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abstract

The behavior of supercooled polymer melt composed of short chains with
ten beads between rapidly oscillating plates is simulated by using a hybrid
simulation of molecular dynamics and computational fluid dynamics. The
flow profiles of polymer melt near an oscillating plate are quite different from
those of Newtonian fluid. The viscous boundary layer of the melt is much
thinner than that of the Newtonian fluid due to the shear thinning of the
melt. Three different rheological regimes, i.c., the viscous fluid, viscoelastic
liquid, and viscoelastic solid regimes, form over the oscillating plate according
to the local Deborah numbers. The melt behaves as a viscous fluid when
wr® < 1, and the crossover between the liquid-like and solid-like regime takes
place around wr* ~ 1 (where w is the angular frequency of the plate and TR
and 7* are Rouse and « relaxation time, respectively).

1 Introduction

A lot of products in our daily lives contain soft matters (e.g. colloids, polymers, and
liquid crystals). One of the most unique characters of soft matters is that they ex-
hibit both solid- and liquid-like responses to mechanical strains or shape deformations.
When computer simulations of fluids are performed, either computational fluid dy-
namics (CFD) or molecular dynamics (MD) is usually employed. In the case of CFD,
mechanical properties of fluids must be modeled mathematically in advance as a form
of “constitutive relation” to be used in simulations. CFD is thus valid only for the
cases in which both mechanical properties of fluids and the flow profiles are not too
complex. Polymer melts, however, have very complicated mechanical propertics in
gencral, and their flow profiles are complex in rapidly oscillating plates. In the case
of MD simulation in contrast, fluids consist of huge numbers of molecules of arbitrary
shapes. It is thus applicable for any flows of any complex fluids in principle. However,
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the drawback herc is cnormous computational time required to resolve the dynamics
of all the molecules consist of fluids. Hence, MD simulation is not yet applicable to
problems which concern large scale motions far beyond the molecular size, as is done
in the present study. (An expected time to simulate only a gram of fluid would exceed
onc hundred years cven if the rapid progress of computer continues forever.) In order
to overcome this difficulty, we have recently developed a hybrid simulation of MD and
CFD based on a local sampling strategy, in which the macroscopic dynamics arc solved
using a CFD scheme but, instead of using any constitutive equations, a local stress is
calculated by using a non-cquilibrium MD simulation associated with each lattice node
of the CFD computation.[1] The basic idea of the hybrid simulation method was put
forward carlier by Kevrekidis et al.[2] and also by Ren and E.[3]

In previous papers, the validity of the hybrid methods and their efficiencies are
examined intensively for viscous fluids without memory effects. De et al. have rccently
proposed a ncw hybrid method, which is called the scale bridging method in their
paper, that can correctly reproduce the memory effect of the polymeric liquid, and
performed a simulation of a non-linear viscoclastic polymeric liquid between oscillating
plates.[4] They have also compared the results obtained by the scale bridging method
with those obtained by a full MD simulation, thereby demonstrating validity of the
mcthod. In the present letter, we also model the behavior of polymer melt between
oscillating plates by using the samec strategy of multiscale modeling, but we focus on
the complex rheology of a supercooled polymer melt in the viscous diffusion layer that
arises near an rapidly oscillating plate. The boundary layer arises if the width between
plates is much larger than the thickness of viscous diffusion layer. Note that, in Ref.
[4], the thicknesses of viscous diffusion layers are cstimated to be comparable to the
widths of the plates[5], thus the boundary layers are not clearly seen.

In the present problem, the macroscopic quantities are quite non-uniform, and two
different characteristic length scales appcar that must be resolved; one is that of a
polymer chain and the other is that of a boundary layer arising near the oscillating
plate. This problem constitutes an important application of multiscale modeling since
it is quite difficult to solve this problem by using a full MD simulation because the
length of the boundary layer is much larger than that of a polymer chain. In the
following, we bricfly state the problem and outline the hybrid simulation method, and
then discuss the numerical results. Finally we give a summary of our conclusions.

