
Stationary waves for viscous heat-conductive
fluid in half space

川島秀一 (Shuichi Kawashima)1 中村徹 (Tohru Nakamura)1
西畑伸也 (Shinya Nishibata)2 Peicheng Zhu3

1九大・数理 (Faculty of Mathematics, Kyushu University)
2東工大・情報理工 (Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology)
3Basque Center for Applied Mathematics

Dedicated to Professor Kenji Nishihara on his 60th birthday

1 Introduction
This article is a survey of the papers [3, 8] on a stability of a stationary solution
to an ideal polytropic model of compressible, viscous and heat-conductive gases in
one-dimensional half space $\mathbb{R}_{+};=(0, \infty)$ ,

$\rho_{t}+(pu)_{x}=0$ , (l.la)
$(\rho u)_{t}+(\rho u^{2}+p(\rho, \theta))_{x}=\mu u_{xx)}$ (l.lb)

$\{\rho(c_{v}\theta+\frac{u^{2}}{2})\}_{t}+\{\rho u(c_{v}\theta+\frac{u^{2}}{2})+p(\rho, \theta)u\}_{x}=(\mu uu_{x}+\kappa\theta_{x})_{x}$ . (l.lc)

Here $\rho=\rho(t, x),$ $u=u(t, x)$ and $\theta=\theta(t, x)$ are unknown functions standing for
a mass density, a fluid velocity and an absolute temperature, respectively. The
pressure $p=p(\rho, \theta)$ is givcn by $p(\rho, \theta)$ $:=R\rho\theta$ due to the Boyle-Charles law, whcre
$R>0$ is a gas constant. Positive constants $\mu,$ $\kappa$ and $c_{v}$ mean a viscosity coefficient,
a thermal conductivity and a specific heat at constant volume, respectively. For the
idcal polytropic model, $c_{v}$ is given by $c_{v}=R/(\gamma-1)$ , where $\gamma>1$ is an adiabatic
constant. We put an initial condition

$(\rho, u, \theta)(0, x)=(\rho_{0}, u_{0}, \theta_{0})(x)$ , (1.2a)

ゆ

$arrow\infty im(\rho_{()}, u_{0}, \theta_{0})(x)=(\rho_{+}, u_{+}, \theta_{+})$ , (1.2b)

$\inf_{x_{\text{ノ}}\in \mathbb{R}_{+}}\rho_{0}(x)>0$ , $x+1nf\theta_{(}(x)>0$ , (1.2c)

where $\rho_{+}>0,$ $u_{+}$ and $\theta_{+}>0$ are constants. The main purpose of this article
is to summarize the rcsults in [3, 8] which show the cxistence and the asymptotic
stability of the stationary solution for an outflow and an inflow problem to the
equations (1.1). Here the outflow problem and the inflow problcin arc formulatcd
by imposing the following boundary conditions (i) and (ii), respectively:

(i) Outflow boundary condition:

$u(t, 0)=u_{b}<0$ , $\theta(t, 0)=\theta_{b}>0$ , (1.3)
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(ii) Inflow boundary condition:

$\rho(t, 0)=\rho_{b}>0$ , $\prime u(l, 0)=u_{b}>0$ , $\theta(l, 0)=\theta_{b}>0$ , (14)

where $\rho_{b},$ $u_{b}$ and $\theta_{b}$ arc constants.
For thc one-dimensional half space problem for an isentropic modcl, Matsumura

in [5] considered a classification of asymptotic states of solutions. It was expected
that asymptotic states of solutions are classified into more than twenty cases subject
to the boundary data and the spatial asymptotic data. Several problems in this
classification have been already studied. For instance, Matsumura and Nishihara
in [7] proved the a.symptotic stability of stationary solutions, rarcfaction wavcs and
suporposition of them for the inflow problem. The research [4] by Kawashima,
Nishibata and Zhu showcd the asymptotic stability of the stationary solution for
the outflow problem. For this stability result, the convergence rate $WclS$ obtained by
Nakamura, Nishibata and Yugc in [9] by using a wcighted cnergy method devcloped
by Kawashima, Matsumura and Nishihara in [2, 6, 10] considering the asymptotic
stability of a traveling wave for a scalar viscous conscrvation law. In the papcr [12],
thc convergcnce rate toward a degcncrate stationary solution was also considercd by
Ueda, Nakamura and Kawashima.

For the half space problem for the ideal polytropic model (1.1), Kawashima,
Nakamura, Nishibata and Zhu [3] provcd thc cxistence and the asymptotic stability
of the stationary solution for the outflow problem. The convergence rate was also
obtained in [3] for a supersonic case and a transonic case. For the inflow problem,
Nakamura and Nishibata in [8] proved the asymptotic stability of the stationary
solution.

Notations. For constants $p\in[1, \infty)$ and $\alpha\in \mathbb{R}$ , the spacc $L_{\alpha}^{p}(\mathbb{R}_{+})$ denotcs the
algebraically wcightcd $L^{p}$ space defined by $L_{r\}}^{p}(\mathbb{R}_{+}):=\{u\in L_{1oc}^{p}(\mathbb{R}_{+});\Vert u\Vert_{L_{\alpha}^{p}}<\infty\}$

cquipped with the norm

$\Vert u\Vert_{L_{a}^{p}}:=(\int_{\mathbb{R}_{+}}(1+x)^{\alpha}|u(x)|^{p}dx)^{1/p}$ .

