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Abstract

This is a survey on recent developments about Coxeter multiar-
rangements, its freeness and the relation with the primitive derivation.
Also, we give some examples on free and non-free Coxeter multiar-
rangements.

$\prime o$ Introduction
Let $V=V^{\ell}$ be an $\ell$-dimensional vector space over a field $\mathbb{R},$ $\{x_{1}, \ldots, x_{\ell}\}$ a
basis for the dual vector space $V^{*}$ and $S:=$ Sym$(V^{*})\otimes \mathbb{C}\simeq \mathbb{C}[x_{1}, \ldots, x_{l}]$ .
Fix an inner product $I^{*}$ : $V^{*}\cross V^{*}arrow \mathbb{R}$ . Let Der $(S)$ denote the S-module
of $\mathbb{C}$-linear derivations of $S$ and $\Omega_{V}^{1}$ the S-module of differential l-forms, i.e.,
Der $(S)=\oplus_{i=1}^{\ell}S\cdot\partial_{x_{i}}$ and $\Omega_{S}^{1}$ $:=\oplus_{i=1}^{\ell}S\cdot dx_{i}$ . Also, for the quotient field
$F$ of $S$ , Der $F$ and $\Omega_{F}$ denote the derivation and differential modules with
coefficients in $F$ . Note that $I^{*}$ can be canonically extended to $I^{*}$ : $\Omega_{F}^{1}\cross\Omega_{F}^{1}arrow$

$F$ . A non-zero element $\theta=\sum_{i=1}^{\ell}f_{i}\partial_{x_{i}}\in$ Der $(F)$ (resp. $\omega=\sum_{i=1}^{\ell}g_{i}dx_{i}\in$

$\Omega_{F}^{1})$ is homogeneous of degree $p$ if $f_{i}$ (resp. $g_{i}$ ) is zero or homogeneous of
degree $p$ for each $i$ .

A hyperplane armngement $\mathcal{A}$ (or simply an arrangement) is a finite collec-
tion of affine hyperplanes in $V$ . If each hyperplane in $\mathcal{A}$ contains the origin,
we say that $\mathcal{A}$ is central. In this article we assume that all arrangements are
central unless otherwise specified. A multiplicity $m$ on an arrangement $\mathcal{A}$ is
a map $m:\mathcal{A}arrow \mathbb{Z}_{\geq 0}$ and a pair $(\mathcal{A}, m)$ is called a multiarrangement. Let
$|m|$ denote the sum of the multiplicities $\sum_{H\in \mathcal{A}}m(H)$ . When $m\equiv 1,$ $(\mathcal{A}, m)$

is the same as the hyperplane arrangement $\mathcal{A}$ and sometimes called a simple
arrangement. For each hyperplane $H\in \mathcal{A}$ fix a linear form $\alpha_{H}\in V^{*}$ such
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that $ker(\alpha_{H})=H$ . Put $Q(\mathcal{A}, m)$ $:= \prod_{H\in \mathcal{A}}\alpha_{H}^{m(H)}$ . Also, for $k\in \mathbb{Z}$ let $k$

denote the constant multiplicity on $\mathcal{A}$ :

$k(H)=k(\forall H\in \mathcal{A})$ .

The main objects in this article are the logari thmic dentvation module $D(\mathcal{A}, m)$

of $(\mathcal{A}, m)$ defined by

$D(\mathcal{A}, m):=\{\theta\in$ Der $(S)|\theta(\alpha_{H})\in S\cdot\alpha_{H}^{m(H)}$ (for all $H\in \mathcal{A})\}$ ,

and the logarithmic differential module $\Omega^{1}(\mathcal{A}, m)$ of $(\mathcal{A}, m)$ defined by

$\Omega^{1}(\mathcal{A}, m)$ $:=$ { $\omega\in\frac{1}{Q(\mathcal{A},m)}\Omega_{V}^{1}|d\alpha_{H}\wedge\omega$ is regular along $H$ for all $H\in \mathcal{A}$}.