2 Problem and multiscale modeling

We consider a polymer melt with a uniform density py and a temperature 75 between
two parallel plates (see Fig. 1(a)). The upper- and lower-plate start to oscillate in oppo-
site, parallel directions with a constant frequency wqg at t=0. The polymer melt is com-
posed of short chains with ten beads. All of the bead particles interact with a truncated
Lennard-Jones potential defined by[6] Up;(r) = 4¢[(c /)12 — (0 /7)%] + € for r < 2%/50,
and O for r > 285 By using the repulsive part of the Lennard-Jones potential only,
we may prevent spatial overlap of the particles. Consecutive beads on cach chain
are connected by an anharmonic spring potential, Ur(r) = —3k.REIn [l — (r/Ro)?],
with k.=30¢/0? and Ry=1.50. Thc number density of the bead particles is fixed at
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Figure 1: Schematics for the problem and mesh system.

po/m=1/03, where m is the mass of the bead particle. With this number density the
configuration of bead particles becomes severcly jammed at a low temperature, result-
ing in the complicated non-Newtonian viscosity and long-time rclaxation phenomena
typically seen in glassy polymers. In the present letter, we fix the temperature at
T'=0.2¢/k, where k is the Boltzmann constant.[7]

We assume that the macroscopic quantities are uniform in the z- and z-dircctions,
i.e., /0x=08/0z=0. Then the macroscopic vclocity v, is described by the equations,
poOuy /Ot = 8oy, /0y and v,=v,=0, where o,4 is the stress tensor. Here and after-
wards, the subscripts «, 3, and <y represent the index in Cartesian coordinates, i.c.,
{a,B8,7}={x,y,2}. We also assume the non-slip boundary condition at the oscillating
plate, v,=vg cos wyt at y=0 (where vy is a constant amplitude of the oscillation veloc-
ity), and the symmetric condition at y=H (i.e., v,(y=H+Az/2)=—v,(y=H-Az/2)).
If the frequency wg is large enough, the thin viscous boundary layer forms over the
oscillating plate. The thickness of the layer is estimated, for fluids with a constant
viscosity v, as [, ~ 74/1y/ws. Note that the thickness of the viscous layer [, is much
smaller than the width between the plates, I, < H, but is usually much larger than
the scale accessible to a full MD simulation, in which the characteristic length scale is
the length of the polymer chain {;, I, > [.

The constitutive relation of the stress tensor is quite complicated[8, 9]; the temporal
value of the stress tensor of a fluid element depends on the previous values of the velocity
gradicnts of the fluid element. The relation may be written in a functional form as,

0ap(t, Ta) = Faplkap(t', 2, (t'))], with ¢ <t, (1)

where kqpg is the velocity gradient, ko = Ove/O0zs, and z,,(t') represents the path
line along which a fluid element has been moving. In the one-dimensional problem,
however, we don’t need to consider the path line of the convective fluid element since the
macroscopic velocity is restricted to be only in the z-direction where the macroscopic
quantities are assumed to be uniform. Thus the stress tensor for the present problem
may be written in a functional involving the local strain rate,

0ap(t,y) = Faply(t,y)], with &' <¢, (2)

where % is the strain rate, ¥=0v,/0y. Notc that, although Eq. (2) becomes much
simpler than Eq. (1), the temporal valuc of the local stress still depends on the previous
values of the local strain rate. Its dependence is quite complicated, especially for
glassy materials (for which explicit formulas are unknown in general). In our hybrid



24

simulation, instead of using any explicit formulas for the constitutive relation, the local
stress is generated by the non-equilibrium MD simulation associated with cach local
point. Sce Fig. 1 (b).

We briefly explain our hybrid simulation method. The computational domain
[0,H+Azx/2] is divided into thirty-two slits with a constant width Az. We use a
usual finite volume method with a staggered arrangement, where the velocity is com-
puted at the mesh node and the stress is computed at the middle of each slit. One
hundred chains are confined in cach cubic MD cell with a side length lyp=100. As
for the time-integration scheme, we use the simple explicit Euler method with a small
time-step size At. The local stress at each time step of the CFD is calculated by per-
forming a non-equilibrium MD simulation according to the local strain rate in each MD
ccll. The techniques of the non-equilibrium MD simulation are the same as those in
the previous paper(1]; we use the Lees-Edwards sheared periodic boundary condition
and a Gaussian iso-kinetic thermostat to keep a constant temperature. In the present
problem, however, we cannot assume a local equilibrium state at cach time step of the
CFD simulation since the relaxation time of the stress may become much longer than
the time-step size of the CFD simulation (in which the macroscopic motions of the
system should be resolved). In the present simulations, the simple time-average of the
tcmporal stresses of the MD (averaged over the duration of a time-step of the CFD
simulation) are used as the stresses at each time step of the CFD calculation without
ignoring the transient time necessary for the MD system to be in steady state. The
final configuration of molecules obtaincd at each MD cell is memorized as the initial
configuration for the MD ccll at the next time step of the CFD. Thus we trace all
of temporal cvolutions of the microscopic configurations with a microscopic time step
so that the memory effects can be reproduced correctly. Note that, compared with a
full MD simulation, we can achicve an efficient computation with regard to the spatial
integration by using MD cells that arc smaller than the slit size used in the CFD simu-
lation. The efficiency of the performance of our hybrid simulation is represented by the
ratio of the slit sizc used in the CFD model Az to the cell size of the MD simulation
IMp, Az/lyp. Hereafter, the quantities normalized by the units of length o and time
To=+/mo?/e are denoted with a superscript “*”. In the following simulations, we fix
the time-step size of the CFD simulation At, sampling duration of the MD simulation
tmp and time-step size of the MD simulation A7 as At*=t};p=1 and A7*=0.001, rc-
spectively. Thus, one thousand MD stcps are performed in each MD cell at each time
step of the CFD computation.