The space $H_{\alpha}^{s}(\mathbb{R}_{+})$ denotcs the algebraically weighted $H^{s}$ space corresponding to
$L_{\alpha}^{2}(\mathbb{R}_{+})$ defined by $H_{\alpha}^{s}(\mathbb{R}_{+})$ $:=\{u\in L_{\alpha}^{2}(\mathbb{R}_{+})$ ; $\partial_{x}^{k}u\in L_{\alpha}^{2}(\mathbb{R}_{+})$ for $k=0,$ $\ldots,$

$s\}$ ,
equippcd with the norm

$\Vert u\Vert_{H_{\alpha}^{\hslash}}:=(\sum_{k=0}^{s}\Vert\partial_{x}^{k}u\Vert_{L_{\alpha}^{2}}^{2})^{1\prime 2}$ .

For $\alpha\in(0,1)$ , the space $\mathcal{B}^{\alpha}(\mathbb{R}_{+})$ denotes thc sct of H\"oldcr continuous functions over
$\mathbb{R}_{+}$ with thc H\"oldcr exponent $\alpha$ with respect to $x$ . For a non-negative integer $k$ ,
$\mathcal{B}^{k+\alpha}(\mathbb{R}_{+})$ denotes the space of functions satisfying $\partial_{x}^{i}u\in \mathcal{B}^{\alpha}(\mathbb{R}_{+})$ for an arbitrary
$i=0,$ $\ldots,$

$k$ . For $\alpha,$ $\beta\in(0,1)$ and $T>0$ , the space $\mathcal{B}^{\alpha,\beta}([0, T]\cross \mathbb{R}_{+})$ denotcs
the sct of H\"older continuous functions over $[0, T]\cross \mathbb{R}_{+}$ with the H\"older exponents
$\alpha$ and $\beta$ with respect to $t$ and $x$ , rcspectivcly. For non-negativc integcrs $k$ and
$\ell,$ $\mathcal{B}_{T}^{k+\alpha,\ell+\beta}$ $:=\mathcal{B}^{k+\alpha,\ell+\beta}([0, T]\cross \mathbb{R}_{+})$ denotcs thc space of functions satisfying $\partial_{t}^{i}u$ ,
$\partial_{x}^{j}\tau\iota\in \mathcal{B}^{\alpha,\beta}([0, T]\cross \mathbb{R}_{+})$ for arbitrary $i=0,$ $\ldots,$

$k$ and $j=0,$ $\ldots,$
$l$ .
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2 Stationary waves
In the prcsent section, we summarize the cxistcncc result of thc stationary solution
for the outflow problem and the inflow problem discussed in [3, 8]. We also show
that the geometric property of local invariant manifolds around an cquilibrium point
is completcly characterizcd by the Prandtl numbcr. This observation is summarized
in Section 2.2.

2.1 Existence of stationary waves
The stationary solution $(\tilde{\rho},\tilde{u},\tilde{\theta})(x)$ is defined as a solution to the system (1.1) inde-
pendent of time variable $t$ . Thus $(\tilde{\rho},\tilde{u},\tilde{\theta})$ satisfies a system of equations

$(\tilde{\rho}\tilde{u})_{x}=0$ , (2.la)
$(\tilde{\rho}\tilde{u}^{2}+p(\tilde{\rho},\tilde{\theta}))_{x}=\mu\tilde{u}_{xx}$ , (2.lb)

$\{\tilde{\rho}\tilde{u}(c_{v}\tilde{\theta}+\frac{\tilde{u}^{2}}{2})+p(\tilde{\rho},\tilde{\theta})\tilde{u}\}_{x}=(\mu\tilde{u}\tilde{u}_{x}+\kappa\tilde{\theta}_{x})_{x}$ . (2.lc)

It is assumed that the stationary solution satisfies the same conditions as (1.2b) and
$(1.2c)$ :

$\lim_{xarrow\infty}(\tilde{\rho}(x),\tilde{u}(x),\tilde{\theta}(x))=(\rho_{+}, u_{+}, \theta_{+})$, (2.2)

$\inf_{x\in \mathbb{R}_{+}}\tilde{\rho}(x)>0$ , $\inf_{x\in \mathbb{R}_{+}}\tilde{\theta}(x)>0$ . (2.3)

Moreover we prescribe the same boundary conditions as (1.3) and (1.4):

$(i)$ ’ Outflow boundary condition:

$\tilde{u}(0)=u_{b}<0$ , $\tilde{\theta}(0)=\theta_{b}>0$ , (2.4)

(ii)’ Inflow boundary condition:

$7(0)=\rho_{b}>0$ , $\tilde{?x}(0)=u_{b}>0$ , $\tilde{\theta}(0)=\theta_{b}>0$ . (2.5)

To discuss a solvability of the above boundary value problem, we employ the Mach
number $NI_{+}$ , a sound speed $c+$ and a strength $\delta$ of the boundary data as follows:

$M_{+}:= \frac{|u_{+}|}{c_{+}}$ , $c_{+}:=\sqrt{Ii\gamma\not\in 1_{+}}$ , $\delta:=|(u_{+}, \theta_{+})-(u_{b}, \theta_{b})|$ .

