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§1. Introduction

To give the explicit value of the following series was posed in 1644 and is called
the Basel problem:

In 1735, Euler gave the solution to the Basel problem, and its generalizations

> 1 2 =1 =
22=% Lw

It is well known that these series are the origin of the Riemann zeta-function and the
notion “zeta-functions” plays an important tool in modern mathematics.
Recently Witten [16] and Zagier [17] gave generalizations of the Basel problem:

Fork € Z5,,
> g =
(dim )%

17
where the summation runs over all finite dimensional irreducible representations ¢ of

a given Lie algebra g.

It is noted that these series were introduced to study the partition functions of two di-
mensional quantum gauge theories with compact semisimple Lie groups.

Witten and Zagier showed that their values are in Qn!4+1% Euler already estab-
lished the solutions in the sl, case, since in this case, the problem reduces to the
Basel problem. Subbarao-Sitaramachandrarao considered the sl3 case in [14]. In [15],
Szenes gave a certain algorithm for the computation in general cases, from the view-
point of hyperplane arrangements. Gunnells-Sczech gave the explicit forms in the sl
case [1].

In this article, we will propose a new approach to this problem. We will introduce
generalizations of Bernoulli polynomials and zeta-functions associated with root sys-
tems, which include the Riemann zeta-function, the Euler-Zagier zeta-functions and

'This is an updated version of our previous article [11].
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the Witten zeta-functions. Furthermore we will develop a theory similar to that of the
classical Riemann zeta-function.

§2. Review of Classical Theory

To state our results, first we recall the classical theory for the Riemann zeta-function
and Bernoulli numbers.

The following is a well-known formula for the Riemann zeta-function and Bernoulli
numbers.

For k € Z>,,
20(2k) = —B @miy*
C - 2k <. (2k)' ’
where for ¢t € C with |¢| < 27,
o0 k
t t
-y ng
e —1 — k!
Using this formula, we obtain for k € Z>,
(2mi)*
D*¢(2k) = —B ,
LR+ (=R = —Bu=
(27.”)2k+l
2k+ D+ (—-D*r@k+1)= —Byi1————=0
RE+D+ (DT 2k+1) 2+ T
Hence we have the important relations:
Fork € Z>,,
Qmi)k
(R +(Dk) = —Bi—q—,
value-relations = Bernoulli numbers.

These relations are generalized in the cases of Lerch zeta-functions and periodic
Bernoulli functions. Let ¢(s,y) be the Lerch zeta-function defined by

0 elminy
o) =) —
n=1

Then a formula for Lerch zeta-functions implies

Fork € Z>; and y € R,

ol )+(=Dfpk,=y) = =Bilyh—p7—

periodic Bernoulli functions.

functional relations

Here

te[{y}

k
Z k«y})%,

and {y} = y —[y] (i.e. fractional part).
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Once we obtain periodic Bernoulli functions, we can calculate special values of
L-functions.

For a primitive character x of conductor f and k € Zs, satisfying (—1)*¥x(—1) =1,

we have
[e e]

Lk)=Y X}ff)

n=1

— 1D 270k
- 2) (kf;,f 200 Bix,

where g(x) is the Gauss sum and

S
By = 'Y x(a)Bi(a/f).

a=1

Our aim is to find a good class of multiple zeta-functions which generalize the theory
above.

§3. Overview of Our Results

Based on the observation given in the previous section, we will construct multiple
generalizations of Bernoulli polynomials and multiple zeta- and L-functions associ-
ated with arbitrary root systems. Before introducing the general theory, we give two
simple theorems without using the terminology of root systems.