3 Result and discussion

We perform the hybrid simulations for two cases: Case A, in which wj=27/256 and
H*=787.5, and Case B, in which w{=27/1024 and H*=1575. The amplitude of the
oscillation velocity is fixed as v;=10 in both cases. The widths of the slits are Az*=25
for Case A and Az*=50 for Casc B, and the ratios of the mesh size of the CFD Ax
to the ccll size of the MD lyp arc Az/lyp=2.5 for Case A and 5 for Case B. Figure 2
shows the instantancous velocity profiles ncar an oscillating plate over a period for (a)
Case A and (b) a Newtonian fluid with a constant viscosity v5=53, which corresponds
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Figurc 2: The velocity profiles near an oscillating plate at wot=2407+6, 6/7=0, 1/2,
3/4, 1, 3/2, and 7/4, for wi=27/256. (a) The result for the polymer melt and (b) that
for a Newtonian fluid. The vertical axis represents the height y and the horizontal axis
the velocity v,.

to the dynamic viscosity of the model polymer melt for Case A. The dynamic viscosity
is calculated via G} /wy (where Gy is the loss modulus in the linear regime). It is scen
that the boundary layer of the melt is much thinner than that of the Newtonian fluid.
This is caused by the shear thinning; the local loss modulus near the boundary is, as
we scc below, much smaller than that for the linear regime, thus the thickness of the
viscous diffusion layer becomes thinner than that for the Newtonian fluid.

We also measure the local viscoelastic properties in terms of the local storage mod-
ulus G1(y) and loss modulus Gz(y). It should be noted that the local macroscopic
quantities oscillate with a different phase retardation at each different point. The local
moduli are calculated in the following way: The discrete Fourier transforms of the
temporal cvolutions of the strain v, y(t,y) = fot ¥(¥',y)dt’, and shear stress o, dur-
ing the steady oscillation states are performed. The discrete Fourier transformations
are written as g, = g SN g exp(i2nnk /(N + 1)), with gl =g(nAt, IAz) (n=0,...,N
and [=0,...,32) , where g represents the strain or shear stress (e.g., g=7 or o4,). By
using thc Fourier coefficients for the mode of the oscillating plate kg, ko=1+(wo/27)N,
the time evolution of the local strain at y=%' can be expressed as a cosine function,

v (t) = 7 cos(wot + &%), (3)

. ~1 ~ 1 ~ 1 ~l .
with v} = \/(’7’k0)2 + (¥"40)? and &' = tan~!(y”,,/7'1o). Hereafter the superscripts
“” and “/” indicate the real and imaginary part of the discrete Fourier coefficients,
respectively. The time evolution of the local shear stress can also be expressed as

a;y(t) = o' cos(wyt + 6') — oy sin(wet + 6, (4)

with ol = OA";O cos 6! + crA”im siné! and o} = UA”ZO cos 6! — (;’;m sind!. Thus, the local
storage modulus G; and loss modulus G are written, respectively, as G1(y')=a' /7§
and Ga(y')=05/7.

Figure 3 shows the spatial variations of the local storage modulus and loss modulus
and the amplitude of the local strain for Case A. The shear thinning is seen near the
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Figurc 3: The spatial variations of the local moduli G; and G (lower axis) and the
amplitude of the local strain 7, (upper axis) for Case A. The dashed and dash-dotted
lines show the values of G; and G, for the linear regime (G}=3.1 and G3=1.3), re-
spectively. The linear moduli arc calculated by the non-equilibrium MD simulations
with small strains for 0.005< v, <0.01. The long-dashed line represents vo=2%. The
left arrows on the right-side vertical axis show the positions where the local Deborah
numbers, shown in Fig. 5, arc cqual to unity.