Integrating (2.la) over $(x, \infty)$ , wc get the relation

$\tilde{\rho}\tilde{u}=\rho_{+}u+\cdot$ (2.6)

Especially, substituting $x=0$ in (2.6), wc havc $\tilde{\rho}(0)u_{b}=\rho_{+}u+\cdot$ Thus, for the
outflow problem, the spatial asymptotic state $u_{+}$ of thc velocity must be negative

$u+<0$ . (2.7)
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On the other hand, for the inflow problem, we have a necessary condition for the
existence of the solution as follows:

$u_{+}>0$ and $\rho_{b}u_{b}=\rho_{+}u_{+}$ . (2.8)

Ncxt we integrate (2.lb) and (2.lc) over $(x, \infty)$ with using (2.6) to obtain a systcm
of cquations for $(\tilde{u},\tilde{\theta})_{c}\gamma s$

$\frac{d}{dx}(\begin{array}{l}\sim u\sim\theta\end{array})=J(\begin{array}{l}\tilde{u}-u_{+}\tilde{\theta}-\theta_{+}\end{array})+(_{g(\tilde{u}\tilde{\theta})}^{f(\tilde{u}_{1},\tilde{\theta})})$ , (2.9)

where the matrix $J$ and nonlinear tcrms $f(\tilde{u},\tilde{\theta})$ and $g(\tilde{u},\tilde{\theta})$ are defined by

$J:=(\begin{array}{ll}(\rho_{+}u_{+}^{2}-R\rho_{+}\theta_{+})/(\mu u_{+}) R\rho_{+}/\mu li.\rho_{+}\theta_{+}/\kappa c_{v}\rho_{+}u+/\kappa\end{array})$ ,

$f( \tilde{u},\tilde{\theta}):=\frac{R\rho_{+}\theta_{+}}{\mu u_{+}\tilde{u}}(\tilde{u}-u_{+})^{2}-\frac{R\rho_{+}}{\mu\tilde{u}}(\tilde{u}-u_{+})(\tilde{\theta}-\theta_{+})$ ,

$g( \tilde{u},\tilde{\theta}):=-\frac{\rho_{+}\uparrow x_{+}}{2\kappa}(\tilde{u}-u_{+})^{2}$ .

The boundary conditions for (2.9) are prcscribed as
$(\tilde{u},\tilde{\theta})(0)=(u_{b}, \theta_{b})$ , $\lim_{xarrow\infty}(\tilde{u}(x),\tilde{\theta}(x))=(u_{+}, \theta_{+})$ . (2.10)

We first summarize the existence result of the problem (2.9) and (2.10) for the
outflow problem which yields the solvability of the problem (2.1), (2.2) and (2.4)
considered in [3].

Proposition 2.1 ([3]). The necessary condition for the existence of the stationary
solution to the problem (2.1), (2.2) with the outflow boundary condition (2.4) is (2.7).
Suppose that the boundary data $(u_{b}, \theta_{b})$ satisfies

$\delta<\epsilon_{0}$ (2.11)

for a certain positive constant $\epsilon_{0}$ .
(i) For the supersonic case $\rfloor l4_{+}>1$ , the problem (2.1), (2.2) and (2.4) has a unique

smooth solution $(\tilde{\rho},\tilde{u},\tilde{\theta})$ satisfying
$|\partial_{x}^{k}(\tilde{\rho}(x)-\rho_{+i}\tilde{u}(x)-u_{+},\tilde{\theta}(x)-\theta_{+})|\leq C\delta e^{-(,x,}$ $(k=0,1, \ldots)$ . (2.12)

(ii) For the transonic case $M_{+}=1_{f}$ there exist a local stable manifold $\theta=\tilde{h}^{s}(u)$ and
a local center manifold $\theta=\tilde{h}^{c}(u)$ around the equilibwtum point $(u_{+}, \theta_{+})$ in the
state space $(u, \theta)$ (see Figure 1). Then, if the boundary data $(u_{b}, \theta_{b})$ satisfies
$\theta_{b}\leq\tilde{h}^{s}(u_{b})$ , then the problem (2.1), (2.2) and (2.4) has a unique smooth solution
$(\tilde{\rho},\tilde{u},\tilde{\theta})$ satisfying

$| \partial_{x}^{k}(\tilde{\rho}(x)-\rho_{+},\tilde{u}(x)-u_{+},\tilde{\theta}(x)-\theta_{+})|\leq C\frac{\tilde{\delta}^{k+1}}{(1+\delta x)^{k+1}}+C\delta e^{-c,x}$ $(k=0,1, \ldots)$ .

(iii) For the subsonic case $A/I_{+}<1_{f}$ there exist a local stable manifold $\theta=\tilde{h}^{s}(u)$

and a local unstable manifold $\theta=\tilde{h}_{\text{ノ}}^{11}(\uparrow\iota)$ . Then, if the boundary data $(u_{b}, \theta_{b})$

satisfies $\theta_{b}=\tilde{l\iota}^{s}(u_{b})$ , then the problem (2.1), (2.2) and (2.4) has a unique smooth
solution $(\overline{\rho},\tilde{u},\tilde{\theta})$ satisfying (2.12).
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Figure 1: State space for the problem (2.9) and (2.10) with the outflow boundary
condition.