For s1,s2,53 € C and y;,y, € R, we consider the convergent series
0 e2ri(my1+ny2)

42(51,52,S3;)’1,}’2,, A2) - — ms‘nsz(m+n)33 '
mn=

Theorem A. For ky,k;,kz € Z>,

Ca(ky ko k3, y1, Y25 A2) + (= D1 8y(ky k3, ka, — Y1 + Y2, Y2 A2)
+ (=R 05(ks, ko k1, Y1, Y1 — Y23 Ag) + (— D280 (ks  ky ko, — 31 + y2,— Y13 A2)

+ (=0 k3 k=2, 1 = y2i A+ (= DR 1 (kg ki k3 — 2, — 315 Ad)
(27n‘)/<1+k2+k3

kilkolks!
where P(ky,ky,k3,y1,y2; A2) is a multiple periodic Bernoulli function (defined later).
In particular, we have

= (=1 P(k1,k2,k3,y1,y2; A2)

2,2,2,0,0,Ap) = L1y GEE 7
£2(2,2,2,0,0: 42) = (=1 35e5 151 = 2835
cf.
) 2mi)k 1 127i)? w2
- —y)=— D)= —(—1)= = —.
ek, y)+ (=1 p(k,—y) By({yh T ¢(2) 2( )6 X ¢
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For s;,52,53 € C and primitive Dirichlet characters xi, x2, x3, consider the convergent

series

x1(m)x2(n) x3(m +n)
msins2(m+4n)s

o0
LZ(Sl aSZ’S37X19X27X3;A2) = Z

mn=1

Theorem B. For k € Z>, and a primitive Dirichlet character x of conductor f such
that (— D¢ x (=1 =1,

-1 3k+3 2i k 3
( <)5 ((kf'r;l)c g(X)) Bi sk x xx(A2),

where By, ky ks x1 xa.x:(A2) is a multiple generalized Bernoulli number (defined later).
In particular, for ps : ps(1) = ps(4) = 1,p5(2) = ps(3) = —1, we have

(—=1)5+3 [ (27i)? 3¢ 28 11245
L 2’2927 ’ ’ ;A = 5 —_— = -—- R
2( P5,P5,05; A2) 152 NG 1171875”

Lz(k,k,k,)( » X ’X;AZ) =

6

cf.

(__l)k+l (272,1)1(

L(k,x)= L
(k220 2 k! fk 2 2152 V05T 125"
Theorems A and B are special cases of our main theorems. In the following sec-

tions, we will formulate these facts.

_ (—1)2+! (2ni)2f 4 45,

g(x)Bkx» L(2,ps)

§4. Root Systems

For reader’s convenience, we give the definition and several examples of root sys-
tems.

§§4.1. Definitions

Let V be an r dimensional real vector space equipped with inner product (-,-).

o a) +on

Arootsystem A C Visa sef of vectors (roots):
(1) |Al]<ocoand 0 € A,
2) ocsA=Aforalla € A,
3) (a@V,ByeZforalla,B € A,
4 a,cx. € A = c= =1,

i
3
4
2
3
3
s
s
s

w Hy,

where o, denotes the reflection with respect to the hyperplane H, orthogonal to o and
oY =2a/{a,a) (coroot).

Let W be the Weyl group (the group generated by all oy). Let {c),...,a,} be fun-
damental roots (a basis s.t. @« = cja; +---+c,a, € A with all ¢; > 0 or ¢; <0). Let
A4 be positive roots (all roots & = cjor; + -+ +c,ar € A with all ¢; > 0) and Py,
strictly dominant weights (= @ Zx i, {A1,...,A,} dual basis of {«},...,a,}). The
key fact which plays an essential role is that the nice group W acts on A.
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§§4.2. Examples

Since we mainly treat coroots, we give examples of root systems in terms of coroots.
Note that if A is a root system, then AY = {«" | @ € A} is also a root system.
There is only one root system of rank 1 and there are four root systems of rank 2:

A] A1 X A] Bz (OI' C2) G2

m}”,”w}’ ’+:és‘§’
o) +a ay , o) +2a) oy +3ay
20/ + 30y

L

In this article, we use these root systems in examples for simplicity. It should be
noted that root systems are classified as A,,B,,C,,D,,Es,E7,E3,F4,G, and our the-
ory can be applied to all these root systems.

