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1 Introduction

This article is a survey of the papers [3, 8] on a stability of a stationary solution

to an ideal polytropic model of compressible, viscous and heat-conductive gases in

one-dimensional half space Ry := (0, c0),

pe + (pu)s =0, (1.1a)
(pu)l + (pUZ +p(pv 0))1 = HUzg, (1'1b)
{p(cvﬁ + u;) }t + {pu(cVQ + u;) + p(p, G)U}z = (puug, + 59,,)3_. (1.1c)

Here p = p(t,z), u = u(t,z) and § = 0(t,x) are unknown functions standing for

a mass density, a fluid velocity and an absolute temperature, respectively. The
pressure p = p(p, #) is given by p(p, 0) := Rpf due to the Boyle-Charles law, where
R > 0 is a gas constant. Positive constants u, x and ¢, mean a viscosity coefficient,
a thermal conductivity and a specific heat at constant volume, respectively. For the
ideal polytropic model, ¢, is given by ¢, = R/(y — 1), where v > 1 is an adiabatic

constant. We put an initial condition

(o, u, 9)(()’3;) = (pOau(hQO)(x)a (1'23‘)
T}H&(P(),Uo,go)(x) = (o4, U4, 04), (1.2b)
1 i 1.2
$1€r]}{r po(z) > 0, m1er]hf+ 6o(x) > 0, (1.2¢)

where p, > 0, u; and 6, > 0 arc constants. The main purpose of this article
is to summarize the results in [3, 8] which show the existence and the asymptotic
stability of the stationary solution for an outflow and an inflow problem to the
equations (1.1). Here the outflow problem and the inflow problem arc formulated

by imposing the following boundary conditions (i) and (ii), respectively:
(i) Outflow boundary condition:
u(t,O) = up < 0, H(t,O) =6y, >0, (13)
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(ii) Inflow boundary condition:

p(t,0) =p, >0, wu(,0) =wu, >0, 6(0)=6,>0, (1.4)

where py,, up and 6y, arc constants.

For the one-dimensional half space problem for an iscntropic model, Matsumura
in [5] considered a classification of asymptotic states of solutions. It was expected
that asymptotic states of solutions are classified into more than twenty cases subject
to the boundary data and the spatial asymptotic data. Several problems in this
classification have been already studied. For instance, Matsumura and Nishihara
in [7] proved the asymptotic stability of stationary solutions, rarefaction waves and
supcrposition of them for the inflow problem. The research [4] by Kawashima,
Nishibata and Zhu showed the asymptotic stability of the stationary solution for
the outflow problem. For this stability result, the convergence rate was obtained by
Nakamura, Nishibata and Yuge in [9] by using a weighted energy method developed
by Kawashima, Matsumura and Nishihara in [2, 6, 10] considering the asymptotic
stability of a traveling wave for a scalar viscous conservation law. In the paper [12],
the convergence rate toward a degencrate stationary solution was also considered by
Ueda, Nakamura and Kawashima.

For the half space problem for the ideal polytropic model (1.1), Kawashima,
Nakamura, Nishibata and Zhu [3] proved the existence and the asymptotic stability
of the stationary solution for the outflow problem. The convergence rate was also
obtained in [3] for a supersonic case and a transonic case. For the inflow problem,
Nakamura and Nishibata in [8] proved the asymptotic stability of the stationary
solution.

Notations. For constants p € [1,00) and o € R, the space L2(R,) denotes the
algebraically weighted L” space defined by L2 (R,) := {u € LIOC(R+) i Jlulle < oo}
equipped with the norm

i = ([ 1+ o) @) "

The space H:(R,) denotes the algebraically weighted H*® space corresponding to
L2(R,) defined by HE(R,) := {u € L2(R,) ; O%u € L2(R,) for £k = 0,...,s},
cquipped with the norm

g = (Z 1o5ulz)

