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1 The hyperfocal subalgebra of a block

Let $G$ be a finite group and $P$ be a Sylow p-subgroup of $G$ . Moreover set $Q=O^{p}(G)\cap P$ ,

which is called the hyperfocal subgroup in [12]. We have

$Q=\langle[O^{p}(N_{G}(U)), U]|U\leq P\}$

(see [1], Lemma 2.2 for a proof). I thank Koshitani who informed me of [1]. In particular
$Q=1$ if and only if $G$ is p-nilpotent. If $P$ is abelian, then $Q=[N_{G}(P), P]$ .

Let $(\mathcal{K}, \mathcal{O}, k)$ be a sufficiently large p-modular systern such that $k$ is algebraically closed.
Let $G$ be a finite group and $b$ be a block of $\mathcal{O}G$ and let $P_{\gamma}$ be a defect pointed group of
a pointed group $G_{\{b\}}$ on $\mathcal{O}G$ , that is, $P_{\gamma}$ is a maximal local pointed group contained in
$G_{\{b\}}$ . Let

$Q=\langle[O^{p}(N_{G}(U_{\delta})), U]|U_{\delta}\in S_{\mathcal{L}}(P_{\gamma})\rangle$ .

where $S_{\mathcal{L}}(P_{\gamma})$ is the set of local pointed groups on $\mathcal{O}G$ contained in $P_{\gamma}$ . Following [12],
$Q$ is called the hyperfocal subgroup of $P_{\gamma}$ . Let $j\in\gamma$ and let $B=j\mathcal{O}Gj$ . $B$ is a source
algebra of $b$ and $j$ is called a source idempotent of $b$ . By [12],Theorem 1.8, [13], \S 13 and
\S 14, there exists a unique P-stable unitary subalgebra $D$ of $B$ , up to $(B^{P})^{\cross}$ -conjugation,
which satisfies

$D\cap Pj=Qj$ and
$B= \bigoplus_{u\in P/Q}Du\cong D\otimes_{\mathcal{O}Q}\mathcal{O}P$

,

where $(B^{P})^{\cross}$ is the group of invertible elements of $B^{P}$ . $D$ is called a hyperfocal subalgebra
of $b$ . $D$ becomes an interior Q-algebra with a group homomorphism $q\in Qarrow qj\in D^{\cross}$ .
By [12] or [13], Corollary 13.13, $Q=1$ if and only if $fb$ is nilpotent, and in that case $D$ is
$\mathcal{O}$-simple, that is, $D$ is isomorphic to a full matrix algebra over $\mathcal{O}$

We set $\mathcal{R}=\mathcal{O}$ or $k$ . Let A be an $\mathcal{R}$-algebra and $B$ be an interior A-algebra, that is,
$B$ is an $\mathcal{R}$-algebra which is an A-bimodule satisfying $(xa)y=x(ay)$ for $a\in A,$ $x,$ $y\in$ B.
Let $\mu_{B}$ : $B\otimes_{A}Barrow B$ denote the map of B-bimodules satisfying $\mu(x\otimes y)=xy$ for
$x,$ $y\in$ B. Following [6], we say $B$ is a separable interior A-algebra if $\mu_{B}$ splits as a map
of B-bimodules. By [6], Lemma 4, $B$ is a separable interior $\mathcal{O}P$-algebra.

Theorem 1 ([18], Theorem 1) $D$ is a separable interior $\mathcal{O}Q$ -algebra.

Corollary 1 ([18], Corollary 1) Let $N$ be a finitely generated (left) D-module. Then $N$

is a direct summand of $D\otimes_{\mathcal{O}Q}N$ as a D-module. In particular $\overline{D}=D\otimes ok$ is of finite
representation type if $Q$ is cyclic.

We recall that if $P$ is abelian and $Q$ is cyclic, then the number of isomorphism classes
of irreducible D-modules is equal to $|N_{G}(P_{\gamma})/C_{G}(P)$ I by Theorem in [17].
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2 Fan’s question

Assume that $P$ is abelian. Then we have $Q=[P, N_{G}(P_{\gamma})]$ ([18]). Let $L=C_{P}’(N_{G}(P_{\gamma}))$ .
Then we have

$P=Q\cross L$

as is well known. For $x\in \mathcal{O}G$ and $X\subseteq \mathcal{O}G$ , we denote by $\overline{x}$ and $\overline{X}$ the images in $kG$ by
the canonical homomorphism from $\mathcal{O}G$ onto $kG$ . Now $G_{\{b\}}$ is Q-locally controlled by $P_{\gamma}$

in the sense of Fan [2].

