition 2 We say that $f$ is graph-equivalent (or CCZ-equivalent) to $g$ if there
are $\mathbb{F}_{p}$ -linear maps $\alpha,$

$\beta,$
$\gamma$ and $\delta$ on $V$ and $c,$ $d\in Vs.t$ . $(x, y)\mapsto(x^{\alpha}+y^{\gamma}, x^{\beta}+y^{\delta})+(c, d)$

is a bijection on $V\oplus V$ sending $\Gamma_{f}=\{(x, f(x))|x\in V\}$ to $\Gamma_{g}$ .

If we may take $\gamma=0$ in the above, $f$ is called extended affine $(EA)$ -equivalent to
$g$ . Thus $f$ is EA-equivalent to $g$ if $g(x^{\alpha}+c)=x^{\beta}+d+f(x)^{\delta}$ for every $x\in V$ .

2.4 Some properties on equivalence

Proposition 1 (Some properties on equivalence) If $f$ is $PN$ (resp. $APN$), then a
function $g$ graph-equivalent to $f$ is $PN$ (resp. $APN$).
If $p$ is odd, then a function graph-equivalent to $f$ is also EA-equivalent to $f$ . If $f$ is DO,
then any function EA-equivalent to $f$ is DO.

Thus in odd characteristic case, the concept of graph-equivalence coincides with that of
EA-equivalence. If $p=2$ , there are examples of graph-equivalent APN functions which
are EA-inequivalent.
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2.5 DO functions and quadratic functions

Definition 3 A function $f$ on a field $F\cong \mathbb{F}_{p^{n}}$ is called Dembowski-Ostorm(DO), if
$f$ is represented by a polynomial in $F[X]$ of shape

$a+ \sum_{i=0}^{n-1}a_{i}X^{p^{i}}+\sum_{0\leq i<j\leq n-1}a_{ij}X^{p^{i}+\rho}’$ .

If $p=2$ , $a$ DO function is referred to as $a$ quadratic function.

3 Structures associated with planar functions

3.1 A geometric interpretation of a planar function

Let $f$ be a function on $V$ . Define an incidence structure II $(f)$ as follows:
the set of points is $V\oplus V$ , and the set of lines is $\{L(a, b), L(c) |a, b, c\in V\}$ , where
$L(a, b)$ and $L(c)$ are just symbols indexed by $(a, b)\in V^{2}$ and $c\in V$ . Incidence is given
by $(x, y)\in L(a, b)$ iff $y-b=f(x-a)$ , and $(x, y)\in L(c)$ iff $x=c$ .

The following is easy to verify (e.g.[2]).

Proposition 2 (A geometric interpretation of a PN function) Let $f$ be a func-
tion on V. Then $f$ is $PN$ iff � $(f)$ is an affine plane.

3.2 Algebraic structure associated with a DO planar function

For a function $f$ on $V$ and $0\neq a\in V$ , we consider the following structure on $V$ .

Definition 4 (Algebraic structure $A(f)$ ) $A(f)$ $:=$ $(V; +, \circ_{f}),$ $\})f_{l(\gamma()}0_{f}=0$ is an
operation on $V$ defined by $x\circ y:=f(x+y)+f(x)+f(y)+f(0)(x, y\in V)$ .

If $f$ is DO and planar (so $p$ is odd), then the algebraic structure $A(f)$ is a commutative
presemifield, whose definition will be given below (notice that this definition involves
the even characteristic case).

Definition 5 $A$ presemifield $V7S$ a set with operations $+$ and $0$ , satisfying;

$(Sl)(V, +)$ is a group with identity element $0$ .

$(S2)xo(y+z)=x\circ y+xoz$ and $(x+y)\circ z=x\circ z+y\circ z$ for all x, $y,$ $z\in V$ .

$(S3)x\circ y=0$ implies $x=0$ or $y=0$ .

Let $f$ be a DO planar function on $V$ . Then (S2) follows from the assumption that $f$

is DO. (S3) is equivalent to the condition that $\delta_{y}(f)=f(x+y)+f(y)=f(x)+f(O)$
has a single solution $x$ for each $0\neq y\in V$ , which is the definition of a PN function.