For a € (0, 1), the space B*(R,) denotes the set of Holder continuous functions over
R, with the Holder exponent o with respect to x. For a non-negative integer k,
B*+*(R, ) denotes the space of functions satisfying 0iu € B*(R,) for an arbitrary
i =0,...,k. For o,8 € (0,1) and T > 0, the space B*?([0,T] x R, ) denotes
the sct of Holdcr continuous functions over [O T] x R4 with the Holder cxponents
o and [ with respect to ¢ and z, respectively. For non-negative integers k and
¢, Betoth . getaltB ([0 T x IR+) denotes the space of functions satisfying Oiu,
Biu € B"‘ﬁ([O T] x Ry) for arbitrary i =0,...,kand j =0,...,¢.
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2 Stationary waves

In the present section, we summarize the existence result of the stationary solution
for the outflow problem and the inflow problem discussed in [3, 8]. We also show
that the geometric property of local invariant manifolds around an equilibrium point
is completely characterized by the Prandtl number. This observation is summarized
in Section 2.2.

2.1 Existence of stationary waves

The stationary solution (5,4, 6)(z) is defined as a solution to the system (1.1) inde-
pendent of time variable ¢t. Thus (p, @, §) satisfies a system of equations

(p); =0, (2.1a)
(p5° + p(5,9)),, = Hiige, (2.1b)
{ pii (cvé + 3;—) + p(p, é)a}x = (pit, + 6,)_. (2.1c)

It is assumed that the stationary solution satisfies the same conditions as (1.2b) and
(1.2¢):

}L%(ﬁ(x)’ﬂ(x%é(x)) = (p+,u+,0+), (2'2)
Jinf p(z) > 0, mie% f(z) > 0. (2.3)

Moreover we prescribe the same boundary conditions as (1.3) and (1.4):

(i)’ Outflow boundary condition:

@(0) =u, <0, 6(0) =6, >0, (2.4)

(ii)’ Inflow boundary condition:

p(0) = pp >0, @) =u,>0, H0)=20 >0, (2.5)

To discuss a solvability of the above boundary value problem, we employ the Mach
number M, a sound speed c, and a strength ¢ of the boundary data as follows:

u
M, = g, cy = Ry0,, 0:=|(ug,04) — (up, )|
C+

Integrating (2.1a) over (z, 00), we get the relation
PU = Pyt (2.6)

Especially, substituting = 0 in (2.6), we have p(0)u, = piuy. Thus, for the
outflow problem, the spatial asymptotic state u, of the velocity must be negative

uy < 0. (2.7)
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On the other hand, for the inflow problem, we have a necessary condition for the
existence of the solution as follows:

uy >0 and ppuy, = pypuy. (2.8)

Next we integrate (2.1b) and (2.1c) over (z, 00) with using (2.6) to obtain a system
of cquations for (i, 6) as

()= Go0)+ (is) e

where the matrix J and nonlinear terms f (%, 0) and g(i, 0) are defined by

J = ((PM& — Rpy0.)/(puy)  Rpi/w )

Rp40+/K Cyp+U+/K
~ L Rp+9+ ~ 2 Rp+
f(@,0) = i (@ —us) — 1 —(u u+)(9 0.+),
~ 7 Uy -
(@, 8) = —”;; (@ — uy )2

The boundary conditions for (2.9) are prescribed as
(@,0)(0) = (up, 0), lim (a(2),8(2)) = (us,04). (2.10)

We first summarize the existence result of the problem (2.9) and (2.10) for the
outflow problem which yields the solvability of the problem (2.1), (2.2) and (2.4)
considerced in [3].