Question 1 (Fan [2], p. 789) As interior P-algebras

$B\cong D’\otimes_{\mathcal{O}}\mathcal{O}L$

for some interior P-algebra $D’$ .

This question is true if $P$ is normal in $G$ , or $G$ is p-solvable (see Remark 1 below). Also
Okuyama showed that the question is true for $\overline{B}=B\otimes_{\mathcal{O}}k$ .

Theorem 2 ([18], Theorem 2) With the above notations, there is a group horr. omorphism
$\rho$ : $Parrow\overline{D}^{\cross}$ such that $\rho(q)=q\overline{j}$ for any $q\in Q$ and that $d^{u}=d^{\rho(u)}$ for any $d\in\overline{D}$ and
$u\in L$ . Moreover, then, there is an inte$7i$or P-algebra isomorphism $\overline{B}\cong\overline{D}\otimes_{k}\lambda:L$ mapping
$du$ on $d\rho(u)\otimes u$ for any $d\in\overline{D}$ and $u\in L$ where $\overline{D}$ is regarded as an intenor P-algebra
with $\rho$ as structural map.

(See also [16].) We will show that if $Q$ is normal in $G$ , then Fan’s question is $\vdash u\Gamma ue$ .

3 The case where $Q$ is normal in $G$

Assume that $P_{\gamma}$ is associated with the maximal b-Brauer pair $(P, b_{P})$ . We have
$N_{G}(P, b_{P})=N_{G}(P_{\gamma})$ . Set $b_{0}=(b_{P})^{N_{G}(P)}$ . Then $b_{0}$ is a Brauer correspo.adent of $b$ .
Let $B$ be a source algebra of $b$ defined in the above and let $B_{0}$ be a source algebra of $b_{0}$ .
Let $E=N/C_{G}(P)$ be a p-complement of $N_{G}(P_{\gamma})/C_{G}(P)$ and we denote by $|E]$ a set of
representatives for the $C_{G}(P)$ -cosets in $N$ . For $a\in(\mathcal{O}G)^{P}$ , we set $a’=$ Brp $(a)$ . Recall
that $ga’ g^{-1}=(gag^{-1})’(g\in N_{G}(P))$ .

Proposition 1 With the above notations, assume that there exists a normal p-subgroup
$Q$ of $G$ such that $Q\subseteq Z(P)$ and $(b_{P})^{C_{G}(Q)}$ is nilpotent.

(i) $B\cong S\otimes oB_{0}$ as intereor P-algebras, where $S$ is a (primitive) (intert,or) Dade
P-algebra.

(ii) If $P$ is abelian, then $B\cong D\otimes_{\mathcal{O}}\mathcal{O}L$ as interior P-algebras, where $L=C_{F’}(N_{G}(P_{\gamma}))$ .
(iii) $b$ and $b_{0}$ are basic Morita equivalent (See [11] for the definition of $b_{c}^{t}|s$ic Morita

equivalence).

Remark 1 If $G$ is p-solvable and $P$ is abelian, then the above theorem holds $r_{(vithout}$ the
assumption by Remark 3.6 in [3].

Remark 2 From the proof of the proposition, if $b$ is a $pr\cdot incipal$ block of $G,$ $th\epsilon\cdot nB\cong B_{0}$ .

For a p-subgroup $X$ of $G$ , we denote by $\mathcal{L}\mathcal{P}_{\mathcal{R}G}(X)$ the set of local point of $X$ on $\mathcal{R}G$ .
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Lemma 1 Let $Q$ be a normal p-subgroup of $G$ and set $C=C_{G}(Q)$ . Let $X$ be a p-
subgroup of $G$ containing Q. Then any $\epsilon\in \mathcal{L}\mathcal{P}_{\mathcal{R}C}(X)$ is contained a uniquely determined
$\epsilon’\in \mathcal{L}\mathcal{P}_{\mathcal{R}G}(X)$ . Moreover the map $\epsilon\in \mathcal{L}\mathcal{P}_{\mathcal{R}C}(X)\mapsto\epsilon’\in \mathcal{L}\mathcal{P}_{\mathcal{R}G}(X)$ is a bijection.