It is well-known that $D(\mathcal{A}, m)$ and $\Omega^{1}(\mathcal{A}, m)$ are S-dual modules, and hence
reflexive in general. A multiarrangement $(\mathcal{A}, m)$ is free if $D(\mathcal{A}, m)$ is a free
S-module of rank $\ell$ . If $(\mathcal{A}, m)$ is free, then there exists a homogeneous free
basis $\{\theta_{1}, \ldots, \theta_{\ell}\}$ for $D(\mathcal{A}, m)$ . Then we define the exponents of a free multi-
arrangement $(\mathcal{A}, m)$ by $\exp(\mathcal{A}, m)$ $:=(\deg(\theta_{1}), \ldots, \deg(\theta_{\ell}))$ . The exponents
are independent of a choice of a basis. When $m\equiv 1,$ $\exp(\mathcal{A}, 1)$ is denoted
by $\exp(\mathcal{A})$ .

A multiarrangement was introduced by Ziegler in [23], and after that,
there have been a lot of studies and results related to it. Especially, Yoshi-
naga’s two works [20] and [21] have made the study of multiarrangements
and their freeness more interesting and important. For example, [6] gener-
alized a characteristic polynomial and [7] the addition-deletion theorems for
multiarrangements. Also, the totally non-freeness of generic arrangements
was proved in [22], the first complete classification of an arrangement which
admits both free and non-free multiplicities was done in [1], and the geomet-
ric characterization of totally free arrangements was obtained in [8]. More
recently, the author generalized the definition of multiarrangements to that
with multiplicities consisting of positive and negative integers, and gave a
definition of a logarithmic module associated to them in [2]. In other words,
a (genemlized) multiplicity is a function $m:\mathcal{A}arrow \mathbb{Z}$ and the corresponding
logarithmic module $D\Omega(\mathcal{A}, m)$ is defined by

$D \Omega(\mathcal{A}, m):=\frac{D(\mathcal{A}_{+},m_{+})}{Q_{-}}\cap I^{*}(\Omega^{1}(\mathcal{A}_{-}, -m_{-}))$ .

For details, see [2], in which a theory of generalized multiarrangements and
their logarithmic modules had been constructed. For example, the freeness,
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exponents, reflexivity (duality) and Saito) $s$ criterion hold true for $D\Omega(\mathcal{A}, m)$

as for usual multiarrangements, and a duality of Coxeter multiarrangements
was generalized by using this module and Kyoji Saito’s primitive derivation.

As we could see in the above, the theory of free multiarrangements and
its investigations are developing very rapidly, and producing several new
concepts and ideas which can be used in the study of simple arrangements.
Among them, one of the most important roles is played by the research of
Coxeter multiarrangements, initiated by Solomon and Terao in [15], devel-
oped by Terao in [16], and still being studied intensively by Terao, Wakamiko,
Wakefield, Yuzvinsky, Yoshinaga and the author. This note is devoted for
the survey of these studies and results with some new examples which are
related to free Coxeter arrangements.

Acknowledements. The author thanks Professor Hideaki Morita for the
invitation to the RIMS conference “Representation theory and Combina-
torics” The author is supported by Grant in Aid for Young Scientists (No.
21740014).

1 Coxeter multiarrangements
In this section we review results on free Coxeter multiarrangements. It has
been very difficult to determine whether given multiarrangements are free or
not, even for simple arrangements. One of the reasons why this problem is
difficult is there are only few tools or methods to study the freeness. Though
we have addition-deletion theorems ([7]) and characteristic polynomials for
non-freeness criterion ([6]), there are no sufficient freeness criterions so far.

On the other hand, if we go back to the original point of free arrangements,
we can obtain very strong theory for the freeness, i.e., the invariant theory of
Coxeter groups. To see it, recall the most important theorem by Chevalley:

Theorem 1.1 ([10])
For the invarian$t$ ring $R$ $:=S^{W}$ , there exis$thom$ogeneous basic invarian$ts$

$P_{1},$
$\ldots,$

$P_{\ell}\in R$ such that

$R=S^{W}=\mathbb{R}[P_{1}, \ldots, P_{\ell}]$ .

Moreover, if we put $\deg P_{i}=m_{i}+1$ with $m_{1}\leq m_{2}\leq\cdots\leq m_{\ell}$ , then

$\exp(W)=(m_{1}, \ldots, m_{\ell})$

and $1=m_{1}<m_{2}\leq\cdots\leq m_{\ell-1}<m_{\ell}=h-1$ with th$e$ Coxeter number $h$ of
$W$ .
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The following is due to Kyoji Saito, which is the starting point of free
arrangement theory.