Proposition 2.1 ([3]). The necessary condition for the eristence of the stationary
solution to the problem (2.1), (2.2) with the outflow boundary condition (2.4) is (2.7).
Suppose that the boundary data (uy, 0y) satisfies

0 < gg (211)

for a certain positive constant €.
(i) For the supersonic case M, > 1, the problem (2.1), (2.2) and (2.4) has a unique
smooth solution (5,1, 0) satzsfymg

08 (5(2) — pas (@) — us,0(z) — 6,)] < Coe™ (k=0,1,...).  (2.12)

(ii) For the transonic case M, = 1, there exist a local stable manifold 6 = h#(u) and
a local center manifold § = hc(u) around the equilibrium point (u4,04) in the
state space (u,0) (see Figure 1). Then, if the boundary data (up, By,) satisfies
0, < h*(uy), then the problem (2.1), (2.2) and (2.4) has a unique smooth solution
(p, @, 0) satisfying

ck+1

~ ~ 0 0 —cx
|05 (5(x) = py, a(x) — uy, 0(z) — 04)] < Cm +Cée™™ (k=0,1,...).

(iii) For the subsonic case M, < 1, there exzist a local stable manifold 6 = e (u)
and a local unstable manifold @ = h"(u). Then, if the boundary data (un,0b)
satisfies O = h®(up), then the problemn (2.1), (2.2) and (2.4) has a unique smooth
solution (p, @i, 0) satisfying (2.12). '
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M, >1 A0

Figure 1: State space for the problem (2.9) and (2.10) with the outflow boundary
condition.

We next summarize the existence result considered in [8] for the problem (2.1)
and (2.2) with the inflow boundary condition (2.5).

Proposition 2.2 ([8]). The necessary condition for the existence of the stationary
solution to the problem (2.1), (2.2) with the inflow boundary condition (2.5) is (2.8).
Suppose that the boundary data (uy,0y) satisfies (2.11).

(i) For the supersonic case M, > 1, there does not exist a solution to the problem
(2.1), (2.2) and (2.5).

(ii) For the transonic case M, = 1, there exist a local center manifold = h°(u)
and a local unstable manifold 0 = h*(u) (see Figure 2). Then, if the boundary
data (up, By) satisfies By = he(up) and O, > ﬁ“gub), then the problem (2.1), (2.2)
and (2.5) has a unique smooth solution (p,u,0) satisfying

6k+1

(YOG (k=0,1,...). (2.13)

105 (A(%) — py, W(x) — uy, é(:r) —0.)|<C

(iii) For the subsonic case M, < 1, we have the same conclusion as in Proposition
2.1-(iii).
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Figure 2: State space for the problem (2.9) and (2.10) with the inflow boundary
condition.

2.2 Local structure of invariant manifolds

In order to verify the conditions in Proposition 2.1 and 2.2, which ensure the exis-
tence of the stationary solution, it is important to make clear the local shapes of
the invariant manifolds. In the present section, we focus ourselves on the transonic
case M, = 1 for the outflow problem (see Figure 1) and show that the geometric
properties of the invariant manifolds A® and h® are characterized by the Prandtl

number P, defined by
a =T _R

l)ri——(, Cp 1= ———
KP’ P ’7_1

where ¢, denotes a specific heat at constant pressure. Precisely we approximate he
and h®* by polynomial functions around the cquilibrium point as

u) = Z ck(u — up)® + O((u — uy)?), (2.14)

k=0

= Z se(t — up)® 4+ O((u — ug)?). (2.15)
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Computing the eigen-vectors of the matrix J, we obtain
1—~)6 U
e L Y (R
Uy k(v —1)
Moreover, following an idea in [1], we obtain the coefficients cx, sx (k = 2,3) and sce

that the convexity of the local invariant manifolds depends on the Prandtl number.
Namely we have

co =8y =104, ¢ 0.

Lemma 2.3 ([3]).

(i) The local center manifold (2.14) satisfies co % 0 if and only if P, % 2. Especially,
if P =2, i.e., cg = 0, the coefficient c3 1s negative.

(ii) The local stable manifold (2.15) satisfies sz % 0 if and only if P, E Vo =
(v2 — v+ 2)/2. Especially, if P, = 7., i.e., s =0, the coefficient s3 is positive.