§5. Zeta-Functions of Root Systems

§§5.1. Witten Zeta-Functions

As prototypes of zeta-functions of root systems, we give the definition of Witten
zeta-functions, which were originally introduced to calculate the volumes of certain
moduli spaces.

Witten zeta-functions ([16, 17]): For a complex simple Lie algebra g of type X,,
-5 __ s
tw(s; X,) = Z(dxm«)) =kX) Y. [ —— 7 oe" Y
A€EP 4 aeA

where the summation runs over all finite dimensional irreducible representations ¢ and
K(X,) € Z>, is a constant.

From the second expression of the definition, we see that the explicit forms of Witten
zeta-functions are obtained by formally replacing )" and «;” by m and n respectively:

(o, <]

1 ] - ‘L“ww,‘jw«w._. m
twis; Ap) = Z} — =¢(s),
> 1
;A) =27 ,
fwis; A2) m;} m*ns(m + n)* m+2n

s 1
Sw(s;B))=6" )

mn=1

msns(m +n)(m+2n)s

L
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§§5.2. Zeta-Functions of Root Systems

Definition 1 ([6, 7, 8, 13]). Zeta-functions of root systems: For a root system A of

type X,, define
2mwi(y,A)
G(s,y: X, )= Y € [ _(av YR

AEPL €A}

where s = (S¢)aca, € C!4+ andy € V.

To define an action of the Weyl group, we extend § = (S¢)aca, tO (Sa)aca bY S¢ = 5—q
and define (ws), = s,-1,. Then we have our first theorem.

Theorem 1 ([8]). Fors =k = (ka)aca, € ZL;"', we have

NS
(I (‘”k")‘?r(w"k’W"‘y:Xr>=(—1)'A+'P(k,y;x,)(n o )

weW geA Nw-lA_ €A

where P(K,y; X,) is a multiple periodic Bernoulli function (defined later).

of. (X, = Ay)

(2711 )k

@k, y)+ (= Drplk,—y) = —Be({y}) (W = {id,0q)).

§6. Special Zeta-Values

Theorem 1 immediately implies the following theorem:

Theorem 2 ([8]). For k = (ky)gen, € (2Z>))2+! satisfying w™'k =k forall w e W,
—1)Ia+l 271 e
(1) P(k,O;Xr)( l_[ ( le) ) € QrXacas ke,

W] wea, Ka!

& (K,0,X,) =

cf. (X, = A)y)

-1 (2m‘)k

()= —Br—p— €Qn ko (ke2Zsy).

In particular, Kk = (k)qea, With & e 2Z>1 (that is, all k, = k) satisfies the condition
in Theorem 2. In this case, ¢,(k,0; X,) € Qn!2+% was shown by Witten and Zagier.
Our statement is a true generalization of their results since we also have for example,

o0 .
1
£2((2,4,4,2),0;B) = )

mn=1

_(=D* 53 ((2::1')2)2((27:1')4 2
T 2221 1513512000\ 2! 4!

_ 53m 12
~ 6810804000

m2n*(m +n)*(m +2n)?
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§7. Multiple Periodic Bernoulli Functions

In this section, we give the definitions of generating functions of multiple peri-
odic Bernoulli functions. Let V be the set of all bases V C A,, V* = {/LZ}'BGV,
the dual basis of V¥ = {8Y}gey. Let QY = @._, Za,’ be the coroot lattice and
L(VY)= @ﬁev ZBY ,which is a sublattice of @V with finite index (|Q@V/L(VY)| < 00).

Fix a certain ¢ € V and define a multiple generalization of fractional part as

_ [ty ($.]) > 0),
s {1—{—(y,u§)} (p,1]) <0).

