Morita equivalences between blocks of finite group algebras

Department of Mathematics and Informatics, Graduate School of Science, Chiba University e-mail koshitan@math.s.chiba-u.ac.jp 千葉大学 大学院理学研究科

Shigeo Koshitani 越谷 重夫

1. Introduction and notation

In representation theory of finite groups, particularly, in modular representation theory, studying structure of p-blocks (block algebras) of finite groups G, where p is a prime number, is one of the most important and interesting things.

Notation 1.1. Throughout this note we use the following notation and terminology. We denote by G always a finite group, and let p be a prime. Then, a triple $(\mathcal{K}, \mathcal{O}, k)$ is so-called a p-modular system, which is big enough for all finitely many finite groups which we are looking at, including G. Namely, \mathcal{O} is a complete descrete valuation ring, \mathcal{K} is the quotient field of \mathcal{O}, \mathcal{K} and \mathcal{O} have characteristic zero, and k is the residue field $\mathcal{O}/\text{rad}(\mathcal{O})$ of \mathcal{O} such that k has characteristic p. We mean by "big enough" above that \mathcal{K} and k are both splitting fields for the finite groups mentioned above. Let A be a block of $\mathcal{O}G$ (and sometimes of kG) with a defect group P. We denote by mod-kG and by mod-A the categories of finitely generated right kG- and A-modules, respectively. We write $B_0(kG)$ for the principal block algebra of kG. For the notation and terminology we shall not explain precisely, see the books of [2] and [3]. Setup 1.2. Throughout this note all the time except in Theorem 2.1 our situation is the following: Namely, G and H are finite groups which have the same Sylow *p*-subgroup P, and hence $P \subseteq G \cap H$. Assume that \tilde{G} is a normal subgroup of G and \tilde{H} is a normal subgroup of H such that \tilde{G} and \tilde{H} have the same Sylow *p*-subgroup \tilde{P} , and hence $\tilde{P} \subseteq \tilde{G} \cap \tilde{H}$, and moreover that $G/\tilde{G} \cong H/\tilde{H}$.

Remark 1.3. If the factor group G/\tilde{G} is p'-groups, then we know essentially by the famous result due to H.Maschke (1898) that the ring extension $k\tilde{G} \subseteq kG$ is a so-called separable extension. Then, roughly speaking, mod-kG and mod- $k\tilde{G}$ are in some sense similar (of course, even the numbers of simples in the two module categories are different, though). Therefore, much more interesting situation should be the case where $|G/\tilde{G}|$ is divisible by p. Then, here comes our situation.

Our situation 1.4. We still keep the setup **1.2**. In addition we assume that the factor groups $G/\tilde{G} \cong H/\tilde{H}$ are *p*-groups. Surely, the factor groups are isomorphic to P/\tilde{P} , too. Then, we naturally come to the following questions.

Questions 1.5. Our main concern in this note is the following:

- (i) If there is a *nice* equivalence between $\text{mod}-k\tilde{G}$ and $\text{mod}-k\tilde{H}$, can we lift it to a *nice* equivalence between mod-kG and mod-kH?
- (ii) If there is a *nice* equivalence between mod-kG and mod-kH, can we descend it to a *nice* equivalence between mod- $k\tilde{G}$ and mod- $k\tilde{H}$?

2. Results

In this short section we shall list two results which come up from Question 1.5.

Theorem 2.1. Assume 1.4, however, note that we do not assume that P and \tilde{P} are Sylow p-subgroups of G and \tilde{G} , respectively. Namely, P is just a p-subgroup of G and also of H, and \tilde{P} is just a p-subgroup of \tilde{G} and also of \tilde{H} . We assume then that P is a defect group of A and B, and \tilde{P} is a defect group of \tilde{A} and \tilde{B} . Moreover, we suppose

that the factor groups $Q := G/\tilde{G} \cong H/\tilde{H} \cong P/\tilde{P}$ are just cyclic group C_p of order p, and that A, \tilde{A} , B, \tilde{B} respectively are block algebras of kG, $k\tilde{G}$, kH, $k\tilde{H}$, such that A covers \tilde{A} and B covers \tilde{B} . Set $\Delta Q := \{(u, u) \in Q \times Q | u \in Q\}$. We assume, in addition, that \tilde{A} and \tilde{B} are both ΔQ -invariant, that is, they are stable under conjugation action by all elements in Q. Set furthermore that $\Delta := (\tilde{G} \times \tilde{H})\Delta Q = (\tilde{G} \times \tilde{H})\Delta P = (\tilde{G} \times \tilde{H})\Delta G = (\tilde{G} \times \tilde{H})\Delta H$. Then, we get the following: Suppose that there is a bounded complex $\tilde{M}^{\bullet} \in C^{\mathrm{b}}(\mathcal{O}\tilde{A}\operatorname{-mod}-\mathcal{O}\tilde{B})$ of finitely generated $(\mathcal{O}\tilde{A}, \mathcal{O}\tilde{B})$ -bimodules such that