3.3 Coulter-Henderson’s result
In fact, Coulter-Henderson showed that the concept of commutative presemifields with
$p$ odd is equivalent to the concept of DO planar functions. See [2] for the details.
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4Structures associated with APN functions

4.1 Geometric interpretation of APN functions
Let $f$ be a function on $V$ . Define an incidence structure � $(f)$ as follows:
the set of points is $V\oplus V$ , and the set of blocks is $\{B(a, b) | a, b\in V\}$ , where
$B(a, b)$ is just a symbol indexed by $(a, b)\in V^{2}$ . Incidence is given by $(x, y)\in B(a, b)$ iff
$y-b=f(x-a)+f(0)$ . (Notice the similarity of the incidence to that of $A(f)$ for PN
functions.)

Proposition 3 $[9J$ For a function $f$ on $V,$ $f$ is $APN$ iff the incidence structure � $(f)$ is
the incidence graph of $a$ semibiplane. Two $APN$ functions $f$ and $g$ are graph-equivalent
iff � $(f)$ is $iso$rnorp$f\iota ic$ to Il $(g)$ as $g_{7}\cdot aphs$ .

The later part of the proposition was observed by several researchers, including Dillon
and Pott [6]. Here we recall a formal definition of a semibiplane.

Definition 6 An incidence structure $(\mathcal{P}, \mathcal{B};*)$ is called $a$ semibiplane if for any two
distinct elements in $\mathcal{P}$ (resp. $\mathcal{B}$) there are exactly $0$ or 2 elements of $\mathcal{B}$ (resp. $\mathcal{P}$) incident
with both of them, and its incidence graph is connected, where the incidence graph of
$(\mathcal{P}, \mathcal{B};*)$ is the graph on $\mathcal{P}\cup \mathcal{B}$ in which two vertices are ajacent if the corresponding
elements are incident in $(\mathcal{P}, \mathcal{B};*)$ .

4.2 A geometric interpretation of quadratic APN functions
Theorem 1 [8] Let $f$ be a function on $V$ with $\dim(V)=n$ over $\mathbb{F}_{2}$ . Then $f$ is quadratic
$APN$ iff the associated structure $S[f]$ is $a$ DHO over $\mathbb{F}_{2}$ (with ambient space of dimension
$2n$ if $n\geq 3)$ . Two quadmtic $APN$ functions $f$ and $g$ are extended affine equivalent lff
$S[f]7_{\text{ノ}}S$ isomorphic to $S[g]$ as dimensional dual hyperovals.

We recall a formal definition of a DHO (dimensional dual hyperoval).

Definition 7 A collection $S$ of $(d+1)$ -dimensional subspaces of a vector space $W$ over
$\mathbb{F}_{q}\iota s$ called $a$ d-dimensional dual hyperoval (DHO) over $\mathbb{F}_{q},$ if any $t_{tl)O}di_{\backslash }\backslash t\uparrow_{\text{ノ}}r\iota ct$

members of $S$ intersect at a l-dimensional subspace, any three mutually distinct members
of $S$ intersect at the zero subspace, and $|S|=((q^{d+1}-1)/(q-1))+1$ .

A subspace of $W$ spanned by all members of $S\iota s$ called the ambient space of $S$ .

5 Universal algebraic observations
In the algebraic structure $A(f)$ defined for a function $f$ on $F$ (or its underlying space
$V)$ , the multiplication $\circ$ is given by $xoy=f(x+y)+f(x)+f(y)+f(0)$ . In particular,
$\circ$ is commutative: $xoy=yox$ .

If $f$ is DO, then $\circ$ satisfies the left and the right distributive lows. If $f$ is PN (so that
$p$ is odd), then $x\circ y=0$ iff $x=0$ or $y=0$ . Remark in this case, $x\circ x\neq 0$ for $x\neq 0$ . If
$f$ is APN (so that $p=2$), then $x\circ y=0$ iff $x=0$ or $y=0$ or $x=y$ .

Summarizing, we have
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Proposition 4 (Algebraic structures for PN and APN functions) Assume that
$f$ is a function defined on a finite vector space $V$ over $\mathbb{F}_{\rho}\uparrow$]$)ithp$ odd (rcsp. $p=2$). Then
$f$ is DO and $PN$ (resp. quadratic $APN$) iff algebraic system $A(f)$ satisfies the following
$(A1)-(A4)$ (resp. (A 1), (A 2), $(A3)$ and $(A4)$) $.\cdot$

(A 1) $(V;+)$ is a vector space over $\mathbb{F}_{p}$ .

(A 2) $\circ$ is left and rtght distributive.