3 Asymptotic stability of stationary waves

In this section, we introduce the results in [3, 8] on the asymptotic stability of the
stationary solution (g, @, #). The next theorem shows the stability of (p, %, 8) for the
outflow problem.

Theorem 3.1 ([3]). Suppose that the same conditions as in Proposition 2.1 hold.
In addition, the initial data (pg, ug, o) is supposed to satisfy

pPo € Bl+G(R+)7 (’U,O,GO) € B2+U(R+)a
(po, o, bo) — (5,1, 0) € H'(Ry)

for a certain constant o € (0,1). Then there exists a positive constant £, such that

of

(3.1)

| (o, w0, 00) — (5,4, )| + 6 < €1, (3.2)

then the initial boundary value problem (1.1), (1.2) with the outflow boundary con-
dition (1.3) has a unique solution globally in time satisfying

pE B;+a/2,1+cr, (u,9) c B;+a/2,2+a’

(o, u,0) — (5,%,0) € C([0, 00); H (R+))

for an arbitrary T > 0. Moreover the solution (p,u, ) converges to the stationary
solution (p, 4, 0) uniformly as time tends to infinity:

lim ||(p, w,8)(t) ~ (5, @, )| 2= = 0. (34)

In the paper [8], the asymptotic stability of the stationary solution is also proved
for the inflow problem.

(3:3)

Theorem 3.2 ([8]). Suppose that the same condition as in Proposition 2.2 hold. In
addition, if the initial data and the boundary data satisfy the conditions (3.1) and
(3.2), then the initial boundary value problem (1.1), (1.2) with the inflow boundary
condition (1.4) has a unique solution in the space (3.3). Moreover, the stationary
solution is asymptotically stable in the sence of (3.4).
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In this paper, we focus on the outflow problem and give the outline of the proof
of Theorem 3.1. Thecorem 3.2 is proved in the similar computations. The crucial
point is a derivation of uniform a priori cstimates for a perturbation

(@, 9, ) (4, @) = (p,u,0) (L, @) — (5,3, 8) ()
from the stationary solution in the Sobolev space H!. Using (1.1) and (2.1), we
have the system of equations for (p, 1), x) as

©t + Uy + Pz = —(lzp + pz), (3'53')
1 - ——\
P(ll)z + ud)r) + ]_\/[_2(p - p):c = Nwzz - (pu - pu)uz, (3'5b)
.+.
‘&‘PXt + —Ev—(puG — pify) = KXas + p(uZ — @2) — i(pu, — piig). (3.5¢)
M_%_ M_?_ T T rr T T M_%_ 4 C
The initial condition for (i, ¥, x) follows from (1.2) as
((10) ¢, X)(O) x) = (QDO’ w(h XO)(:E) = (pO) Ug, 00)(17) - (15> ﬂﬂ é)(x) (36)
The boundary condition for the outflow problem is prescribed as
(¥, x)(¢,0) = (0, 0). (3.7)

Hereafter, for simplicity, we often use the notations @ := (p,%,x) and @ =
(0, %0, X0)- To summarize a priori estimates for @, we define a function space
X(0,7), for T > 0, by
X(©0,T) = {(0, %, x); v € BF>™7, (y,x) € BF/***,
(0, %, x) € C([0,T); H'(R4)), ¢. € L*(0,T; L*(Ry)),
(%:, X:c) € L2(O,T, HI(R+))}a

where o € (0,1) is a constant. We also employ non-negative functions /N (¢) and
D(t) by

N(t) :== sup. N2 (T) 2

D(t)? = (i, 02) (O + llea (D22 + (s X))l

Proposition 3.3. Let ® = (p,%,x) € X(0,T) be a solution to (3.5), (3.6) and
(3.7) for a certain constant T > 0. Then there exist positive constants e, and C
independent of T such that if N(T)+6 < €2, then the solution @ satisfies the estimate

t
18013 + / D(r)2dr < CllGol%n. (3.8)

The a priori estimatc (3.8) is obtained by using an energy method. Once (3.8)
is shown, we prove Theorem 3.1 by a standard continuation argument together with
a local existence of the solution. For details, see (3].