By using these definitions, we have

Definition 2 (generating function [8, 9, 10]) For t = (fo)aca, € C'A+,

by X = Z( 1_[ Zﬂevtﬁ yY ,P«Z))

Vev yeA+\V

1 tgexp(tgly +qlvp)
<oy, o (=)

qeQV/L(VY) BeV

It can be shown that the generating function F(t,y; X,) is holomorphic in the neigh-
borhood of the origin in t.

Definition 3 (multiple periodic Bernoulli functions [8,9, 10])

Fit.y;X)= Y PKYy;X,) H

kGZLAO-H a€A+

cf. (X, = A;)

te'}

F(, y)—

tk
Z Bi((yD7;-

§8. Example: A; Case

We calculate a multiple periodic Bernoulli function and its generating function in
the case of the root system of type A,.
We have the basic data as follows:
o0 o
Ai={a]v’a;sa\]\/_*_a%/}’rv={V19V2’V3}’ .
t= (ta] ataz ata1+012) = (tl at2at3)9
Yy =yie + y20t).

Fix a sufficiently small & > 0 and ¢ = «;" +&a;’. Then by using these data, we have
the generating function and a multiple periodic Bernoulli function as
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Ft,y;Ay) = basis V C A4, dual basis V*

t.; t] erl{.yl} tze’z{.\'?.}

B3—t1—t er—1 e2—1 (Vi'= oo}, Vi = {h1.02D

) tlefl {y1—y2} t3e’3{)'2}

h+t—t; er—1 eB—1 (V3 ={ay o + 7}, V3 = (M —22.22))

H tye'20=1=y2D 1030}

h+t—t3 er—1  eB—1 (V3 = {og .0 + 7 },V3 = {A2 —A1.1})

Fork=2=(2,2,2),

1 1
P(2,(y1,¥2); A2) = 3780 + 9—0({)’1} —{y1=y2}—={»}

1
+ 56(—~{y1}2 —2{y1 — 2 Hy1} + {1 — y2 1> = (2} +2{y1 — »2}{2])
1
+ ﬁ("b’l}:; +3{y1 — y2 1} +3{32} +3{y1 — »2}{»2}?)
1
+ 5 ¥ =2{y1 —y2 1} =3 — 2 }?
—5{y2}* = 10{y1 — y2}{y2}> = 3{y1 — y2}*{32}®
I
+ 36({)'1}5 —5{y1 — y2Hy1 }* + 10{y; — y2}*{m1}?
+5{2F + 15{y1 — y2H{y2}* + 10{y1 — y2}*{32}*)
]
+ 55(—{3’1}6 +4{y1 — 21y ¥ = 5{y1 — 2 {n}?
— (321 = 4{y1 — y2 12 — 5{y1 — 212 {y2)}").

We have a functional relation corresponding to this multiple periodic Bernoulli func-
tion:

$2(2,(y1,¥2); A2) + £2(2,(—=y1 + y2,¥2); A2) + £2(2,(y1,y1 — y2); A2)
+£2(2,(=y2,y1 — ¥2); A2) + £2(2,(—y1 + y2,—¥1)s A2) + £2(2,(—y2,—y1); A2)
Qmi)s
N’

= (=1 P(2,(y1,y2); A2)
In particular if (y;,y2) = (0,0), then
1 Qri)® n#°
3780 (2!)3 ~ 2835’

1
£2(2,(0,0); Ay) = g(—1)3

of. (X, = A;)

1 1(2m’)2 72 1
(@ =3(-Dz5—=—, Bz({y})=3—{y}+{y}2.
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§9. Multiple Bernoulli Polynomials

In the classical theory, Bernoulli polynomials can be derived by the analytic con-
tinuation of periodic Bernoulli functions. We explain this fact. Let = {y e R | {y} €
Z} = Z (discontinuous points of {y}). Let R\ $ = [ [, ., D", where D) = (v,v +1).
From each © to C, the function B({y}) is analytically continued to a polynomial
function B,ﬁ")(y) = By (y —v) € Q[yl.

l@(0) =(0,1)
0 1 0 1
R\$H=]],;DV B(yD) B (y) = Bu(y)

A similar procedure works well in general cases and we can define multiple gener-
alizations of Bernoulli polynomials.