We next summarize thc existence result considered in [8] for the problem (2.1)
and (2.2) with the inflow boundary condition (2.5),

Proposition 2.2 ([8]). The necessary condition for the existence of the stationary
solution to the problem $(2.1)_{f}(2.2)$ with the inflow boundary condition (2.5) is (2.8).
Suppose that the boundary data $(u_{b}, \theta_{b})$ satisfies (2.11).

(i) For the supersonic case $M_{+}>1_{f}$ there does not exist a solution to the problem
(2.1), (2.2) and (2.5).

(ii) For the transonic case $\Lambda I_{+}=1_{f}$ there exist a local center manifold $\theta=\tilde{h}^{c}(u)$

and a local unstable manifold $\theta=\tilde{h}^{11}(u)$ (see Figure 2). Then, if the boundary
data $(u_{b}, \theta_{b})$ satisfies $\theta_{b}=\tilde{h}^{c}(u_{b})$ and $\theta_{b}\geq\tilde{h}$“ $(u_{b})_{Z}$ then the problem (2.1), (2.2)
and (2.5) has a unique smooth solution $(\tilde{\rho},\tilde{u},\tilde{\theta})$ satisfying

$| \partial_{x}^{k}(\tilde{\rho}(x)-\rho_{+},\tilde{\tau\iota}(x)-u_{+},\tilde{\theta}(x)-\theta_{+})|\leq C\frac{\delta^{k+1}}{(1+\delta x)^{k+1}}$ $(k=0,1, \ldots)$ . (2.13)

(iii) For the subsonic case $l\ovalbox{\tt\small REJECT}’I_{+}<1$ , we have the same conclusion as in Proposition
2.1-(iii).
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Figure 2: State space for the problcm (2.9) and (2.10) with the inflow boundary
condition.

2.2 Local structure of invariant manifolds
In order to vcrify the conditions in Proposition 2.1 and 2.2, which cnsure the cxis-
tcncc of thc stationary solution, it is important to make clcar the local shapes of
the invariant manifolds. In the present section, we focus ourselves on the transonic
case $\lrcorner \mathcal{V}I_{+}=1$ for the outflow problem (see Figure 1) and show that the geometric
properties of the invariant manifolds $\tilde{h}^{c}$ and $\tilde{h}^{s}$ arc characterized by the Prandtl
numbcr $P_{r}$ defined by

$J_{r}^{3}:= \frac{J}{\kappa}c_{p}$ , $c_{p}:= \frac{\gamma}{\gamma-1}R$ ,

where $c_{p}$ denotes a specific heat at constant pressure. Precisely we approximate $\tilde{h}^{c}$

and $\tilde{h}^{s}$ by polynomial functions around the cquilibrium point as

$\tilde{h}^{c}(u)=\sum_{k=0}^{3}c_{k}(u-u_{+})^{k}+O((u-u_{+})^{4})$ , $($ 2.14 $)$

$\tilde{J\iota}^{s}(\prime u)=\sum_{k=0}^{3}s_{k}(\prime u-u_{+})^{k}’+O((\prime u-\prime u_{+})^{4})$ . (2.15)
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Computing the eigen-vectors of the matrix $J$ , we obtain

$c_{0}=s_{0}=\theta_{+}$ , $c_{1}= \frac{(1-\gamma)\theta_{+}}{u_{+}}>0$ , $s_{1}= \frac{\mu u_{+}}{\kappa(\gamma-1)}<0$ .

Moreover, following an idea in [1], we obtain the coefficients $c_{k},$ $s_{k}(k=2,3)$ and sce
that the convexity of thc local invariant manifolds dcpends on the Prandtl number.
Namely we have

Lemma 2.3 ([3]).
(i) The local center manifold (2.14) satisfies $c_{2^{\geq}}<0$ if and only if $P_{r}\geq<2$ . Especially,

if $P_{r}=2_{f}i.e_{f}c_{2}=0$ , the coefficient $c_{3}$ is negative.

(ii) The local stable manifold (2.15) satisfies $s_{2}<\geq 0$ if and only if $P_{r}<\geq\gamma_{*};=$

$(\gamma^{2}-\gamma+2)/2$ . Especially, if $P_{r}=\gamma_{*y}i.e$ ., $s_{2}=0$ , the coefficient $s_{3}$ is positive.

3 Asymptotic stability of stationary waves
In this section, we introduce the results in [3, 8] on the asymptotic stability of thc
stationary solution $(\tilde{\rho},\tilde{u},\tilde{\theta})$ . The ncxt theorem shows the stability of $(\tilde{\rho}_{\}\tilde{u},\tilde{\theta})$ for thc
outflow problem.