To obtain (3.8), we firstly derive a basic L? estimatc by employing an energy
form £ defined by

1 -~ /p 1, ce ~ (6
.= _ fwl = =s—1-1 .
e Hw( ) + 21/) + e w(9>, w(s) s 0g s
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Owing to a smallness assumption on N(T'), a quantity ||®|/ - is also sufficiently
small. Hence we sce that the encrgy form is equivalent to |@|2:

cp? < w(g) < Cp?, o < w(%) < Cx%  co)r <€ < ClP)P (3.9)

The solution, moreover, satisfies a uniform estimate
0<c<p(tz),dltz)<C, —-C<ultz)<-c<O0 (3.10)

for (t,z) € [0,T] x R,. Hercafter we only show the key estimates summarized in
Lemma 3.4 and 3.5 and omit detailed computations.

Lemma 3.4. Suppose that the same conditions as in Proposition 3.3 hold. Then we
have

18(6) |12 + / (007, 0)2 + [| (s xo) (7)122) dr

t
< Cl@ollZ + C6 / liw (7|22 dr. (3.11)
0

We next obtain the estimate for the first order derivative (g, ¥s, Xz)-

Lemma 3.5. Suppose that the same conditions as in Proposition 3.3 hold. Then we
have

18 ()]12 + / (02(r, 0)2 + | (0o Yom Xoa) (V)122) dr

< C||®o||%: + C(N(T) + 6) /t D(7)%dr. (3.12)

Summing up the estimates (3.11) and (3.12) and letting N (T") 4+ suitably small,
we prove the desired a priori estimate (3.8).

4 Convergence rate for outflow problem

For the outflow problem, the convergence rate toward the stationary solution (5, @, 9~)
is obtained in [3] for the supcrsonic and transonic cases.

Theorem 4.1 ([3]). Suppose that the same conditions as in Theorem 3.1 hold.
(i) For the supersonic case M, > 1, if the initial perturbation satisfies

(o, wo, 80) — (5, @, 0) € LZ(Ry)

for a certain positive constant o, then the solution (p,u,0) to (1.1), (1.2) with
the outflow boundary condition (1.3) satisfies the decay estimate

1w, )(t) = (5,8, 8) | < C(L+18)72. (4.1)

(ii) For the transonic case My = 1, let o € [1,2(1 + v/2)). There exists a positive
constant €3 such that if

6—1/2”(p0$u()a 00) - (ﬁ)ﬂa é)”]]é S €3,
then the solution (p,u,0) satisfies the decay estimate
1o, 0,0)(t) = (7, D)l < C(A + )7/, (1.2)
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4.1 Estimate for supersonic flow

In this section we introduce the weighted cnergy cstimates which yield the conver-
gence rate (4.1) for the case My > 1. To this end, we define weighted norm E,(t)
and D,(t) by
Ea(t)* = 1ol + 20172,
Dq(t)* = D(t)* + all®O)ll7z_, + (%2, x2) (1|22

Proposition 4.2. We assume that M, > 1 and (2.11) hold. Let ® = (p,%,x) €
X(0,T) be a solution to (3.5), (3.6) and (3.7) satisfying ® € C([0,T); L2(R,)) for
certain constants @ > 0 and T > 0. Then there exist positive constant €4 and

C independent of T such that if N(T) + 8§ < g4, then the solution @ satisfies the
following estimates

t
(1+t) E,_;(t)? +/ (1+ 7)Y D,_;j(1)*dr < CE,(0)? (4.3)
0
for an arbitrary integer j =0, ..., [a] and
t
(14 t)*Ey(t)* + / (1 4+ 1) Do(7)?d7T < CEL(0)2(1 +t)6—© (4.4)
0

for an arbitrary £ > a.

The convergence rate (4.1) is immediately follows from (4.4) and the Sobolev
inequality. To obtain (4.3) and (4.4), we show the time and spacc weighted estimate
of @ in L3(R,).