(A 3) $x\circ y=0$ if and only if $x=0$ or $y=0$ .

$(A3^{f})x\circ y=0$ if and only if $x=0$ or $y=0$ , or $x=y$ .

$(A4)\circ$ is symmetric.

If $f$ is DO PN (so $p$ is odd), the axioms $(A1)-(A4)$ are nothing more than axioms for
commutative presemifield.

In the rest of this section, we consider an arbitrary algebraic structure $(V; +, \circ)$

satisfying either axioms (Al)$-(A4)$ (so it is just a commutative semifield) or axioms
(AI),(A2),(A3’) and (A4). This algebraic consideration allows us to involve commuta-
tive presemifields in characteristic $p=2$ . This also makes clear the relation between
commutative semifields in characteristic 2 and the algebraic structure corrresponding to
quadratic APN functions.

By axiom (A3) (resp. $(A3’)$ ) and (A4), the form $V\cross V\ni(x, y)\mapsto x\circ y\in V$ is an
symmetric (resp. alternating) bilinear map on $V$ . From the universality of tensor
product, there is an $\mathbb{F}_{p}$-linear surjection $\tilde{\rho}$ from $V\otimes V$ onto $V$ such that $\tilde{\rho}(x\otimes y)=x\circ y$

for all $x,$ $y\in V$ .

As $\circ$ is symmetric, $\overline{\rho}$ vanishes on the subspace $A(V)$ of $V\otimes V$ consisting of $x\oplus y+y\oplus x$

for distinct $x,$ $y\in V:A(V)$ $:=\langle x\otimes y+y\otimes x|x,$ $y\in V\}$ . (Notice that $x\otimes x+x\otimes x=0$

for $x=y$ , if $p=2.)$ Thus $\tilde{\rho}$ induces a surjective linear map $\rho$ from $V\otimes V/A(V)$ onto $V$ .
If $f$ is quadratic APN, $\circ$ vanishes on the larger subspace $S(V)$ of $V\otimes V$ spanned by

$A(V)$ and $V^{(2)}=\{x\otimes x|x\in V\}$ : namely, $S(V)=\langle x\otimes y+y\otimes x,$ $x\cross x|x,$ $y\in V\rangle$ .
Thus $\overline{\rho}$ induces a surjective linear map $\rho$ from $V\otimes V/S(V)$ onto $V$ .

The kernel $K$ $:=Ker(\rho)$ has codimension $n$ in $(V\otimes V)/A(V)$ or $(V\otimes V)/S(V)$ ,
according as $\circ$ satisfies (Al)$-(A4)$ or $(Ai)(i=1,2,4)$ and (A3’). Moreover, $K$ has the
following property by axiom (A3), where $x\otimes y(\in V\otimes V)$ is identified with its image
$(x\otimes y)+A(V)$ in $(V\otimes V)/A(V)$ :

$K\cap\{x\otimes y|x, y\in V\}$ $=$ $\{0\}$ .

If $f$ is quadratic APN, then the following property follows from (A3’), where $x\otimes y$

$(\in V\otimes V)$ is identified with its image $(x\otimes y)+S(V)$ in $(V\otimes V)/S(V)$ : (notice that as
$x\otimes x\in V^{(2)}$ , we only need $x\otimes y$ for distinct $x,$ $y\in V.$ )

$K\cap\{x\otimes y|x\neq y\in V\}$ $=$ $\{0\}$ .

Conversely, if a subspace $K$ of $W$ $:=(V\otimes V)/A(V)$ satisfies

codim$(K)=\dim(W)-\dim(K)=n$ and $K\cap\{x\otimes y|x, y\in V\}=\{0\}$ .
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then the operation $0$ on $(V; +)$ defined by $xoy$ $:=\alpha((x\otimes y)+K)$ for $x,$ $y\in V$ satisfies
the axiom of a commutative presemifield, where $\alpha$ is any isomorphism of $W/K$ with $V$ .

Similar conclusion holds for $\overline{W}$ $:=(V\otimes V)S(V)$ . Namely, if a subspace $K$ of
$\overline{W}$ $:=(V\otimes V)/S(V)$ satisfies the following two properties

codim$(K)=\dim(\overline{W})-\dim(K)=n$ and $K\cap\{x\otimes y|x\neq y\in V\}=\{0\}$ .

then the operation $0$ on $(V; +)$ defined by $xoy:=\alpha((x\otimes y)+K)$ for $x,$ $y\in V$ satisfies
the axioms (AI),(A2),(A3’) and (A4), where $\alpha$ is any isomorphism of $\overline{W}/K$ with $V$ .