Theorem 3.1 ([3]). Suppose that the same conditions as in Proposition 2.1 hold.
In addition, the initial data $(\rho_{0}, u_{0}, \theta_{0})$ is supposed to satisfy

$\rho_{0}\in \mathcal{B}^{1+\sigma}(\mathbb{R}_{+})$ , $(u_{0}, \theta_{0})\in \mathcal{B}^{2+\sigma}(\mathbb{R}_{+})$ ,
(3.1)

$(\rho_{0}, u_{0}, \theta_{0})-(\tilde{\rho},\tilde{u},\tilde{\theta})\in H^{1}(\mathbb{R}_{+})$

for a certain constant $\sigma\in(0,1)$ . Then there exists a positive constant $\epsilon_{1}$ such that
if

$\Vert(\rho_{0}, u_{0}, \theta_{0})-(\tilde{\rho},\tilde{\uparrow x},\tilde{\theta})\Vert_{H^{1}}+\delta\leq\epsilon_{1}$ , (3.2)

then the initial boundary value problem (1.1), (1.2) with the outf $ow$ boundary con-
dition (1.3) has a unique solution globally in time satisfying

$\rho\in \mathcal{B}_{T}^{1+\sigma/2,1+\sigma}$ , $(u, \theta)\in \mathcal{B}_{T}^{1+\sigma/2,2+\sigma}$ ,
(3.3)

$(\rho, u, \theta)-(\tilde{\rho},\tilde{u},\tilde{\theta})\in C([0, \infty);H^{1}(\mathbb{R}_{+}))$

for an arbitrary $T>0$ . Moreover the solution $(\rho, u, \theta)$ converges to the stationary
solution $(\tilde{\rho},\tilde{u},\tilde{\theta})$ uniformly as time tends to infinity:

$\lim_{tarrow\infty}\Vert(\rho, u, \theta)(t)-(\tilde{\rho},\tilde{u},\tilde{\theta})\Vert_{L^{\infty}}=0$. (3.4)

In the paper [8], the asymptotic stability of the stationary solution is also proved
for the inflow problem.

Theorem 3.2 ([8]). Suppose that the same condition as in Proposition 2.2 hold. $In$

$addition_{f}$ if the initial data and the boundary data satisfy the conditions (3.1) and
(3.2), then the initial boundary value problem (1.1), (1.2) with the inflow boundary
condition (1.4) has a unique solution in the space (3.3). Moreover, the stationary
solution is asymptotically stable in the sence of (3.4).
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In this paper, we focus on the outflow problem and give the outline of the proof
of Thcorcm 3.1. Thcorcm 3.2 is provcd in thc similar computations. The crucial
point is a derivation of uniform a pnori estimates for a perturbation

$(\varphi, ’\psi, \chi)(l^{\gamma}x\cdot):=(\rho^{t}u, \theta)(l, x)-(\tilde{\rho}, ’\tilde{u},\tilde{\theta})(x)$

from the stationary solution in the Sobolev space $H^{1}$ . Using (1.1) and (2.1), wc
have the system of equations for $(\varphi, ’\psi, \chi)$ as

$\varphi_{t}+u\varphi_{x}+\rho\psi_{x}=-(\tilde{u}_{x_{\text{ノ}}}\varphi+\tilde{\rho}_{x}\psi)$ , (3.5a)

$\rho(\psi_{t}+u\psi_{x})+\frac{1}{M_{+}^{2}}(p-\tilde{p})_{x}=\mu\psi_{xx}-(\rho u-\tilde{\rho}\tilde{u})\tilde{u}_{x}$ , (3.5b)

$\frac{c_{v}}{M_{+}^{2}}\rho\chi_{t}+\frac{c_{v}}{M_{+}^{2}}(\rho u\theta_{x}-\tilde{\rho}\tilde{u}\tilde{\theta}_{x})=\kappa\chi_{xx}+\mu(u_{\tau_{\text{ノ}}}^{2}-\tilde{u}_{x}^{2})-\frac{1}{M_{+}^{2}}(pu_{x}-\tilde{p}\tilde{u}_{x})$ . (3.5c)

The initial condition for $(\varphi, \psi, \chi)$ follows from (1.2) as
$(\varphi, \psi, \chi)(0, x)=(\varphi_{0}, \psi_{0}, \chi_{0})(x):=(\rho_{0}, u_{0}, \theta_{0})(x)-(\tilde{\rho},\tilde{u},\tilde{\theta})(x)$ . (3.6)

The boundary condition for the outflow problem is prescribed as
$(\psi, \chi)(t, 0)=(0,0)$ . (3.7)

Hereafter, for simplicity, we often use the notations $\Phi$ $:=(\varphi, \psi, \chi)$ and $\Phi_{0}$ $:=$

$(\varphi_{0}, \psi_{0}, \chi_{0})$ . To summarizc a priori estimates for $\Phi$ , we define a function space
$X(0, T)$ , for $T>0$ , by

$X(0, T):=\{(\varphi, \psi, \chi);\varphi\in \mathcal{B}_{T}^{1+\sigma’ 2,1+\sigma},$ $(\psi, \chi)\in \mathcal{B}_{T}^{1+\sigma/2_{2}2+\sigma}$ ,
$(\varphi, \psi, \chi)\in C([0, T];H^{1}(\mathbb{R}_{+})),$ $\varphi_{x}\in L^{2}(0, T;L^{2}(\mathbb{R}_{+}))$ ,

$(\psi_{x}, \chi_{x})\in L^{2}(0, T;H^{1}(\mathbb{R}_{+}))\}$ ,

whcrc $\sigma\in(0,1)$ is a constant. Wc also employ non-negative functions $N(t)$ and
$D(t)$ by

$N(t):= \sup_{0\leq\tau\leq t}\Vert\Phi(\tau)\Vert_{H^{1}}$ ,

$D(t)^{2}:=|(\varphi, \varphi_{x})(t, 0)|^{2}+\Vert\varphi_{x}(t)\Vert_{L^{2}}^{2}+\Vert(\psi_{x}, \chi_{x})(t)\Vert_{H^{1}}^{2}$ .