Theorem 1.2 (K. Saito)
For a Coxeter arrangement $\mathcal{A},$ $\{I^{*}\partial_{P_{1}}, \ldots, I^{*}\partial_{P_{\ell}}\}$ form$s$ an W-invariant basis
for $\Omega^{1}(\mathcal{A}, 1)$ , an$d\{IdP_{1}, \ldots, IdP_{\ell}\}$ form$s$ that for $D(\mathcal{A}, 1)$ . In $p$articular,

$\exp(\mathcal{A})=\exp(W)$ .

Also, K. Saito gives us a very interesting derivation for the research of
free Coxeter arrangements.

Definition 1.3 (K. Saito)
The lowest degree derivation $D:=\partial_{P_{l}}\in$ Der$(R)$ (up to scalors) is called a
primitive derivation.

The primitive derivation will play, in the rest of this article, a key role
to construct free bases for Coxeter multiarrangements. Also, the primitive
derivation is essential to construct the Hodge filtration (see [14] for example),
and primitive filtration ([4] and [5]), which we do not see in this article.

Now it is natural to consider the freeness of Coxeter multiarrangements.
The first research on this problem is done by Solomon and Terao in [15].

Theorem 1.4 ([15])
Let $\mathcal{A}$ be a Coxeter arrangement with the Coxeter number $h$ . Then the
multiarrangement $(\mathcal{A}, 2)$ is free with $\exp(\mathcal{A}, 2)=(h, \ldots, h)$ .

Theorem 1.4 may seem to be a very special case. However, the following
work by Terao shows that Theorems 1.2 and 1.4 are very essential in the
theory of free Coxeter multiarrangements.

Theorem 1.5 ([16])
Let $\mathcal{A}$ be a Coxeter arrangement with the Coxeter number $h$ .

(1) The multiarrangement $(\mathcal{A}, 2k)$ is free with $\exp(\mathcal{A}, 2k)=(kh, \ldots, kh)$ .

(2) The multiarrangement $(\mathcal{A}, 2k+1)$ is free with $\exp(\mathcal{A}, 2k+1)=(kh+$

$m_{1},$ $\ldots,$
$kh+m_{\ell})$ .

Combining these theorems, we can see that there seems to be a shifting
of exponents and freeness. The shifting phenomenon will be studied soon
with more strong statement. We note that the results above are proved
by constructing explicit bases by using the invariant theory and primitive
derivations.
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2 Shifting isomorphism
In this section we introduce a different method from that in the last section
for constructing bases for Coxeter multiarrangements.

This section aims at constructing an isomorphism

$\Phi_{k}:D(\mathcal{A}, m)arrow D(\mathcal{A}, 2k+m)$ ,

which gives the shifting of multiplicity $2k$ . Before explaining how to con-
struct, we concentrate our interest on the starting module $D(\mathcal{A}, m)$ . We use
the multiplicity $m$ : $\mathcal{A}arrow\{+1,0, -1\}$ with the logarithmic module $D\Omega(\mathcal{A}, m)$

defined in the introduction.

Remark 2.1
However, even for a generalized $m$ultiplicity $m$ : $\mathcal{A}arrow \mathbb{Z}$ , we use the notation
$D(\mathcal{A}, m)$ not $D\Omega(\mathcal{A}, m)$ in this article, different from the origin$al$ paper [2].

First for the construction, we have to find a (multi-Euler” derivation. To
construct a basis for the logarithmic derivation module, the Euler derivation
$\theta_{E};=\sum_{i=1}^{\ell}x_{i}\partial_{x_{i}}$ plays the key role in the sense that $\theta_{E}$ is tangent to any
hyperplanes with the multiplicity one:

$\theta_{E}(\alpha_{H})=\alpha_{H}\in S\cdot\alpha_{H}\backslash S\cdot\alpha_{H}^{2}(\forall\alpha_{H}\in V^{*})$.

