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1 Introduction

This article is based on a joint work with Tai-Peng Tsai (University of British
Columbia). We consider point singularities of very weak solutions of the 3D station-
ary Navier-Stokes equations in a finite region © in R3>. The Navier-Stokes equations
for the velocity u : Q@ — R® and pressure p : 8 — R with external force f : Q — R3
are

—Au+(u-V)u+Vp=f, divu=0, (z€Q). (1.1)

A wery weak solution is a vector function u in L},(Q) which satisfies (1.1) in distri-
bution sense:

/—u CAp + w00 = (f, ), Vepe C(?;(Q)a

and [u-Vh=0forany h € C°(2). Here the force f is allowed to be a distribution

and
Coo(Q) = {p € CX(Q,R?) : divy = 0}.

'In this definition the pressure is not needed. Denote B = {z € R? : |z| < R} and
B‘I} = R.‘i\BR for R > 0.

We are concerned with the behavior of very weak solutions which solve (1.1) in the
punctured ball Bo\{0} with zero force, i.e., f = 0. There are a lot of studies on this
problem [3, 11, 13, 14, 2, 8]. Shapiro [13, 14] proved the removable singularity theorem
under some assumptions on u. He proved that if u € L3+¢(B,) for some ¢ > 0 and
u(z) = o(|z|™') (z — 0), then (u, p) can be defined at 0 so that it is a smooth solution



96

of (1.1) in the whole ball B,. Choe and Kim [2] obtained similar results by using the
theories of the hydrodynamic potentials and homogeneous harmonic polynomials.
Kim and Kozono [8] recently proved that if u € L*(Bz) or u(z) = o(|z|™') (z — 0),
then the same conclusion holds. As mentioned in [8], their result is optimal in the
sense that if their assumption is replaced by

|u(z)] < Cufz|™ (1.2)

for 0 < |x| < 2, then the singularity is not removable in general, due to Landau solutions,
which is the family of explicit singular solutions calculated by L. D. Landau [6].

The purpose of this article is to characterize the singularity and to identify the
leading order behavior of very weak solutions satisfying the threshold assumption
(1.2) when the constant C, is sufficiently small. We show that it is given by Landau
solutions. In order to state main result, we recall Landau solutions.

Landau obtained his solutions in 1944, see [6, 7]. They can be parametrized by
vectors b € R® in the following way: For each b € R? there exists a unique (—1)-
homogeneous solution U of (1.1) together with an associated pressure P’ which is
(—2)-homogeneous, such that U’ P’ are smooth in R3\{0} and they solve

—Au+ (u-V)u+Vp=>5b, divu=0. (1.3)

in R® in the sense of distributions, where & denotes the Dirac § function. When
b= (0,0, 3), they have the following explicit formulas in spherical coordinates r, 0, ¢
with x = (rsinfcos ¢, rsinfsin ¢, rcosb):

2( A? -1 1)6 _ 2siné6 —4(Acos@ — 1)
T ’]"(

= - —_—e . — P:
v (A — cos8)?

1.4
r A — cos8) €0, r2(A — cos 0)? (14)

where e, = % and eg = (—sinfsin¢, sinfcos@, cos f). The parameters 8 > 0 and
A € (1, 00] are related by the formula

1 A—-1 4A
_ A 4+ = A2 _
p = 16m ( g s T Yy 1))

The formulas for general b can be obtained from rotation. One checks directly that
|7U*|| o is monotone in [b] and ||rU?|| .. — 0 (or co) as [b] — 0 (or co). Recently
Sverak [15] observed that Landau solutions were the only solutions of (1.1) in R*\{0}
which are smooth and (—1)-homogeneous in R*\{0}, without assuming axisymmetry.
Hence Landau solutions can be regarded as the canonical family of the solutions for
(1.1). See also [18, 1, 9] for related results.

If u,p is a solution of (1.1), we will denote by

ﬂj(’(l;,])) = p(su + Uiy — 8.,;74,,- — 8]'“'1'
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the momentum flux density tensor in the fluid, which plays an important role to
determine the equation for (u,p) at 0. Our main result is the following.