Proof. Since there is a natural bijection between $\mathcal{L}\mathcal{P}oc(X)$ and $\mathcal{L}\mathcal{P}_{kG}(X)$ , we may
assume $\mathcal{R}=k$ . Let $\epsilon\in \mathcal{L}\mathcal{P}_{kC}(X)$ and let $i\in\epsilon$ . Suppose that

$i=i_{1}+i_{2}$ , $i_{1}i_{2}=i_{2}i_{1}=0$

for some idempotents $i_{1},$ $i_{2}$ in $(kG)^{X}$ . Since $Q\leq X$ , we have $i=Br_{Q}(ii)+Br_{Q}(i_{2})$ .
Since $Br_{Q}(i_{1}),$ $Br_{Q}(i_{2})\in(kC)^{X}$ and since $i$ is primitive in $(kC)^{X}$ , we may assume that

$i=Br_{Q}(i_{1})$ and $Br_{Q}(i_{2})=0$ . So $i_{2} \in Ker(Br_{Q})=\sum_{Y<Q}(kG)_{Y}^{Q}$ . Since $Q$ is a normal
$\gamma subgroup$ of $G,$ $Ker(Br_{Q})$ is contained in the radical of $kG$ . Therefore $i_{2}=0$ . This
implies $i$ is primitive in $(kG)^{X}$ . Since $C_{C}(X)=C_{G}(X)$ and since there is a canonical
bijection between $\mathcal{L}\mathcal{P}_{kG}(X)$ and the set of points of $kC_{G}(X)$ , the lemma easily follows. So
the proof is complete. $\blacksquare$

Proof of Proposition 1
(i) Set

$b_{Q}=(b_{P})^{C_{G}(Q)}$ aiid $C=C_{G}(Q)$ .

Then $b$ is a unique block of $G$ which covers $b_{Q}$ and $(P, b_{P})$ is a maximal $b_{Q}$-Brauer
pair. In order to prove (i), we may assume $b_{Q}$ is G-invariarit. By the Frattini argument
$G=CN_{G}(P, b_{P})=CN$ . Since $b_{Q}$ is nilpotent, $C\cap N=C_{G}(P)$ . Let $P_{\delta}$ be a defect
pointed group of $C_{\{b_{Q}\}}$ on $\mathcal{O}C$ . By Lemma 1, we also may assume $\delta\subseteq\gamma$ . Let $i\in\delta$ and
set $B_{Q}=i\mathcal{O}Ci$ , a source algebra of $b_{Q}$ . Note that we may assume $B=i\mathcal{O}Gi$ . Let $S$ be a
hyperfocal subalgebra of $b_{Q}$ contained in $B_{Q}$ and set $C_{B}(S)=\{x\in B|xs=sx(\forall s\in S)\}$ .
Then $C_{B}(S)$ is P-stable because $S$ is P-stable. We will observe that $C_{B}(S)$ is a crossed
product of $C_{B_{Q}}(S)$ over $E$ , then $C_{B}(S)\cong B_{0}$ as interior P-algebras.

By [10], Theorem 1.6, $S$ is a (primitive) Dade P-algebra. Moreover by [10], 1.8, there
is a unique group homomorphism $\iota$ : $Parrow S^{\cross}$ lifting the action of $P$ on $S$ such that
$\det(\iota(u))=1$ for any $u\in P$ . Set $z_{u}=\iota(u^{-1})u=u\iota(u^{-1})$ . We have $z_{u}z_{v}=z_{uv}$ and
$z_{u}\in(C_{B_{Q}}(S))^{P}(u\in Z(P))$ . Hence $C_{B}(S)$ becomes an interior P-algebra. Moreover

$B_{Q}= \bigoplus_{u\in P}Su=\bigoplus_{u\in P}Sz_{u}$
.