This is the special derivation, and we cannot expect the existence of such
a kind of derivations for multiarrangements. However, Yoshinaga noticed
that we can find a derivation similar to the Euler derivation associated to
the fixed Coxeter multiarrangements. Note that the primitive derivation $D$

induces the $T$ $:=ker(D : Rarrow R)-$ isomorphism $\nabla_{D}$ : Der $(S^{W})arrow$ Der $R$

( $e.g.$ , see [14]) and

. . . $\subset D(\mathcal{A}, 2k+1)^{W}\subset D(\mathcal{A}, 2k-1)^{W}\subset\cdots\subset D(\mathcal{A}, 1)^{W}\subset$ Der $R$ .

Thus we can always define the derivation $E_{k}$ $:=\nabla_{D}^{-k}\theta_{E}\in D(\mathcal{A})^{W}$ . Then
the following fact, proved by Yoshinaga in [19] and generalized in [9], is very
important.

Proposition 2.2
The derivation $E_{k}\in D(\mathcal{A}, 2k+1)^{W}$ .

Hence we can use $E_{k}$ as a kind of the “multi-Euler” derivation. Now let
us construct a map $\Phi=\Phi_{k}$ by

$D(\mathcal{A}, m)\ni\theta\mapsto\Phi_{k}(\theta):=\nabla_{\theta}E_{k}$ .
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To prove that $\Phi_{k}$ gives rise to an S-module isomorphism

$D(\mathcal{A}, m)\simeq D(\mathcal{A}, 2k+m)$ ,

we have to check the following three points:

Point 1. $\Phi_{k}$ is well-defined.
Point 2. $\Phi_{k}$ is injective.
Point 3. $\Phi_{k}$ is surjective.

We do not explain details on the above three. For details see [2]. We just
point out what plays the key role to check above three points.

Point 1. To prove this point, we use the W-invariance of $E_{k}$ and count
orders of poles along $H\in \mathcal{A}$ carefully.

Point 2. This part can be proved by using the totally same argument as in
$[$9$]$ , which is essentially proved in $[$ 16$]$ .

Point 3. We prove in two steps. First we prove when $(\mathcal{A}, m)$ is free. Then,
since $D(\mathcal{A}, -1)$ is free, we can use the structure of this free module to prove
a general $(\mathcal{A}, m)$ , for $D(\mathcal{A}, m)\subset D(\mathcal{A}, -1)$ .

Summarizing these, we obtain the following:

Theorem 2.3 ([2])
The $map\Phi_{k}$ gives rise to an S-module isomorphism

$\Phi_{k}:D(\mathcal{A}, m)arrow D(\mathcal{A}, 2k+m)$ .

In particular, for a free $D(\mathcal{A}, m)$ with basis $\theta_{1},$

$\ldots,$
$\theta_{\ell},$ $D(\mathcal{A}, 2k+m)$ is free

with basis
$\nabla_{\theta_{1}}E_{k},$

$\ldots,$
$\nabla_{\theta_{\ell}}E_{k}$ .

Remark 2.4
Though Theorem 2.3 gives an explicit form, to compute $D(\mathcal{A}, m)$ itself for
$m:\mathcal{A}arrow\{+1,0, -1\}$ is not easy even for a Coxeter arrangemen $ts$ of type
$A_{3}$ . We will see it in the next section.

3 Remarks and Examples

In the previous section we restricted our interest on multiplicities $m:\mathcal{A}arrow$

$\{+1,0, -1\}$ . Then it is natural to ask whether these multiplicities can be
extended or not. For example, do the results in the previous section hold
true for multiplicities like $m:\mathcal{A}arrow\{+2, +1,0, -1, -2\}$? The answer is NO,
see the following example:
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Example 3.1
$Con$sider a Coxeter arrangement $\mathcal{A}$ of $typeA_{3}$ defined by $xyz(x-y)(x-$
$z)(y-z)=0$ . Note that we use a notation $x_{1}=x,$ $x_{2}=y,$ $x_{3}=z,$ $x_{4}=w$ in
this section. Consider th $e$ following two $mul$tiarrangemen$ts$ :

$(\mathcal{A}, m_{1}):x^{2}y^{2}z^{2}(x-y)^{2}(x-z)^{0}(y-z)^{0}=0$ ,
$(\mathcal{A}, m_{2}):x^{4}y^{4}z^{4}(x-y)^{4}(x-z)^{2}(y-z)^{2}=0$ .