Theorem 1.1 For any q € (1,3), there is a small C. = C,(q) > 0 such that, if u
is a very weak solution of (1.1) with zero force in B2\{0} satisfying (1.2) in B2\{0},
then there is a scalar function p satisfying |p(z)| < C|z|™2, unique up to a constant,
so that (u,p) satisfies (1.3) in By with b; = fl T;i(u,p)ni(z), and

z|=1

|u— U] + sup |z)¥47 Y (v — UY)(z)| < CC., (1.5)
zEB)

Wla(B))

where the constant C' is independent of q and u.

The exponent g can be regarded as the degree of the approximation of u by U b,
The closer ¢ gets to 3, the less singular w — U® is. But in our theorem, C,(q) shrinks
to zero as ¢ — 3_. Ideally, one would like to prove that u — U® € L*. However, it
seems quite subtle in view of the following model equation for a scalar function,

—Av+cv=0, c=Av/v.

If we choose v = log|z|, then c(z) € L¥? and limy 0 |2]?|c(z)| = 0, but v & L.
In equation (3.2) for the difference w = u — UY, there is a term (w - V)U® which has
similar behavior as cv above.

This work is inspired by Korolev-Sverak [9] in which they study the asymptotic as
|z| — oo of solutions of (1.1) satisfying (1.2) in R*\ By. They show that the leading
behavior is also given by Landau solutions if C, is sufficiently small. Our theorem can
be considered as a dual version of their result. However, their proof is based on the
unique existence of the difference ¢(u — U’) where ¢ is a cut-off function supported
near infinity. If one tries the same approach for our problem, one needs to choose a
sequence @y with the supports of 1 — o, shrinking to the origin, which produce very
singular force terms near the origin. Instead, we prove Lemma 2.3 which defines the
equation for (u, p) at the origin. Since the equation for u is same as U® near the origin,
the d-functions at the origin cancel in the equation for the difference. Then applying
the approach of Kim-Kozono [8], we prove the unique existence of the difference in
W, (Bs) for 3/2 < r < 3 and uniqueness in W™ N L3, (B,) for 1 < r < 3/2, where
W, (B,) is the closure of C°(Bs) in the norm Wy (By).

2 Preliminaries

In this section we collect some lemmas for the proof of Theorem 1.1. The first lemma
recalls O’Neil’s inequalities [12], which are Holder type inequalities in Lorentz spaces.
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Sce [10, 8] for simpler proofs in these special cases. We denote the Lorentz spaces by
LP (1 <p<oo,1<g<o00).
Note L}, = L3>,

Lemma 2.1 Let B=B, CR", n > 2.
i) Let1l<py,py<oowithl/p:=1/p+1/p2<1andletl<ry,rm2 <00. For
f e LPom and g € LP>"2, we have

NfgllerBy < CIfllovmimyllgllLrir2(B) for r := min{ry, r2},

where C' = C(py, 1, D2, 72).
ii) Letl <r <mn. For fe WY (B), we have

A1l sz ) < Cll fllwir (),

where C' = C(n,r).

For our application, we will let n = 3, 1 < r < 3, and we have

1£0llegsy < C 1 lia, Ngll e < Cr 1 lls, oy 1l sy (2.1)

The next lemmma is on interior estimates for Stokes system with no assumption on
the pressure.

Lemma 2.2 Assume v € L' is a distribution solution of the Stokes system
——A’Ui + 8ip = 8jf1-j, divv=0 B‘ZR

and f € L" for somer € (1,00). Then v € W, and, for some constant C, indepen-
dent of v and R,

“VUHLT(BR) < Cr Hf”L"‘(BgR) + C R ||U”Lx(13m) '

This lemma, is [17], Theorem 2.2. Although the statement in [17] assumes v €
W,LT its proof only requires v € L*. This lemma can be also considered as (7, Lemma,
A.2] restricted to time-independent functions.

The following lemma shows the first part of Theorem 1.1, except (1.5). In partic-

ular, it shows that (u,p) solves (1.3).