Since $S$ is $\mathcal{O}$-simple,
$C_{B_{Q}}(S)= \bigoplus_{u\in P}\mathcal{O}z_{u}\cong \mathcal{O}P$

.

Let $g\in N$ . Since $P_{\delta}$ is N-invariant, there is $x_{g}\in((\mathcal{O}C)^{P})^{\cross}$ such that $gig^{-1}=x_{g}ix_{g}^{-1}$ .
Set $a_{g}=(x_{g}^{-1}g)i=i(x_{g}^{-1}g)\in B\cap \mathcal{O}Cg$ . Then $(g^{-1}x_{g})i=i(g^{-1}x_{g})$ is the inverse of $a_{9}$ in
$B$ (cf. [15], (44.2)). It is easy to see that

(1) $a_{9}u=a_{g}u(a_{9})^{-1}=(gug^{-1})i(\forall u\in P)$ .

Here we note we can take $x_{cg}=cx_{g}$ and hence $a_{cg}=a_{g}$ for any $c\in C_{G}(P)$ . From
(1), $a_{9S}$ is a hyperfocal subaglgebra of $b_{Q}$ . By [12], 13.3, $S$ is unique up to $((B_{Q})^{P})^{\cross}-$

conjugation, and hence we may assume that $S=a_{9S}$ by replacing $x_{g}$ by $x_{g}(y_{g}+(1-i))$
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where $y_{g}\in((B_{Q})^{P})^{\cross}$ . On the other hand, since $S$ is $\mathcal{O}$-simple, there exists $t_{g}\in S^{\cross}$ such
that

$a_{g}t_{9}s=s(\forall s\in S)$

by a theorem of Skolem-Noether. We may assume $t_{g}=t_{cg}$ for any $c\in C_{(}J\urcorner(P)$ . Since
$\iota(u^{g})s\iota((u^{g})^{-1})=u^{g}s(u^{g})^{-1}$ , we can see

$a_{9}\iota(u^{g})s(a_{9}(\iota((u^{g})^{-1}))))=usu^{-1}$ .

Note $\det(a_{9}\iota(u))=\det(t_{9}\iota(u))=1$ . Hence, by the uniqueness of $\iota$ , we have

(2) $\iota(u^{g})=\iota(u)^{a_{9}}=\iota(u)^{t_{g}}$ .

Now we can see

(3)
$B= \bigoplus_{g\in[E]}B_{Q}a_{g}=\bigoplus_{g\in[E]}(B\cap \mathcal{O}Cg)$

.

Set $c_{g}=t_{g}^{-1}a_{g}\in C_{B}(S)\cap \mathcal{O}Cg$ . We may assurne $c_{g}=c_{cg}$ for any $c\in C_{G}(P)$ .
Moreover $(a_{g})^{-1}t_{9}$ is the inverse of $c_{9}$ in $B$ . From (1) and (2) we can see

(4) $a_{9}z_{u}=z_{9u},z_{u}=z_{9u}c_{g}(g\in N, u\in P)$ .

Moreover

$c_{g}c_{h}(c_{gh})^{-1}\in(C_{B_{Q}}(S))^{\cross}$

Since we have
$B=\oplus\oplus Sz_{u}c_{g}$ ,

$g\in[E]u\in P$

(5) $C_{B}(S)=$ $\oplus$ $\mathcal{O}z_{u}c_{g}$ .
$g\in[E],u\in P$

Thus $C_{B}(S)$ is a crossed product of $E$ over $C_{B_{Q}}(S)$ . From (4) and [4], Lemrna $M,$ $C_{B}(S)$

is a twisted group algebra of $P\rangle\triangleleft E$ over $\mathcal{O}$ (see [7] and [5]). In fact, by replacing $c_{g}$ by
$c_{g}\epsilon_{g}$ for soine $\epsilon_{9}\in i+J(Z(\mathcal{O}\tilde{P}))\subseteq(\mathcal{O}C)^{P}$ if necessary, where $\tilde{P}=\{z_{u}|u\in f^{\supset}\}$ , we have
for some 2-cocycle $\alpha\in Z^{2}(E, \mathcal{O}^{\cross})$

(6) $c_{g}c_{h}=\alpha(g, h)c_{gh}(g, h\in N)$ .