These multiplicities on $\mathcal{A}$ can be expressed in the same way as in the previous
section with $m$ : $\mathcal{A}arrow\{+2, +1,0, -1, -2\}$ . If the same result holds true, then
$D(\mathcal{A}, m_{1})$ and $D(\mathcal{A}, m_{2})$ have to be isomorphic, but they do not. In fact, we
can prove th $e$ following;

Lemma 3.2
A multiarrangement $(\mathcal{A}, m)$ defined by

$x^{2k}y^{2k}z^{2k}(x-y)^{2k}(x-z)^{2k-2}(y-z)^{2k-2}=0(k\in \mathbb{Z}_{\geq 1})$

is free if and only if $k=1$ .

Hence the condition on multiplicities is essential.

Proof. When $k=1$ then the multiarrangement is supersolvable in the sense
of [7], hence free. Assume that $k>1$ and $(\mathcal{A}, m)$ is free. Compute the
upper bound of GMP, global mixed product. Note that $|m|=12k-4$ .
Hence the upper bound of $GMP(\mathcal{A}, m)$ is attained when the exponents are
$(4k-2,4k-1,4k-1)$ . Hence

$GMP(\mathcal{A}, m)\geq 2(4k-2)(4k-1)+(4k-1)^{2}=48k^{2}-32k+5$ .

Next let us compute the LMP, local mixed product. It is easy to get, when
$k>1$ ,

$LMP(\mathcal{A}, m)=48k^{2}-32k+6>GML(\mathcal{A}, m)$ ,

which is a contradiction. $\square$

It seems to the author that the condition on multiplicities occurs from
the invariant theory. More explicitly, for a Coxeter arrangement $\mathcal{A}$ with the
Coxeter group $W$ , it holds that

$D(\mathcal{A}, 2k)\subsetneq D(\mathcal{A}, 2k+1)$ ,

but
$D(\mathcal{A}, 2k)^{W}=D(\mathcal{A}, 2k+1)^{W}$ .
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Hence the result in the previous section is to investigate the derivation mod-
ules which vanish in the invariant part. Also,

$D(\mathcal{A}, -2k)\supsetneq D(\mathcal{A}, -2k+1)$ ,

but
$D(\mathcal{A}, -2k)^{W}=D(\mathcal{A}, -2k+1)^{W}$ .

Since $D(\mathcal{A}, m)$ with $m$ : $\mathcal{A}arrow\{+1,0, -1\}$ is a mixed module of these two
modules, such a multiplicity seems not to be extended.

Let us give more examples of free bases for the $A_{3}$-type arrangement with
a non-constant $m:\mathcal{A}arrow\{+1, -1\}$ . Bases for constant multiplicities can be
obtained by the invariant theory.

First consider the multiarrangement defined by

$\frac{(y-z)(z-x)(x-w)(y-w)(z-w)}{(x-y)}=0$ .

By [3] and [2] this multiarrangement is free with exponents $(0,1,2,1)$ . We
can obtain the explicit basis as follows:

$\theta_{0}$ $=$ $\partial_{x}+\partial_{y}+\partial_{z}.+\partial_{w}$ ,
$\theta_{1}$ $=$ $x\partial_{x}+y\partial_{y}+z\partial_{z}+w\partial_{w}$ ,
$\theta_{2}$ $=$ $x^{2}\partial_{x}+y^{2}\partial_{y}+z^{2}\partial_{z}+w^{2}\partial_{w}$ ,

$(x-z)(x-w)\partial_{x}-(y-z)(y-w)\partial_{y}$
$\theta_{3}$ $=$

$x-y$

Second consider the arrangement defined by

$\frac{(x-y)(y-z)(z-x)(x-w)}{(y-w)(z-w)}=0$ .

By [3] and [2] this multiarrangement is free with exponents $(0,1,0,1)$ . We
can obtain the explicit basis as follows:

$\theta_{0}$ $=$ $\partial_{x}+\partial_{y}+\partial_{z}+\partial_{w}$ ,
$\theta_{1}$ $=$ $x\partial_{x}+y\partial_{y}+z\partial_{z}+w\partial_{w}$ ,
$\theta_{2}$ $=$ $(x-w)\partial_{w}$ ,

$\theta_{3}$ $=$ $\partial_{x}+\frac{x-w}{y-w}\partial_{y}+\frac{x-w}{z-w}\partial_{z}+\frac{-w^{2}-xy-xz+2xw+yz}{(y-w)(z-w)}\partial_{w}$.