Lemma 2.3 If u is a very weak solution of (1.1) with zero force in B\{0} satisfying
(1.2) in B,\{0} (with C, allowed to be large), there is a scalar function p satisfying
Ip(z)| < Clz|"2, unique up to a constant, such that (u,p) satisfies (1.3) in By with
b, = fm:l T (u, p)nj(x). Moreover, u,p are smooth in By\{0}.
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Proof. Foreach R € (0,1/2], u 15 a very weak solution in By — By in L. Lemma
2.2 shows u is a weak solution in W), M . The usual theory shows that u is smooth and
there is a scalar function pg, unique up to a constant, so that (u,pg) solves (1.1) in
By — By, see e.g. [5]. By the scaling argument in Sverak-Tsai [17] using Lemma 2.2,
we have for x € Bsyp — Bag,

|VFu(z)| < E—g— for k =1,2,..., (2.2)

1 |k+l

where Cy, = C,(C,) are independent of R € (0,1/2] and its dependence on C, can be
dropped if C, € (0,1). Varying R, (2.2) is valid for 2 € B3/2\{0}. Since pg is unique
up to a constant, we can fix it by requiring pr = p1/2 in Ba\ Bl/g, and define p(z) =
pr(z) for any z € B,\{0} with R = |z|/2. By the equation, |Vp(z)| < CC.|z|™>.
Integrating from |2| = 1 we get |p(x)| < CC.|z|~?. In particular

T3 (u, p) ()| < CC|z|™? for x € B3/2\{0}. (2.3)

Denote NS(u) = ~Au+ (u- V)u + Vp. We have NS(u); = 9;T;;(u) in the sense
of distributions. Thus, by divergence theorem and NS(u) = 0 in B>\{0},

b= [ Tywpm@ = [ Typn) (2.4)
Jz|=1 J|x|=R
for any R € (0,2). Let ¢ be any test function in C®°(B;). For small € > 0,

(NS(u)i, ) = / Ty (1),

= [ 1o [ Ty
/ Bi\Be J Be
= /BI\Be 93T (u) ¢ + ./9135 Tij(w)pn; — -/t')B1 Tij(u)gn; — / Ti;(uw)9;¢.

In the last line, the first integral is zero since N.S(u) = 0 and the third integral is zero
since ¢ = 0. By the pointwise estimate (2.3), the last integral is bounded by Ce®~?
On the other hand, by (2.4),

/ T,ij(u)(/mj — bL(b(O) as ¢ — 0.
J OB,

Thus (u,p) solves (1.3) and we have proved the lemma. d

It follows from the proof that |b] < CC, for C, < 1. With this lemma, we have
completely proved Theorem 1.1 in the case ¢ < 3/2. In the case 3/2 < ¢ < 3, it
remains to prove (1.5).
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3 Proof of main theorem

In this section, we present the proof of Theorem 1.1. We first prove that solutions
belong to W14, We next apply this result to obtain the pointwise estimate. For what

follows, denote
w=u—-U, U=U" (3.1)

By Lemma, 2.3, there is a function p such that (w,p) satisfies in By that
-Aw+U-Vuo+w-VU+w)+Vp=0, divw =0,

ce, . CC, | (3.2)
) < —— ) < —_—
|ZU(T)| — |J,\ ’ lp(a’)l — |.’13|2

Note that the d-functions at the origin cancel.

3.1 WY regularity

In this subsection we will show w € W9(B;). Fix a cut off function ¢ with ¢ =1 in
Byss and ¢ = 0 in By, 5. We localize w by introducing

v=pw+(

where ¢ is a solution of the problem div( = —V¢ - w. By Galdi [4, Ch.3] Theorem
3.1, there exists such a (¢ satisfying

supp( C Bso\B1, [|V{]||pie0 < Cl[Ve - wl[pi00 < CC,.
The vector v is supported in B3/2 and satisfies v € Wh" N L3, for r < 3/2,
—Av+U-Vo+v-VU+v)+Vr=f, divev=0, (3.3)
where m = pp,

f==2(Vo Vw— (Ap)w+ (U-Ve)w+ (¢* — )w - Vw + (w - Vp)w + pVep
—ACH U -V)IC+ - VU +pw+C) +pw- V¢

is supported in the annulus Bj;,\ B;. Onc verifies directly that, for some Cy,

sup Hf”wo—lv"(Bz) < CyCi. (3.4)
1<r<100

Our proof is based on the following lemmas.
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Lemma 3.1 (Unique existence) For any 3/2 <r < 3, for sufficiently small C, =
Ci(r) > 0, there is a unique solution v of (3.3)—(3.4) in the set

V={veW, (B, |vl,:= HUH‘/VJ,T(BQ) < CyCL}
for some Cy > 0 independent of r € [3/2,3).