Hence by replacing $x_{g}$ by $\tilde{x}_{g};=x_{g}(a_{9}(\epsilon_{9}^{-1})+1-i)$ , we may assume (6) holds. Then note
that we have $S=(\overline{x}_{9}^{-1}g)iS$ .

Since $S$ is $\mathcal{O}$-simple,
$B\cong S\otimes_{\mathcal{O}}C_{B}(S)$

as interior P-algebras. In order to complete the proof of (i), by [10], Lemma 7.8, it suffices
to show $C_{B}(S)\cong B_{0}$ as interior P-algebras assuming $\mathcal{R}=k$ .

Set $N_{S}(P)=\{t\in S^{\cross}|t.P=t\iota(P)=\iota(P)t=P.t\}$ . By [9], (e) and [10], Theorem 1.6,
there is a group homomorphism $f$ : $N_{S^{x}}(P)arrow S(P)^{\cross}=k^{x}i’$ which extends $Br_{P}|_{(S^{P})^{\cross}}$ .
Since $t_{g}\in N_{S^{\cross}}$ from (2) we set

$f(t_{g})=\delta_{g}i’(g\in N, \delta_{9}\in k^{\cross})$ .
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Now since $gig^{-1}=x_{g}ix_{g}^{-1}$ we have

$gi’g^{-1}=x_{g}’\delta_{g}i’\delta_{g}^{-1}x_{g}^{-1}$ .

We set
$a_{g}=(\delta_{g}^{-1}x_{g}^{J-1}g)i’=i’(\delta_{g}^{-1}x_{g}^{-1}g)\in(i’ kN_{G}(P_{\gamma})i’)^{\cross}$ .

We may assume $a_{g}=a_{cg}$ for any $c\in C_{G}(P)$ . Moreover we have

(7) $a_{9}(ui’)=gui’(g\in N, u\in P)$ .

From (6) we have

$\alpha(g, h)i’=$ Brp $(c_{gh}^{-1}c_{g}c_{h})=(gh)^{-1}Br_{P}(x_{gh}t_{gh}t_{g}^{-1}x_{g}^{-1}(gt_{h^{-1}}x_{h}^{-1}g^{-1}))gh$

$=(gh)^{-1}x_{gh}’i’\delta_{gh}\delta_{g}^{-1}x_{g}^{-1}(g\delta_{h}^{-1}x_{h^{-1}}’g^{-1})gh=a_{gh^{-1}}a_{g}a_{h}$ ,

and hence

(8) $a_{9}a_{h}=\alpha(g, h)a_{gh}(g, h\in N)$ .

Since $B_{0}=i’kN_{G}(P_{\gamma})i’=\oplus_{g\in|E]}\oplus_{u\in P}k(ui’)a_{g}$ , from (4), (6), (7) and (8), $B_{0}\cong C_{B}(S)$

as interior P-algebras. This proves (i).

(ii) Since $Q$ is $N_{G}(P_{\gamma})$-invariant, from (1), $D=\oplus_{g\in|E]}\oplus_{u\in Q}Sua_{g}=\oplus_{g\in[E]}\oplus_{u\in Q}Sz_{u}c_{g}$

is P-stable, and we see $D$ is a byperfocal subalgebra of $b$ . On the other hand $\oplus_{r\in L}\mathcal{O}z_{r}$

is contained in the center $Z(B)$ and $B=\oplus_{r\in L}Dz_{r}$ . This implies (ii).

(iii). Let $e$ be a primitive idempotent of $S$ and set $V=Se.$ Then $V$ becomes an
endo-permutation $\mathcal{O}P$-module with $p \int rank_{\mathcal{O}}V$ by [10], Theorem 1.6. Now from (i) and
[8], Theorem 3.4, the $(\mathcal{O}Gb, \mathcal{O}N_{G}(P)b_{0})$-bimodule