A canonical form of quadratic APN functions

5.1 Canonical form of a quadratic APN function
Now we return to the case when $0=0_{f}$ is detemined by a quadratic function $f$ on $V$ :
$x\circ_{f}y=f(x+y)+f(x)+f(y)+f(O)$ . Notice that $0_{f}$ coincides with $0_{g}$ iff $f+g$ is
an affine function on $V$ . Hence the conclusion of previous section shows the following
canonical description of quadratic APN functions, beacuse $A(V)$ can be identified with
$(V\otimes V)/S(V)$ via $x\wedge y\mapsto x\otimes y+S(V)$ .

This result was first obtained by examining the universal DHO of $S[f]$ .
Let $\Gamma$ be the set of all $\mathbb{F}_{2}$ -linear surjections $\gamma$ from $A(V)$ to $V$ with $Ker(\gamma)\cap\{a\wedge b|$

$a,$ $b\in V\}=\{0\}$ , and let $Af$ be the set of $\mathbb{F}_{2}$-affine maps on $V$ . Fix a basis $\{e_{i}\}_{i=1}^{n}$ for $V$

over $\mathbb{F}_{2}$ . For every $(\gamma, \alpha)$ of $\Gamma\cross Af$ , the following map $f_{\gamma,\alpha}$ is quadratic APN on $V$ :
$f_{\gamma,\alpha}$ : $a= \sum_{i=1}^{n}a_{i}e_{i}\mapsto\sum_{1\leq i<j\leq n}a_{i}a_{j}(e_{i}\wedge e_{j})^{\gamma}+a^{\alpha}$ .

Theorem 2 $[lOJ$ Every quadmtic $APN$ map on $L$ is uniquely written as $f_{\gamma,\alpha}$ for $(\gamma_{j}\alpha)$ .
Namely, there is a $bi_{J}ection$ between the set of quadmtic $\mathcal{A}PN$ maps on $L$ and the set
$\Gamma\cross Af$ .

5.2 Equivalence

Theorem 3 $[lOJ$ For two quadmtic $APN$ maps $f_{\gamma,\alpha}$ and $f_{\gamma’,\alpha’}$ , they are EA-equivalent
iff $Ker(\gamma)$ and $Ker(\gamma’)$ belong to the same orbit under the diagonal action of $GL(V)$ :
$g(a\wedge b)=g(a)\wedge g(b)(a, b\in V)$ .

5.3 Core problem
Thus, finiding all the EA-equivalence classes of quadratic APN maps on $V$ is equivalent
to finding all $GL(V)$ -orbit on the set of subspaces $K$ of $(V\otimes V)/S(V)=:\overline{W}$ such that:

codim$(K)=\dim(\overline{W})-\dim(K)=n$ and $K\cap\{a\wedge b|a\neq b\in V\}=\{0\}$

We call a subspace $K$ of $\overline{W}$ with the above property line-skew.
When $p=2,\overline{W}=(V\otimes V)S(V)$ is a quotient of $W=(V\otimes V)/A(V)$ .

(Question) Are there some relations between subspaces $K$ of codimension
$n$ in $W$ which yield commutative semifields (namely, $K\cap\{x\otimes y$ $|$ $x,$ $y\in$

$V\}=\{0\})$ and subspaces $\overline{K}$ of codimension $n$ in $\overline{W}$ which yield quadratic
APN functions $($ namely, $\overline{K}\cap\{x\otimes y|x\neq y\in V\}=\{0\})$ .
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6 Some explicit description of $A(V)$

6.1 Alternating form scheme $Alt(V)$

We assume that $p=2$ . Then $(V\otimes V)/S(V)\cong A(V)$ by identifying $x\otimes y+S(V)$ with
$x\wedge y:=x\otimes y+y\otimes x$ .

$A(V)$ can also be identified with the space $Alt(V)$ of all alternating bilinear forms on
$V$ , by identifying $x\wedge y$ with the alternating form of rank 1 with $f(x, y)=1$ . Here the
rank of an alternating form $f$ is $(\dim(V)-\dim Rad(f))/2$ .