Lemma 3.2 (Uniqueness) Let 1 < r < 3/2. If both vy and vy are solutions of
(3.3)(3.4) in W, "N L2, and Ci+|v1]| s Hllvallps is sufficiently small, then vy = v,.

Assuming the above lemmas, we get W9 regularity as follows. First we have a
solution @ of (3.3) in W,*(B;) by Lemma 3.1. On the other hand, both v = pw + ¢
and ¥ are small solutions of (3.3) in W' N L3, (B,) for r = 5/4, and thus v = ¥ by
Lemma 3.2. Thus v € Wy¥(B,) and w € WH¢(B,).

Proof of Lemma 3.1. Consider the following mapping ®: For each v € V, let
¥ = ®v be the unique solution in W, (B,) of the Stokes system

AT+ Va=f-V-Uv+v® (U+v))
dive = 0.
By estimates for the Stokes system, see Galdi [4, Ch.4] Theorem 6.1, in particular
(6.9), for 1 < r < 3, we have
19l gy < Collfllwzrr + CellV - (U@ v+ 0@ (U + ) lyy0e
<CCC,+ClUDv+v® (U + )L

By Lemma 2.1, in particular (2.1), for 1 <r < 3,

olligr sy < CeCICe+ GGz, + Iollzg, el
We now choose Cy = 2C,.C,. Since V. .C L3, if r > 3/2, we get 1 = dv € V if C, is
sufficiently small.
We next consider the difference estimate. Let vy, ve € V, 9, = Pvy, and U9 = Dvs.
Then

[@v1 — Quallwir < C(|U|l1s, + llvallez, + llvellzs Ilvr — vallwrr. (3.5)
Taking C., sufficiently small for 3/2 < r < 3, we get ||Pvy — Pvolly, < 3 |lv1 — w2l
which shows that @ is a contraction mapping in V' and thus has a unique fixed point.
We have proved the unique existence of the solution for (3.3)-(3.4) in V. O
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Remark. Since the constant C, for the Stokes estimate can~be taken the same
for r € [3/2,3], Cs is independent of r. However, the constant C, from Lemma 2.1
(ii) blows up as r — 3_, thus C, has to shrink to zero as r — 3_.

Proof of Lemma 3.2. By the difference estimate (3.5), we have

o1 = v2lwrr < C(IU

s, + olles, + vallzs llor — vallwse.

whk wh

Thus, if C(|Ullgs, +llvillee, + llvallze,) < 1, we conclude vy = ve. O

3.2 Pointwise bound

In this subsection, we will prove pointwise bound of w using [|w||;y1. S Cs.
For any fixed zo € By,2\{0}, let R = |z¢|/4 and Ey = B(zo,kR), k = 1,2.
Note ¢* € (3,00). Let s be the dual exponent of ¢*, 1/s +1/¢* = 1. We have

Nwllpie,) S wllpe @) Mlpsm,) S C,R3/4,

B the interior estimate Lemma 2.2,

”vw“Lq'(E'l) S “f”Lq"(E‘g) + R

w||L1(E2)
where f =U @ w+ w ® (U + w). Since |U| + |w| S C.lz|™! S C.R™! in Es,
Hf”Lq‘(Eg) S C.R™ ”w||1,q*(52) S CIR™

We also have R™4+3/¢

w“r,l(Ez) < R4H/CC R34 = C,R™!. Thus
Hv'w“[jq‘(El) S_, C*R_l.

By Gagliardo-Nirenberg inequality in Ej,

1-0 0 _
“w”LW(El) S ”w”L'I"(El) ||v'w“Lq‘(E1) + R7? ||w||L1(E1) )

where 1/o0 = (1 — 0)/q¢* + 0(1/q. — 1/3) and thus § = 3/¢ — 1. We conclude
[|w]| Loo(By) S C.R~? Since z, is arbitrary, we have proved the pointwise bound,
and completed the proof of Theorem 1.1.
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