$\mathcal{M}=\mathcal{O}Gi\otimes_{B\cong S\otimes_{\mathcal{O}}B_{0}}(V\otimes_{\mathcal{O}}B_{0})\otimes_{B_{0}}\mathcal{O}N_{G}(P)$

and the $(\mathcal{O}N_{G}(P)b_{0}, \mathcal{O}Gb)$ -bimodule

$\mathcal{N}=\mathcal{O}N_{G}(P)\otimes_{B_{0}}(B_{0}\otimes_{\mathcal{O}}V^{*})\otimes_{B_{0}\otimes_{\mathcal{O}}S\cong B}i\mathcal{O}G$

induce a Morita equivalence between $b$ and $b_{0}$ . We notice that $\mathcal{N}\cong \mathcal{M}^{*}$ . In fact $\mathcal{N}\cong$

$Hom_{A}(\mathcal{M}, A)\cong \mathcal{M}^{*}$ because $A$ is symmetric, where $A=\mathcal{O}Gb$ ) (Auslander-Fuller, 22.1).
We can see

$\mathcal{M}|\mathcal{O}Gi\otimes_{\mathcal{O}P}(V\otimes_{\mathcal{O}}B_{0})\otimes_{\mathcal{O}P}\mathcal{O}N_{G}(P)$ , $V\otimes_{\mathcal{O}}B_{0}|\mathcal{O}p\mathcal{M}_{\mathcal{O}P}$

because $B$ and $B_{0}$ are, respectively, separable interior $\mathcal{O}P$-algebras. Since $B_{0}$ is a per-
mutation $\mathcal{O}(P\cross P)$ -module and $V$ is an endo-permutation $\mathcal{O}P$-module, $V\otimes_{\mathcal{O}}B_{0}$ is
an endo-permutation $\mathcal{O}(P\cross P)$-module. This implies $b$ and $b_{0}$ are basic Morita equiva-
lent. Recall that any indecomposable component of $B_{0}$ is isomorphic to $Ind_{P_{x}}^{P\cross P}(\mathcal{O})$ for
some $x\in G$ , where $P_{x}$ denotes the subgroup $\{(u^{x^{-1}}u)\in P\cross P|u\in P\cap xP\}$ . Since
$|P|||rank_{\mathcal{O}}(V\otimes_{\mathcal{O}}B_{0})$ , we can see $\triangle P=\{(u, u)|u\in P\}$ is a vertex of $\mathcal{M}$ . $\blacksquare$

In the above proposition assume that $P$ is abelian and $C_{G}(Q)\cap N_{G}(P_{\gamma})=C_{G}(Q)\cap$

$N_{G}(P, b_{P})=C_{G}(P)$ . Then $b_{Q}$ is nilpotent.
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Corollary 2 Assume that $P$ is abelian and let $Q$ be a norrnal p-subgroup of $PI_{G}(P_{\gamma})$ such
that $C_{G}(Q)\cap N_{G}(P_{\gamma})=C_{G}(P)$ . Then $(b_{P})^{N_{G}(Q)}$ and $b_{0}$ are basic $M_{07}\dot{n}ta$ equivalent.

Proof. Set
$c=(b_{P})^{N_{G}(Q)}$ , $d=(b_{P})^{N_{G}(Q)\cap N_{G}(P)}$ .

By the above theorem $c$ and $d$ are basic Morita equivalent. On the other $han(1d\mathcal{O}N_{G}(P)$

realizes a (splendid) Morita equivalent between $d$ and $b_{0}$ . This implies that $c$
. and $b_{0}$ are

basic Morita equivalent. $\blacksquare$

$N_{G}(Q)$ $c$

$\uparrow$ basic Morita eq.

$N_{G}(Q)\cap N_{G}(P)d$

$\uparrow$

$C_{G}(P)b_{P}$

Corollary 3 Assume that $P$ is abelian. Then $\hat{b}_{Q}=(b_{P})^{N_{G}(Q)}$ and $b_{0}$ are basic Morita
equivalent. In particular, $b$ and $b_{0}$ are derived equivalent if and only if $b$ and $\hat{b}_{Q}$ are derived
equivalent.

Corollary 4 (see [14]) Assume that $P$ is abelian and suppose that $Q$ is cyclic, and let $Q_{1}$

be a non-trevial subgroup of Q. Then $(b_{P})^{N_{G}(Q_{1})}$ and $b_{0}$ are basic Morita equivalent.
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