- (1) $\tilde{M}^{\bullet} \otimes_{\mathcal{O}} \mathcal{K}$ induces an isometry \tilde{I} from $\mathbb{Z}\operatorname{Irr}(\tilde{A})$ to $\mathbb{Z}\operatorname{Irr}(\tilde{B})$.
- (2) \tilde{M}^{\bullet} is perfect (exact), that is, all terms in the complex \tilde{M}^{\bullet} are projective as left $\mathcal{O}\tilde{G}$ -modules and also as right $\mathcal{O}\tilde{H}$ -modules (and hence the isometry \tilde{I} above is perfect),
- (3) the complex \tilde{M}^{\bullet} extends from $\tilde{G} \times \tilde{H}$ to Δ .

Then, we can define a bounded complex $M^{\bullet} := \tilde{M}^{\bullet}_{\tilde{G} \times \tilde{H} \to \Delta} \uparrow^{G \times H} \in C^{b}(\mathcal{O}A \operatorname{-mod} \mathcal{O}B)$, and the new complex M^{\bullet} induces a perfect isometry from $\mathbb{Z}\operatorname{Irr}(A)$ to $\mathbb{Z}\operatorname{Irr}(B)$. where $M^{\bullet} := \tilde{M}^{\bullet}_{\tilde{G} \times \tilde{H} \to \Delta} \uparrow^{G \times H}$ is an induced complex by applying the functor $- \otimes_{\mathcal{O}\Delta} \mathcal{O}[G \times H]$ to the bounded complex \tilde{M}^{\bullet} .

Corollary 2.2. We easily get [1, Example 4.3] in our previous paper by making use of Theorem **2.1**.

Theorem 2.2. Assume 1.4. Here we assume that P is a Sylow psubgroup of G and H, and also \tilde{P} is a Sylow p-subgroup of \tilde{G} and \tilde{H} . Moreover, we suppose that the factor groups $Q := G/\tilde{G} \cong H/\tilde{H} \cong P/\tilde{P}$ are isomorphic finite p-groups, and that A, \tilde{A} , B, \tilde{B} respectively are **principal** block algebras of kG, $k\tilde{G}$, kH, $k\tilde{H}$ Set $\Delta P := \{(u, u) \in$ $P \times P | u \in P\}$. Moreover, we denote by $\text{Scott}(G \times H, \Delta P)$ the (Alperin-)Scott module in $G \times H$ with respect to a subgroup ΔP of $G \times H$, see [2, Chap.4 Theorem 8.4, Corollary 8.5]. Then, we get the following: If $_AM_B := \text{Scott}(G \times H, \Delta P)$ induces a Morita equivalence (and hence it is a Puig equivalence) between A and B, then $_{\tilde{A}}\tilde{M}_{\tilde{B}} := \text{Scott}(\tilde{G} \times$ $\tilde{H}, \Delta \tilde{P}$) induces a Morita equivalence (and hence it is a Puig equivalence) between \tilde{A} and \tilde{B} . (Recall that $A := B_0(kG) = \text{Scott}(G \times G, \Delta \tilde{P})$ and $B := B_0(kH) = \text{Scott}(H \times H, \Delta \tilde{P})$.

Acknowledgment. The author is grateful to Professor Akihide Hanaki for organizing such a wonderful meeting held in Shinshu University as a RIMS meeting during 17–20 November, 2009.

References

- [1] M. Holloway, S. Koshitani, N. Kunugi, Blocks with nonabelian defect groups which have cyclic subgroups of index p, Archiv der Mathematik **94** (2010) 101–116.
- [2] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1988.
- [3] J. Thévenaz, G-Algebras and Modular Representation Theory. Clarendon Press, Oxford, 1995.