Let

N /\\/ N
Y
s=J U Uteviv+evsez) \NARVN

VeVgeQV BeV

(discontinuous points of {y -+ g}v g appearing in the ,//\ \/ (/)\\\ \/ v
/N VAN AN

generating function).

Let
174 \ﬁ — LI@(V) A2 case

. vVEeJ . . .
where D is an open connected component, J is a set of indices.

Theorem 3 ([8,9, 10]). From each region D to the whole space CQV , Pk,y;X,)is
analytically continued in 'y to a polynomial function Bl({")(y; X,) € Qly] of total degree
atmost |K| =3, ca, ko, wherey =3 _| ynar)/.

§§9.1. Example: A, Case

The Bernoulli polynomial Béo)(y; Aj) is obtained by the analytic continuation of the
periodic Bernoulli function P(2,y; A,) from the region ©©.

VA$H =]],e;D" P(2,y; A2) B (y; A2)
(Periodic Bernoulli function) (Bernoulli polynomial)



126

The explicit form of the Bernoulli polynomial Béo) (y; Az) is given as follows:
1 1 1
B(O) cAy) = . g2 42 —@3 2_32 23
2 (Y:A2) —3780+45()’1)’2 yi—y)+ 18( y1y; —3yiy2+2y7)
1
+5(=201y3 = 391y +4y1v2 = 2y] +57)
1
+ 35 (—53157 + 107y, +10y]y; — 15y} 32+ 637)

1
+ 55671 Y3 — 5y2ys — 5yt ys + 637y, — 2y7 — 2y5) € Qly].

§§9.2. Further Examples: A,,B,,G, Cases

The graphs in the upper (resp. lower) row are those of periodic Bernoulli functions
(resp. Bernoulli polynomials).

We summarize what we have obtained: we have constructed periodic Bernoulli func-
tions so that they describe functional-relations of multiple zeta-functions of root sys-
tems, which can be calculated by using the generating function; Bernoulli polynomials
are obtained by the analytic continuation of periodic Bernoulli functions.

Ve
Z ( l—I (—l)k"){r(w_]k,w_ly;X,) = (—1)|A+|P(k,y;X,)( 1—[ (271'::!) >’

weW geA,Nw-tA_ €A
k
1,

Fy;:X)= >, P&y:X) [ 2,

keZLAO-H d€A+

P(k,y; X,) < B"(y; X,) € Q[yl.
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§10. L-Functions of Root Systems

We give an application of periodic Bernoulli functions or equivalently Bernoulli
polynomials. For this purpose, we define an L-analogue of zeta-functions of root
systems.

Definition 4 ([9, 10]). L-functions of root systems: For a root system A of type X,,

define
Xa(a WA))
(oz" A)Sa

Lr(SaX;Xr) - Z

AePiiaeA,
where X = (Xa)aca, is a set of primitive Dirichlet characters of conductors f, € Z5;.

We extend x = (Xa)aeA.,. t0 (Xa)eea BY Xa = X« and define (Wx)a = Xy-14. Then
we have value-relations of L-functions.

Theorem 4 ([9, 10]). Fors =k = (ka)aca, € Zos',

S( TT  D%xe=D)L @ kw % X))

weW geA Nw-'A_

27ri)ke
= (—1)'A+‘( I X~ D () 222

1 fka
a€A+ ka .f

where By y(X,) is a multiple generalized Bernoulli number (defined later).

