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1 Introduction

In 1958, Tsuneji Rikitake [1] studied the model of two disk dynamos for the
occurrence and the reversal of the geomagnetic field, which was described
by the 4-dimensional ordinary differential equations :

$\frac{dx}{dt}=-ax+yz_{1}$

$\frac{dy}{dt}=-ay+xz_{2}$

(1)
$\frac{dz_{1}}{dt}=1-xy$

$\frac{dz_{2}}{dt}=1-xy$

where $a$ is a positive constant, the functions $x(t)$ and $y(t)$ of time $t$ are
the electric currents of the two disk dynamos, respectively, and the func-
tions $z_{1}(t)$ and $z_{2}(t)$ are their angle velocities, respectively. In 1963, John
H.Mathews and W.K Gardner [2] modified this model to an axially stacked
type of two disk dynamos, claimed that the reversal of the geomagnetic field
may be represented by the change of sign of $x(t)+y(t)$ for $t$ , and found a
various results of computer simulations suggesting this change. However no
mathematical proof of this change has been obtained. Moreover the author
thinks that (1) is not reasonable from the view point of physics, because $z_{1}(t)$

and $z_{2}(t)$ of (1) increases without any limit in the case where $x(t)\equiv y(t)\equiv 0$ .
Therefore we cannot help but build another type of model such that

$\frac{dx}{dt}=-ax+yz_{1}$

$\frac{dy}{dt}=-ay+xz_{2}$

(2)
$\frac{dz_{1}}{dt}=c(z_{1}-z_{1}^{3})-xy$

$\frac{dz_{2}}{dt}=c(z_{2}-z_{2}^{3})-xy$
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where $c$ is a positive constant. It is our idea that the constant 1 of the third
and fourth equations of (1), which is taken to be a driving force, is replaced
by the negative damping term above. In this system (2), we shall show
that solutions are bounded in the future, and moreover that the equilibrium
point $P$ , where $x=y=0,$ $z_{1}=1,$ $z_{2}=-1$ , is stable and solutions in a
neighbourhoodd of $P$ change the sign of $x(t)+y(t)$ . Preliminarily we shall
state the variational system of (2) :

$\frac{d}{dt}(\begin{array}{l}u_{l}u_{2}u_{3}u_{4}\end{array})=(\begin{array}{llll}-a z_{l} y 0z_{2} -a 0 x-y -x c(1-3z_{l}^{2}) 0-y -x 0 c(1-3z_{2}^{2})\end{array}) (\begin{array}{l}u_{l}u_{2}u_{3}u_{4}\end{array})$ (3)

2 Solution behavior of (2)

We shall cosider the solution behavior of (2).

Theorem 1
Solutions of (2) are bounded in th $e$ future, and in fact for each solution
$(x(t), y(t), z_{1}(t), z_{2}(t))$ there exists a number $T$ such that

$x^{2}(t)+y^{2}(t)+z_{1}^{2}(t)+z_{2}^{2}(t)< \frac{(a+c)^{2}}{2ac}$ for $t>T$

Moreover there exists a compact, connected an$d$ invarian$t$ set $K$ of $R^{4}$ such
that every solution approaches $K$ as $t$ increases, an$d$ especially, in the case
where $a>c$ , the volume of $K$ is zero in the sense of 4-dimension$al$ Lebesgue
$m$easure.

Proof Setting $V(t)=x^{2}(t)+y^{2}(t)+z_{1}^{2}(t)+z_{2}^{2}(t)$ , we may see that

$\frac{d}{dt}V(t)\leq-2aV(t)+\frac{(a+c)^{2}}{c}$

which implies our first assertion. Moreover, by the general argument of dy-
namical system the existence of $K$ above may be claimed. Especially, in the
case where $a>c$ , the trace of the coefficient matrix of (3) is negative, in
fact, which is $-2a+2c-2c(z_{1}^{2}+z_{2}^{2})$ , and hence by the usual argument of
Liouville’s theorem the valume of $K$ is equal to zero.
Next we shall consider the equilibrium points of (2), say $P(x, y, z_{1}, z_{2})$ , and
its stability in terms of the eigenvalues of the coefficient matrix of (3) sub-
stituted with $P$ , say $\lambda_{k}(1\leq k\leq 4)$ . The equation of $P$ is the following