The basis of a multiarrangement defined by

$\frac{(y-z)(y-w)(z-w)}{(x-y)(x-z)(x-w)}=0$
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can be found in [2].
Next consider the arrangement defined by

$\frac{(x-y)(x-z)(x-w)}{(y-z)(y-w)(z-w)}=0$ .

By [3] and [2] this multiarrangement is free with exponents $(0,1,0, -1)$ . We
can obtain the explicit basis as follows:

$\theta_{0}$ $=$ $\partial_{x}+\partial_{y}+\partial_{z}+\partial_{w}$ ,
$\theta_{1}$ $=$ $x\partial_{x}+y\partial_{y}+z\partial_{z}+w\partial_{w}$ ,

$\theta_{2}$ $=$ $\frac{x-y}{(y-z)(y-w)}\partial_{y}-\frac{x-z}{(y-z)(z-w)}\partial_{z}+\frac{x-w}{(y-w)(z-w)}\partial_{w}$ ,

$\theta_{3}$ $=$ $\frac{(x-y)(z-w)y\partial_{y}-(x-z)(y-w)z\partial_{z}+(x-w)(y-z)w\partial_{w}}{(y-z)(y-w)(z-w)}$ .

Next consider the arrangement defined by

$\frac{(x-z)(x-w)}{(x-y)(y-z)(y-w)(z-w)}=0$ .

By [3] and [2] this multiarrangement is free with exponents $(0, -1,0, -1)$ .
We can obtain the explicit basis as follows:

$\theta_{0}$ $=$ $\partial_{x}+\partial_{y}+\partial_{z}+\partial_{w}$ ,

$\theta_{1}$ $=$ $\frac{1}{x-y}\partial_{x}-(\frac{1}{x-y}-\frac{1}{y-z}-\frac{1}{y-w})\partial_{y}-\frac{1}{y-z}\partial_{z}-\frac{1}{y-w}\partial_{w}$ ,

$\theta_{2}$ $=$ $\frac{x-y}{(y-z)(y-w)}\partial_{y}-\frac{x-z}{(y-z)(z-w)}\partial_{z}+\frac{x-w}{(y-w)(z-w)}\partial_{w}$ ,

$\theta_{3}$ $=$ $\frac{(x-y)(z-w)y\partial_{y}-(x-z)(y-w)z\partial_{z}+(x-w)(y-z)w\partial_{w}}{(y-z)(y-w)(z-w)}$ .

Finally consider the arrangement defined by

$\frac{x-w}{(x-y)(x-z)(y-z)(y-w)(z-w)}=0$ .
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By [3] and [2] this multiarrangement is free with exponents $(0, -1, -1, -2)$ .
We can obtain the explicit basis as follows:

$\theta_{0}$ $=$ $\partial_{x}+\partial_{y}+\partial_{z}+\partial_{w}$ ,

$\theta_{1}$ $=$ $\frac{1}{x-y}\partial_{x}-(\frac{1}{x-y}-\frac{1}{y-z}-\frac{1}{y-w})\partial_{y}-\frac{1}{y-z}\partial_{z}-\frac{1}{y-w}\partial_{w}$ ,

$\theta_{2}$ $=$ $\frac{x-y}{(y-z)(y-w)}\partial_{y}-\frac{x-z}{(y-z)(z-w)}\partial_{z}+\frac{x-w}{(y-w)(z-w)}\partial_{w}$ ,

$\theta_{3}$ $=$ $\frac{1}{Q_{-}}\{(y-z)(y-w)(z-w)\partial_{x}+(x-z)(z-w)(x-2y+w)\partial_{y}$

$+(x-y)(y-w)(-x+2z-w)\partial_{z}+(x-y)(x-z)(y-z)\partial_{w}\}$ ,

where
$Q_{-:=}(x-y)(x-z)(y-z)(y-w)(z-w)$ .
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