Proposition 3.3. Let $\Phi=(\varphi, \psi, \chi)\in X(O, T)$ be a solution to (3.5), (3.6) and
(3.7) for a certain constant $T>0$ . Then there exist positive constants $\epsilon_{2}$ and $C$

independent of $T$ such that if $N(T)+\delta\leq\epsilon_{2}$ , then the solution $\Phi$ satisfies the estimate

$\Vert\Phi(t)\Vert_{H^{1}}^{2}+\int_{0}^{t}D(\tau)^{2}d\tau\leq C\Vert\Phi_{0}\Vert_{H^{1}}^{2}$ . (3.8)

The a priori cstimate (3.8) is obtained by using an energy method. Once (3.8)
is shown, we prove Theorem 3.1 by a standard continuation argument together with
a local existence of the solution. For details, see [3].

To obtain (3.8), we firstly dcrive a basic $L^{2}$ estimatc by employing an cnergy
form $\mathcal{E}$ defined by

$\mathcal{E}:=\frac{1}{h1_{+}^{2}\gamma}\tilde{\theta}\omega(\frac{\tilde{\rho}}{\rho})+\frac{1}{2}\psi^{2}+\frac{c_{v}}{\Lambda I_{+}^{2}}\tilde{\theta}\omega(\frac{\theta}{\tilde{\theta}})$ , $\omega(s):=s-1-\log s$ .
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Owing to a smallness assumption on $N(T)$ , a quantity $\Vert\Phi\Vert_{L^{\infty}}$ is also sufficiently
small. Hencc we scc that thc energy form is cquivalcnt to $|\Phi|^{2}$ :

$c \varphi^{2}\leq\omega(\frac{\tilde{\rho}}{\rho})\leq C\varphi^{2}$ , $c \chi^{2}\leq\omega(\frac{\theta}{\tilde{\theta}})\leq C\chi^{2}$ , $c|\Phi|^{2}\leq \mathcal{E}\leq C|\Phi|^{2}$ . (3.9)

The solution, moreover, satisfies a uniform estimate
$0<c\leq\rho(t, x),$ $\theta(t, x)\leq C$ , $-C\leq u(t, x)\leq-c<0$ (3.10)

for $(t, x)\in[0, T]\cross \mathbb{R}_{+}$ . Hcrcafter wc only show the key estimatcs summarized in
Lemma 3.4 and 3.5 and omit detailcd computations.

Lemma 3.4. Suppose that the same conditions as in Proposition 3.3 hold. Then we
have

$\Vert\Phi(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}(\varphi(\tau, 0)^{2}+\Vert(\psi_{x}, \chi_{x})(\tau)\Vert_{L^{2}}^{2})d\tau$

$\leq C\Vert\Phi_{0}\Vert_{L^{2}}^{2}+C\delta\int_{0}^{t}\Vert\varphi_{x}(\tau)\Vert_{L^{2}}^{2}d\tau$. (3.11)

We next obtain the estimate for the first order derivative $(\varphi_{x}, \psi_{x}, \chi_{x})$ .

Lemma 3.5. Suppose that the same conditions as in Proposition 3.3 hold. Then we
have

$\Vert\Phi_{x}(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}(\varphi_{x}(\tau, 0)^{2}+\Vert(\varphi_{x}, \psi_{xx}, \chi_{xx})(\tau)\Vert_{L^{2}}^{2})d\tau$

$\leq C\Vert\Phi_{0}\Vert_{\mathcal{F}I^{1}}^{2}+C(N(T)+\delta)\int_{0}^{t}D(\tau)^{2}d\tau$. (3.12)

Summing up the estimates (3.11) and (3.12) and letting $N(T)+\delta$ suitably small,
we prove the dcsired a priori estimate (3.8).

4 Convergence rate for outflow problem

For the outflow problem, the convergence rate toward the stationary solution $(\tilde{p},\tilde{u},\tilde{\theta})$

is obtained in [3] for the supersonic and transonic ca.ses.
Theorem 4.1 ([3]). Suppose that the same conditions as in Theorem 3.1 hold.
(i) For the supersonic case $M_{+}>1$ , if the initial perturbation satisfies

$(\rho_{0}, u_{0}, \theta_{0})-(\tilde{\rho},\tilde{u},\tilde{\theta})\in L_{\alpha}^{2}(\mathbb{R}_{+})$

for a certain positive constant $\alpha_{f}$ then the solution $(\rho, u, \theta)$ to (1.1), (1.2) with
the outflow boundary condition (1.3) satisfies the decay estimate

$\Vert(\rho, u, \theta)(t)-(\tilde{\rho},\tilde{u},\tilde{\theta})\Vert_{L^{\infty}}\leq C(1+t)^{-\alpha’ 2}$ . (4.1)

(ii) For the tmnsonic case $\Lambda/I_{+}=1$ , let $\alpha\in[1,2(1+\sqrt{}))$ . There exists a positive
constant $\epsilon_{3}$ such that if