Recall that $Alt(V)$ is an association scheme with respect to the distance $\delta$ given by
$\delta(f, g)=$ the rank of $f-g$ . Thus a subspace $K$ of $Alt(V)$ of codimension $n$ is line-skew
iff it does not contain form of rank 1 iff any two distinct forms of $K$ are at distance at
least 2.

6.2 Line skew subspace as designs in $Alt(V)$

Delsarte and Goethals [3] investigated a subset $D$ of $Alt(V)$ in which two distinct
elments are at distance at least $d$ . They obtained the bound $|D|\leq 2^{n(n+1-2d)/2}$ or
$|D|\leq 2^{(n-1)(n+2-2d)’ 2}$ according as $n$ is odd or even. As $\dim(K)=\dim(Alt(V))-n=$
$n(n-3)/2$ , this bound is attained by $K$ if $n$ is odd.

With current terminologies in algebraic combinatorics, we have:

Proposition 5 (Line-skew space as Delsarte design) Assume that $n=2m+1$ is
odd. A subspace $K$ of $Alt(V)$ is line-skew iff

$\cdot$

it is $a$ $(m-1)$ -design in $Alt(V)$ in the
sense of Delsalte.

The previous theorem gives us several strong information about a line-skew subspace,
if $\dim(V)=n$ is odd (e.g. [7]). However, so far I could not obtain explicit informations
on the numbers of such spaces.

6.3 Another explicit description of $Alt(V)$

We identify $V$ with the field $F\cong \mathbb{F}_{2^{n}}$ , and denote by $F_{0}\cong F_{2/2}$ the subfield of $F$ of
degree 2 if $n$ is even. We set $l=\lfloor n/2\rfloor$ .

Then $Alt(V)$ is isomorphic to $V^{l}=V^{m}=\{(b_{k})_{k=1}^{l} |b_{k}\in V\}$ if $n=2m+1$ is odd,
and to the subspace of $V^{l}$ with $b_{l}$ lies in $F_{0}$ if $n=2m+2$ is even.

The explicit isomorphism can be described. In particular,

Proposition 6 (Subsets corresponding to rank 1 forms) the set of rank 1 alter-
nating forms corresponds to $\mathcal{L}$ $:=\{(x^{2^{k}+1}(y+y^{2^{k}}))_{k=1}^{l} |x, y\in F\backslash \mathbb{F}_{2}\}$ .

6.4 Some line-skwe subspaces
For every $1\leq e\leq l$ coprime with $n$ , the e-th entry $x^{2^{r}+1}(y+y^{2^{r}})$ is nonzero for any
vector $(x^{2^{k}+1}(y+y^{2^{k}}))_{k=1}^{l}$ of $\mathcal{L}$ . Thus the subspace $K_{e}$ of $V^{l}$ consisting of all vectors
$(b_{k})$ with $b_{k}=0$ does not contain any vector of $\mathcal{L}$ . As $K_{e}$ has codimension $n$ in $Alt(V)$
(identified with the subspace of $V^{l}$ described above), $K_{e}$ is a line-skew subspace. The
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canonical projection map $\rho$ : $Alt(V)arrow Alt(V)/K_{e}$ composed with an identification
$Alt(V)/K_{e}\ni(b_{k})_{k=1}^{l}+K_{e}\mapsto b_{k}\in V$ gives $x\wedge y\mapsto x^{2^{e}}y+xy^{2^{e}}$ Hence this corresponds
to the Gold function $g(x)=x^{2^{e}+1}$

We also have line-skew subspace $K$ consisting of $(b_{k})_{k=1}^{l}$ with $b_{1}+ \sum_{i=0}^{n-1}b_{3}^{2^{t}}$ . This
gives the APN map $f(x)=x^{3}+ \sum_{i=0}^{n-1}(x^{9})^{2^{i}}$

When $n=10,$ $K=\{(b_{k})_{k=1}^{5} | b_{1}=ub_{3}^{4}\}$ is a line-skew subspace yielding APN
function $e(x)=x^{3}+ux^{36}$ .

6.5 Some comments
The last description of $Alt(V)$ seems explicit enough to find ‘easy’ examples of skew-free
subspaces, and so quadratic APN functions.

Recently, Dillon, Edel and Pott [5] introduce the idea of ‘switching’ of APN functions,
and produces many new examples of APN functions (including non-quadratic examples).
In my setting, switching relation may be interpreted as two line-skew subspaces sharing
a hyperplane. I am wondering if this suggests some new direction to generalize the idea
of switching.
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