)Bk,’i(Xr),

cf. (X, = Al)

(2m )" _
k! fk B

Lk, )+ (=1*x(=DL(k,x) = —x(—=1)g(x)~———

§11. Special L-Values

Theorem 4 immediately implies a formula for special values of L-functions:

Theorem 5 ([9, 10]). Fork € (Z>y)*+ and x st. w 'k =k, wlx =y forallwe W
and (— 1)k xo(—=1) =1 foralla € Ay,

(_l)lkl+|A+l ( (Zﬂi)k"
ko
|W| wca, Ka!fa

Lr(k’X;Xr) = g(Xot)) Bk,'f(Xr)-

cf. (X, = Ay)
(=1 2mi)t
2 kIfk

As an example, let p; be the Dirichlet character of conductor 7 defined by p7(1) =
p7(6) = 1, p1(2) = p7(5) = €**/3, p3(3) = p7(4) = e**/3. Then the Gauss sum is

L(k,x)=

8(x)Bix-
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g(p7) = 2(cos(2m /7) + e*™'/3 cos(4m /T) + €*™/3 cos(67r /7)) and we have

o0

+
L2((2,4,4,2),(1,07,07,1); By) = Z p7(n)p;(m +n)
mn=1

m2n*(m +n)*(m +2n)?

222 21 4174 8% 6988350600 6988350600

(o2 69967019 . 102810289/=3
= T
8T 181289027372537700 ' 181289027372537700

We give two more examples. Let ps be the quadratic character of conductor 5. Then
we have

(—1)12+4<(2m)2)2((2m)4( )2( 69967019 102810289«/-—3)
= 7

92
2,2,2,2),(ps,ps.05,05); B2) = =—————n%;
L5((2,2,2,2),(ps,ps,p5,05); B2) 29296875 "
L3((2,2,2,2,2,2).( )i Az) = i
3U0%,2,2,2,2,2),005,05,05,05,05,P5), A3) = — Sz mnaegTs T

The latter can be regarded as a character analogue of the formula in [1, Prop. 8.5].

§12. Multiple Generalized Bernoulli Numbers

The generating function of multiple generalized Bernoulli numbers is given in terms
of that of multiple Bernoulli polynomials as in the classical theory.

Definition 5 (generating function [9, 10]). For t = (t4)4ea, »
Jo

ct.x: X = (] X“;a“))F(ft,y(a;n;X,),
ag=1 a€A,4 o
adEA 4

where F(t,y; X,) is the generating function of multiple periodic Bernoulli functions
and ft = (fata)aeA+ yy(a;f) = ZaeA+ aaav/fa .

Definition 6 (multiple generalized Bernoulli numbers [9, 10]).

ke
G, x;X,) = Z ka(X)n z
keZ'ﬁf' aeA+
fo
BuxX) = ([T £27) 3 (T xalaw)) P y(@:0: X,).
ac€Ay ag=1 a€Ay

acA;

cf. (Xr = A])
oftlalfy 2

—Zkakl

f
=Z—(?— /1, /f)—ZX(“)f’

By = f*" Zx(a)Bk«a/f}).

a=1
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§§12.1. Properties

Theorem 6 ([9, 10]). Assume that f, > 1 if A is of type A,. Then for w € W,
BynwixX)=( T] (D" xa(=1)Bix(X,).
acANwlA_
Hence B y(X,) = 0 if there exists an element w € Wy N W, such that
[T Dexa(-D#1,

aeANw-TA_

where Wy and W are the stabilizers of k and x respectively.

cf. (X, = Ay)
Bi, =0 if (—1)fx(=1)#1.
Several other properties in the classical theory such as
F(t,y)=F(—t,—y)fory e R\Z, By(l1—y)=(=1)"B(y),

10
——F@,y)=F(,y)
t dy

can be reinterpreted in terms of root systems and Weyl groups.

§13. Zeta-Functions for Lie Groups

Recall that Witten zeta-functions were originally introduced for compact semisim-
ple Lie groups. It is known that there is one-to-one correspondence between finite
dimensional representations of complex semisimple Lie algebra g and those of simply
connected compact semisimple Lie group G. In the cases of general compact semisim-
ple Lie groups, we need analytically integral forms L for a maximal torus of G, which
satisfies Q C L C P.