$\delta^{-1\prime 2}\Vert(\rho_{0}, u_{()}, \theta_{0})-(\tilde{\rho},\tilde{u},\tilde{\theta})\Vert_{II_{\alpha}^{1}}\leq\epsilon_{3}$ ,

then the solution $(\rho, u, \theta)$ satisfies the decay estimate
$\Vert(\rho, u, \theta)(t)-(\tilde{\rho},\tilde{u},\tilde{\theta})\Vert_{L^{\infty}}\leq C(1+t)^{-\alpha/4}$ . (4.2)
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4.1 Estimate for supersonic flow
In this section we introducc the weighted cnergy estimatcs which yield the conver-
gcncc rate (4.1) for the case $\Lambda,I_{+}>1$ . To this end, we define weighted norm $E_{\alpha}(t)$

and $D_{\alpha}(t)$ by

$E_{\alpha}(t)^{2}:=\Vert\Phi(t)\Vert_{H^{1}}^{2}+\Vert\Phi(l)\Vert_{L_{\alpha}^{2}}^{2}$ ,

$D_{\alpha}(t)^{2}:=D(t)^{2}+\alpha\Vert\Phi(t)\Vert_{L_{\alpha-1}^{2}}^{2}+\Vert(\psi_{x}, \chi_{x})(t)\Vert_{L_{\alpha}^{2}}^{2}$ .

Proposition 4.2. We assume that $1\mathcal{V}l_{+}>1$ and (2.11) hold. Let $\Phi=(\varphi, \psi, \chi)\in$

$X(0, T)$ be a solution to (3.5), (3.6) and (3.7) satisfying $\Phi\in C([0, T];L_{\alpha}^{2}(\mathbb{R}_{+}))$ for
certain constants $\alpha>0$ and $T>0$ . Then there exist positive constant $\epsilon_{4}$ and
$C$ independent of $T$ such that if $N(T)+\delta\leq\epsilon_{4}$ , then the solution $\Phi$ satisfies the
following estimates

$(1+t)^{j}E_{\alpha-j}(t)^{2}+ \int_{0}^{t}(1+\tau)^{j}D(x-j(\tau)^{2}d\tau\leq CE_{\alpha}(0)^{2}$ , (4.3)

for an arbitrary integer $j=0,$ $\ldots,$
$[\alpha]$ and

$(1+t)^{\xi}E_{0}(t)^{2}+ \int_{0}^{t}(1+\tau)^{\xi}D_{0}(\tau)^{2}d\tau\leq CE_{\alpha}(O)^{2}(1+t)^{\xi-\alpha}$ (4.4)

for an $arbitrar\uparrow/\xi>\alpha$ .

The convergcnce rate (4.1) is immediatcly follows from (4.4) and the Sobolev
incquality. To obtain (4.3) and (4.4), we show the time and space weighted cstimate
of $\Phi$ in $L^{2}(\mathbb{R}_{+})$ .

Lemma 4.3. Suppose that the same conditions as in Proposition 4.2 hold. Then we
have

$(1+t)^{\xi} \Vert\Phi(t)\Vert_{L_{\beta}^{2}}^{2}+\int_{0}^{t}(1+\tau)^{\xi}(\varphi(\tau, 0)^{2}+\beta\Vert\Phi(\tau)\Vert_{L_{\beta- 1}^{2}}^{2}+\Vert(\psi_{x}, \chi_{x})(\tau)\Vert_{L_{\beta}^{2}}^{2})d\tau$

$\leq C\Vert\Phi_{0}\Vert_{L_{\beta}^{2}}^{2}+C\xi\int_{0}^{t}(1+\tau)^{\xi-1}\Vert\Phi(\tau)\Vert_{L_{\beta}^{2}}^{2}d\tau+C\delta\int_{0}^{t}(1+\tau)^{\xi}\Vert\varphi_{x}(\tau)\Vert_{L^{2}}^{2}d\tau(4.5)$

for arbitrary $\beta\in[0, \alpha]$ and $\xi\geq 0$ .

Combining (4.5) with the uniform $H^{1}$ estimatc (3.8), wc have

$(1+t)^{\xi}E_{\beta}(t)^{2}+ \int_{0}^{t}(1+\tau)^{\xi}(\beta\Vert\Phi(\tau)\Vert_{L_{\beta- 1}^{2}}^{2}+D_{\beta}(\tau)^{2})d\tau$

$\leq CE_{\beta}^{\prec}(0)^{2}+C\xi\int_{0}^{t}(1+\tau)^{\xi-1}(\Vert\Phi(\tau)\Vert_{L_{\beta}^{2}}^{2}+D_{\beta}(\tau)^{2})d\tau$ ,

which yicld the dcsired estimatcs (4.3) and (4.4) by applying an induction with
rcspect to $\beta$ and $\xi$ studied by [2] and [11].
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4.2 Estimate for transonic flow
In order to obtain the convergence rate (4.2) for the case $\Lambda/I_{+}=1$ , we havc to show
the weighted estimate in $H^{1}$ norm. To do this, we define weighted norms by

$\tilde{N}_{\alpha}(t):=\sup_{0\leq\tau\leq t}\tilde{E}_{\alpha}(\tau)$ , $\tilde{F}_{-\alpha}(t):=|[\Phi(t)]|_{1,\alpha}$ ,

$\tilde{D}_{\alpha}(t)^{2}:=|(\varphi, \varphi_{x})(t, 0)|^{2}+\delta^{2}[\Phi(t)]_{rx-2}^{2}+[\varphi_{x}(t)]_{\alpha}^{2}’+|[(\psi_{x}, \chi_{x})(t)]|_{1,\alpha}^{2}$,

where $|[\cdot]|_{s,\alpha}$ and $[\cdot]_{\alpha}$ are algebraically weighted norms:

$|[u]|_{s,\alpha}:=( \sum_{k=0}^{s}[\partial_{x,}^{k}u]_{\alpha}^{2})^{1’ 2}$ , $[u]_{\alpha}:=( \int_{\mathbb{R}_{+}}(1+\delta x)^{\alpha}|u(x)|^{2}dx)^{1’ 2}$ .