Lemma 4.3. Suppose that the same conditions as in Proposition 4.2 hold. Then we
have

(14010l + [ @+ (ol 00 + BIREIE , + 0 k)P d
< Cllgolity +0¢ [ 0+ e ar +05 [ (1 +7fllea(ladr @5)
for arbitrary B € [0,a] and £ > 0.
Combining (4.5) with the uniform H! estimate (3.8), we have
(4 F (07 + [ (47 (G100, + Da(r)?) dr

< CEH(0) +C¢ [ (147 (102 + Da(r)?) o

which yicld the desired estimates (4.3) and (4.4) by applying an induction with
respect to § and ¢ studied by [2] and [11].
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4.2 Estimate for transonic flow

In order to obtain the convergence rate (4.2) for the case My = 1, we have to show
the weighted estimate in H! norm. To do this, we define weighted norms by

Na(t) = Sup Ea(T)> Ea(t) = i[gp(t)“l,aa

Da(t)? = |(, 02) (6, O) + 2SOy + [0a (]2 + (e x2) D)2

where |[-]|5,« and [-] are algebraically weighted norms:

folloa = (300502) ", fui= ([ (ol az) ™
k=0 +

Proposition 4.4. We assume that M, = 1 and (2.11) hold. Let & € X(0,T)
be a solution to (3.5), (3.6) and (3.7) satisfying ® € C([0,T); HL(Ry)) for certain
constants a € [1,2(1 ++/2)) and T > 0. Then there exist positive constants €4 and
C independent of T such that if 6 />N, (T) + 6 < €4, then the solution & satisfies
the following estimates for t € [0,T):

t —~
(1 4tV By sj(t)®+ | (14 7)Y Da_zi(7)?dr < C6~HE,(0)? (4.6)
0
for an arbitrary integer 7 =0, ..., [a/2] and
t —~
(14 t) Eq(t)? + / (1 +7)¢Do(r)?dr < CO™*E,(0)*(1 + t)¢~*/2 (4.7)
0

for an arbitrary £ > «/2.

In order to prove Proposition 4.4, we have to derive time and space weighted es-
timates not only for @ in L? but also for the first order derivative @,. In deriving the
time and space weighted L? estimate, we have to assume that the weight exponent
o is less than 2(1 + +/2) in order to obtain the dissipative term §2[®]3_,. Moreover,
to control nonlinear terms, we have to assume the smallness of [®];. Hence we need
a condition « > 1, too.

Lemma 4.5. Suppose that the same conditions as in Proposition 4.4 hold. Then we
have

1+ )¥[e(t)])3 + A t(1 +7)%(io(7, 00 + 82 () |52 + [ (¥, X2) (7)]3) dT

t t ~
< C[Qﬁo]é + Cf/ 1+ 7)5_1[J>(7)]g dr + 0(5_1/2Ng(t) + (5)/ (14 7)¢Dg(7)?dr
0 0
(4.8)
for arbitrary constants B € [1,c] and £ > 0.

Next we show the estimate for the first order derivative @,. Owing to the de-
generate property of the transonic flow, we have to employ the spatially weighted
energy method for the estimate for @,.
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Lemma 4.6. Suppose that the same conditions as in Proposition 4.4 hold. Then we
have

(14 £)8[@,(1)]2 +/0 (1 +7)*(2(7, 0 + [po(7)]5 + [(Ys, Xz2)(7)]5) dT
< Clltnlfts + G [ (0 + 1 @]y dr

+ 0(5—1/21\7[3(15) +4) /t(l + 7')515[3(T)2 dr (4.9)

for arbitrary constants 3 € [1,a] and £ > 0.

Sum up (4.8) and (4.9), let 6~/2N4(t) + & suitably small and then apply an

induction with respect to 8 and £. These computations yield the desired estimates
(4.6) and (4.7). The convergence rate (4.2) follows from the estimate (4.7).
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