Definition 7 (Zeta-functions of Lie groups). For a root system A of type X, , define
27i(yA)
o= ¥ e [ b
A€ELNPyy aeA4
Ft.y; X;;L)= ) fJWFRy+p;X,)
KEPY/QY
tk“
= D P&yXsD) [T
kez!4H! aeA+
where %, : PY/QY — C*is given by {.(u) = ——— e A
IP/ o1, 57,

Note that these definitions are based on the origin of L-functions, that is, Dirichlet’s
theorem on arithmetic progressions.
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As an application, we obtain for example,

1
$2(2,0; Ay; Q)= Z 2m — n)2(2n - m)z(m + n)2

2m—n2n—m>0

_(=1)® 187 ((2m')2)3_ 1877°
3! 918540\ 2! ~ 688905

§14. Integral Representation

The analytic continuations of multiple zeta-functions were already obtained by Es-
souabri [3], Matsumoto [12], de Crisenoy [2], etc. However we give yet another
method which is a generalization of the formula

e o]
1 1 5!
’(s) = 2 == T 1) Jo et = 1alz (C: Hankel contour).
For &£ € CR, a,s € CV and b € CVN*® consider the multiple series
¢(§.a,b,5) =

esimi ... gErmR

o0 o o]
Z Z (a1 +bymy+---+bigmg) - (any +byimi+ - +byrmg)V

m1=0 mgr=0

Theorem 7 ([4, 5]). :
{(&,a,b,s) = I'(s1)---T(sy) 1—[ e2mit(s) — 1 x

tes
elbn++big—anz -e(b"”+"'+bNR'-aN)ZNZt;l_l . -Z;x)lv—l dziN---Nd
5 (ez1buittanbnr — gb1) ... (e21bir++InbNR — @8R) 2 N>

where T is essentially a union of surfaces and S is a set of linear functionals on CV .

From the integrand, we can construct generating functions of Bernoulli numbers for
nonpositive domain.

§15. Possibilities of Generalizations to Elliptic Analogues

Lastly we give two possibilities of generalizations to “elliptic”” analogues by regard-

ing £, (s,y; X,) as “rational” or “trigonometric” versions.
The first is Eisenstein analogue. The Eisenstein series is defined by
eZni(mx+ny)

Gi(tix,y) = —.
e(¥3%.3) Z (m+nt)
(mn)eZ\{(0,0)}

Let (x,y) € R?\ Z? and

00,00 +XT —y;T)  ~— Qri)kk!
2mixt
= H(x,y;1)——.
¢ 0(t;t)0(xt—y;1) g £(r,537) k!



131

Then we have the following elliptic analogue.

Theorem 8 (Katayama (1978)). For k € N with k > 2, we have
(2mi)*
k!

Gi(t;x,y) =—H(x,y;7)

The second is g-analogue. Instead of Weyl’s dimension formula, we employ the

character formula. Let g = e~2"!/* with It > 0 and

o0 2mimx ,mz m
e 1-—
O D
m=l m q9 9
Let
2wit/Tt __
Y(t) = Z:ti ¢ ey t+0(@?) (i.e. local coordinate around 0).
Define
Q. e 00 RN W) k—1
ez,,,.xta O;)o(t+xt—y;71) _ Z@k(X,y,z;‘r)(Z”l/t) Y)Y (t) .
O(t;T)o(xt —y;1) —~ (q:9)
Then

Theorem 9. For ke N, y+kz€Z,0 <z < 1andx € R, we have

1
&gk k(1 — 2)30) + (= 1)*¢q(k,kz; —x) = —@u(x,y,2;T) =

[klg!

In particular, for t =1,

,T—3 307% — 11n* + 34
24w’ 144074

Our future work is to construct generalizations to arbitrary root systems.

£4(2,1;0) = (1 —e™?7) £4(4,2;0) = (1 — e %)
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