$-ax+yz_{1}=-ay+xz_{2}=0$ (4)
$c(z_{1}-z_{1}^{3})=c(z_{2}-z_{2}^{3})=xy$ (5)
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Since the set $x=y=0$ is invariant, we shall treat first of all this case,
where (5) is reduced to $z_{1}-z_{1}^{3}=z_{2}-z_{2}^{3}=0$ , which implies that $z_{1}$ and $z_{2}$

are any one of $0,$ $+1$ and $- 1$ , respectively. Therefore we may have the nine
equilibrium points as the table below, where $i=\sqrt{-1}$ .

The equilibrium point $P(O, 0, z_{1}, z_{2})$ , where either $z_{1}=1,$ $z_{2}=-1$ or $z_{1}=$

$-1,$ $z_{2}=1$ , is asymptotically stable, and $x(t)+y(t)$ oscillates around zero,
namely, the sign of $x(t)+y(t)$ changes to $t$ . This result may be illustrated
by computer simulations in the later part.
Next we shall treat the case where $xy\neq 0$ , which implies that $z_{1}z_{2}=a^{2}$ .
Since (5) implies that $z_{1}-z_{1}^{3}=z_{2}-z_{2}^{3}$ , it follows that either $z_{1}=z_{2}$ or $z_{1}^{2}+$

$z_{1}z_{2}+z_{2}^{2}=1$ . We may see that the former case yields more four equilibrium
points $P(x, y, z_{1}, z_{2})$ as in the following table, where $A=\sqrt{ac(1-a^{2})}$, by
assuming that $0<a<1$ .

The characteristic equation of $\lambda$ is common to these four equilibriums, which
is reduced to $\lambda=c(1-2a^{2})$ and

$\lambda^{3}+(2a-c+2a^{2}c)\lambda^{2}+2a^{3}c\lambda+4a^{2}c(1-a^{2})=0$ . (6)

Since $1>a^{2},$ (6) has one negative root, and it is seen from Routh-Hurwitz
type of criterion that the real parts of the remaing two roots are all negative
and all positive if $a^{2}> \frac{1}{2}$ and if $a^{2}< \frac{1}{2}$ , respectively.

Remark 1 [1] has a wrong point to the part corresponding the above.
In fact, the entries of the determinant between (25) and (26) in [1, p.96] is
not correct, and hence his assertion such that $\mu>0$ cannot be derived.
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In the later part we shall show the results of computer simulations to
(2).

Numerical results of (2) by Mathematica $(z_{1}(0)\neq z_{2}(0))$

$x$

$-0.1$ 0.0 0.1

Figure 1: Case 1 $a=b$
$(a, b, c)=(O.002$ , 0.002, 0.001 $)$ ,
$(x(0), y(0), z_{1}(0), z_{2}(0))=(0.1,0.1,0.1, 0.101)$
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8000

zl

$t$

$x+y$
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$x$

$-0.2$ $-0.1$ $0.0$ 0.1 0.2

Figure 2: Case 2 $a\neq b$

$(a, b, c)=(O.OO1$ , 0.00102, 0.001 $)$ ,
$(x(O), y(O), z_{1}(0), z_{2}(0))=(0.0,0.1,0.1, 0.101)$
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$x$

Figure 3: Case 3 $a\neq b$ and $z_{1}(0)\sim z_{2}(0)$

$(a, b, c)=(O.001$ , 0.00102, 0.001 $)$ ,
$(x(0), y(0), z_{1}(0), z_{2}(0))=(0.0,0.1,0.1, 0.1001)$
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