Proposition 4.4. We assume that $M_{+}=1$ and (2.11) hold. Let $\Phi\in X(O, T)$

be a solution to (3.5), (3.6) and (3.7) satisfying $\Phi\in C([0, T];H_{\alpha}^{1}(\mathbb{R}_{+}))$ for certain
constants $\alpha\in[1,2(1+\sqrt{}))$ and $T>0$ . Then there exist positive constants $\epsilon_{4}$ and
$C$ independent of $T$ such that if $\delta^{-1\prime 2}\tilde{N}_{\alpha}(T)+\delta\leq\epsilon_{4}$ , then the solution $\Phi$ satisfies
the following estimates for $t\in[0, T]$ ;

$(1+t)^{j} \tilde{E}_{\alpha-2j}(t)^{2}+\int_{()}^{t}(1+\tau)^{j}\tilde{D}_{\alpha-2j}(\tau)^{2}d\tau\leq C\delta^{-2j}\tilde{E}_{\alpha}(0)^{2}$ (4.6)

for an arbitrary integer $j=0_{\dot{1}}\ldots,$ $[\alpha/2]$ and

$(1+t)^{\xi} \tilde{E}_{0}(t)^{2}+\int_{0}^{t}(1+\tau)^{\xi}\tilde{D}_{0}(\tau)^{2}d\tau\leq C\delta^{-\alpha}\tilde{E_{\alpha}\forall}(0)^{2}(1+t)^{\xi-\alpha\prime 2}$ (4.7)

for an arbitrary $\xi>\alpha/2$ .

In order to provc Proposition 4.4, we have to derive timc and space weighted es-
timates not only for $\Phi$ in $L^{2}$ but also for the first order derivative $\Phi_{x}$ . In deriving the
time and space weighted $L^{2}$ estimate, we havc to assume that the weight exponent
$\alpha$ is less than $2(1+\sqrt{})$ in order to obtain the dissipative term $\delta^{2}[\Phi]_{\beta-2}^{2}$ . Moreover,
to control nonlinear terms, wc havc to assumc the smallncss of $[\Phi]_{1}$ . Hcncc we necd
a condition $\alpha\geq 1$ , too.

Lemma 4.5. Suppose that the same conditions as in Proposition 4.4 hold. Then we
have

$(1+t)^{\xi}[ \Phi(t)]_{\beta}^{2}+\int_{0}^{t}(1+\tau)^{\xi}(\varphi(\tau, 0)^{2}+\delta^{2}[\Phi(\tau)]_{\beta-2}^{2}+[(’\psi_{x}, \chi_{x})(\tau)]_{\beta}^{2})d\tau$

$\leq C[\Phi_{0}]_{\beta}^{2}+C\xi\int_{0}^{t}(1+\tau)^{\xi-1}[\Phi(\tau)]_{\beta}^{2}d\tau+C(\delta^{-12}\tilde{N}_{\beta}(t)+\delta)\int_{0}^{t}(1+\tau)^{\xi}\tilde{D}_{\beta}(\tau)^{2}d\tau$

(4.8)

for arbitrary constants $\beta\in[1,$ $\alpha]$ and $\xi\geq 0$ .

Ncxt we show the estimate for the first order derivative $\Phi_{x}$ . Owing to the de-
generate property of the transonic flow, we have to employ the spatially weighted
encrgy method for the cstimate for $\Phi_{x}$ .
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Lemma 4.6. Suppose that the same conditions as in Proposition 4.4 hold. Then we
have

$(1+t)^{\xi}[ \Phi_{x}(t)]_{\beta}^{2}+\int_{0}^{t}(1+\tau)^{\xi}(\varphi_{x}(\tau, 0)^{2}+[\varphi_{x}(\tau)]_{\beta}^{2}+[(\psi_{xx}, \chi_{xx})(\tau)]_{\beta}^{2})d\tau$

$\leq C|[\Phi_{0}]|_{1,\beta}^{2}+C\xi\int_{0}^{t}(1+\tau)^{\xi-1}|[\Phi(\tau)]|_{1,\beta}^{2}d\tau$

$+C( \delta^{-1\prime 2}\tilde{N}_{\beta}(t)+\delta)\int_{0}^{t}(1+\tau)^{\xi}\tilde{D}_{\beta}(\tau)^{2}d\tau$ (4.9)

for arbitrary constants $\beta\in[1, \alpha]$ and $\xi\geq 0$ .

Sum up (4.8) and (4.9), lct $\delta^{-1\prime 2}\tilde{N}_{\beta}(t)+\delta$ suitably small and then apply an
induction with respect to $\beta$ and $\xi$ . Thcse computations yield thc desired estimates
(4.6) and (4.7). Thc convergence rate (4.2) follows from the estimate (4.7).
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