plate; the strain -y, (or the strain rate ¥y=woyo) is quite large near the oscillating plate
and both moduli are much smaller than those for the linear regimes. In the close vicinity
of the oscillating plate, the storage modulus G; is much smaller than the loss modulus
G, G1 < G». Hence, the melt behaves as a viscous fluid. The storage modulus rapidly
grows with the distance from the oscillating plate, and the viscoelastic crossover occurs
at y* ~ 200. Both moduli attain their linear values, which arc shown as dashed and
dot-dashed lines in Fig. 3, for distance that is far from the oscillating plate where the
local strains are less than about two percent. The overall features are also consistent
with Case B, although the crossover is not as clear as that in Case A (See Fig. 4).
Thus, the local rheology of the melt can be divided into three regimes, i.e., the viscous
fluid, viscoelastic liquid, and viscoclastic solid regimes. These regimes may be also
characterized by the two “local” Deborah numbers. One is defined by the local Rouse
rclaxation time 7 of the melt and the angular frequency of the plate wy, Dell=wypg,
and the other is defined by the local a relaxation time 7, and the angular frequency
wo, De*=wyT,. Note that the local Rouse and « relaxation times vary according to the
local strain rate 4, 7 = 7(%). Figurc 5 shows the spatial variation of the local Deborah
number De® and De®, where the local relaxation times 7r and 7, are calculated by
substituting the values of 44, which are obtained via Eq. (3), into the fitting functions
for the relaxation times for the simple shear flows obtained in Ref. {7]. In Figs. 3 and
4, the positions at which the local Deborah numbers become equal to unity are shown
by the left arrows. It is scen that the melt behaves as a viscous fluid, Gy > Gy, for
De” < 1, while the viscoelastic properties become pronounced for De® 2 1. This is
consistent with the rheology diagram for a model polymer melt obtained in Ref. [10].
It is also secn that the crossovers of the liquid-like regime, G > G4, and the solid-like
regime, G; > G5, take place at De® ~ 1.
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Figure 4: The spatial variations of the local moduli G; and G (lower axis) and the am-
plitude of the local strain ~, (upper axis) for Case B. The dashed and dash-dotted lines
show the values of G; and G5 for the linear regime (G;=1.7 and G5=1.4), respectively.
See also the caption for Fig. 3.
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Figure 5: The local Deborah numbers (defined via the Rouse relaxation time 7p and
the a relaxation time 7®) Def = wytr and De* = wor®. (a) Case A. (b) Case B. The
right arrows on the y-axis show the position where the Deborah numbers are cqual to
unity.

4 Summary

The behavior of supercooled polymer melt between rapidly oscillating plates is simu-
lated by using a hybrid simulation of MD and CFD. In our simulation, the memories of
molecular configurations of the fluid elements are correctly traced at the microscopic
level. The cfficiency of our hybrid simulation is represented by the ratio of the mesh
size of the CFD simulation Az to the cell size of the MD simulation {vp. In the present
simulations, Az/lyp=2.5 for Case A and 5 for Case B. The flow profiles of polymer
melt are quite different from those of Newtonian fluid with a dynamic viscosity of the
model polymer melt. The shear thinning of polymer melt takes place near the oscillat-
ing plate, and thus the boundary layer of the polymer melt becomes much thinner than
that of the Newtonian fluid. The local rheology of the melt also varies considerably
in the viscous boundary layer, so that three different regimes, i.e., the viscous fluid,
viscoelastic liquid, and viscoelastic sold regimes, form between the oscillating plates.
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It is also found, in the viscous fluid regime, that the local Deborah number defined via
the Rouse relaxation time and the angular frequency of the plate is less than about
unity, De®® < 1. The crossover between the liquid-like and solid-like regimes takes place
around the position where the local Deborah number defined via the o relaxation time
and the angular frequency is cqual to unity, De* ~ 1.

References

[1] S. Yasuda and R. Yamamoto, Phys. Fluids 20, 113101 (2008).

[2] 1. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and
C. Theodoropoulos, Comm. Math. Sci. 1, 715 (2003).

[3] W. Ren and W. E, J. Compt. Phys. 204, 1 (2005).

[4] S. De, J. Fish, M. S. Shephard, P. Keblinski, and S. K. Kumar, Phys. Rev. E 74,
030801(R) (2006).

[5] S. Sen, S. K. Kumar, and P. Keblinski, Macromolecules 38, 650 (2005).
[6] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
[7] R. Yamamoto and A. Onuki, J. Chem. Phys. 117, 2359 (2002).

[8] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids Vol.
1 (John Wiley and Sons, New York, 1987).

[9] R. G. Larson, Constitutive equations for polymer melts and solutions (Butter-
worths, Boston, 1988).

[10] M. Vladkov and J. L. Barrat, Macromol. Theory Simul. 15, 252 (2006).



