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1 Introduction
This article is based on a joint work with Tai-Peng Tsai (University of British
Columbia). We consider point singularities of very weak solutions of the $3D$ station-
ary Navier-Stokes equations in a finite region $\Omega$ in $\mathbb{R}^{3}$ . Tlie Navier-Stokes equations
for the velocity $u:\Omegaarrow \mathbb{R}^{3}$ and pressure $p:\zeta$] $arrow \mathbb{R}$ with external force $f$

. : $\Omegaarrow \mathbb{R}^{3}$

are
$-\triangle u+(u\cdot\nabla)u+\nabla p=f$ , $(livu=0,$ $(x\in\Omega)$ . (1.1)

A very weak solution is a vector fiinction $u$ in $L_{loc}^{2}(\Omega)$ which satisfies (1.1) $i_{I1}$ distri-
bution sense:

$\int-u\cdot\triangle\varphi+u_{j}u_{i}\partial_{j}\varphi_{i}=\langle f,$ $\varphi\}$ , $\forall\varphi\in C_{c,\sigma}^{\infty}(\Omega)$ ,

and $\int u\cdot\nabla h=0$ for any $h\in C_{c}^{\infty}(\Omega)$ . Here the force $f$ is allowed to be a distribution
and

$C_{(.\cdot\sigma)}^{\infty}(\Omega)=\{\varphi\in C_{c,}^{\infty}(\Omega, \mathbb{R}^{3}):div\varphi=0\}$ .

‘In this definition the pressure is not needed. Deiiote $B_{R}=\{x\in \mathbb{R}^{3} : |x|<R\}$ and
$B_{Il}^{c}=\mathbb{R}^{3}\backslash B_{R}$ for $R>0$ .

We are concerned with tlie behavior of very weak solutions which solve (1.1) in the
punctured ball $B_{2}\backslash \{0\}$ witli zero force, i.e., $f=0$ . There are a lot of studies on this
problem [3, 11, 13, 14, 2, 8]. Shapiro [13, 14] proved the removable singularity theorem
under soine assumptions on $u$ . He proved that if $\tau\iota\in L^{3+\epsilon}(B_{2})$ for some $\epsilon>0$ and
$u(x)=o(|x|^{-1})(xarrow 0)$ , then $(u, p)$ can be defined at $0$ so that it is a smooth solutioii
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of (1.1) in $tI_{lC}$ wliole ball $B_{2}$ . Choe and Kim [2] obtained similar results by using the
theories of the hydrodynamic potentials and homogencous harmonic polynomials.
Kim and Kozono [8] recently proved tltat if $u\in L^{3}(B_{2})$ or $u(x)=o(|x|^{-1})(xarrow 0)$ ,
then the saine conclusion holds. As mentioned in [8], their result is optimal in the
sense that if their assumption is replaced by

$|u(x)$ I $\leq C_{*}|x|^{-1}$ (1.2)

for $0<|x|<2$ , then the siiigularity is not removable in general, due to Landau solutions,
which is the family of explicit singular solutions calculated by L. D. Landau [6].

The purpose of this article is to characterize the singularity and to identify the
leading order behavior of very weak solutions satisfying the threshold assumption
(1.2) when tlie constant $C_{*}$ is sufficiently small. We show that it is given by Landau
solutions. In order to state main result, we recall Landau solutions.

Landau obtained his solutions in 1944, see [6, 7]. They can be parametrized by
vectors $b\in \mathbb{R}^{3}$ in the following way: For each $b\in \mathbb{R}^{3}$ there exists a unique $(-1)-$

liomogeneous solutioii $U^{b}$ of (1.1) together with an associated pressure $P^{b}$ which is
(-2)-homogeneous, such that $U^{b},$ $P^{b}$ are smooth in $\mathbb{R}^{3}\backslash \{0\}$ and they solve

$-\triangle\uparrow\iota+(u\cdot\nabla)c\iota+\nabla p=b\delta$ , $divu=0$ . (1.3)

in $\mathbb{R}^{3}$ in tlie sense of distributions, where $\delta$ denotes the Dirac $\delta$ function. When
$b=(0,0, \beta)$ , they have the following explicit formulas in spherical coordinates $r,$ $\theta,$ $\phi$

with $x=$ $(r\sin\theta\cos\phi,$ $r\sin\theta$ siii $\phi,$ $r\cos\theta)$ :

$U=\uparrow\underline{2},$ $( \frac{A^{2}-1}{(A-\cos\theta)^{2}}-1)e_{r}-\frac{2_{1}\sin\theta}{r(A-c_{\text{ノ}}os\theta)}e_{\theta}$ , $P= \frac{-.4(A\cos\theta,-1)}{?^{2}(A-\cos\theta)^{2}}$ (1.4)

where $e_{r}= \frac{x}{r}$ and $e_{\theta}=(-\sin\theta\sin\phi, \sin\theta\cos\phi, \cos\theta)$ . The parameters $\beta\geq 0$ and
$A\in(1, \infty]$ are related by the formula

$\beta=16\pi(A+\frac{1}{2}A^{2}\log\frac{A-1}{A+1}+\frac{4A}{3(A^{2}-1)})$ .

The formulas for general $b$ can be obtained from rotation. One checks directly that
$\Vert\uparrow\cdot U^{b}\Vert_{L}\infty$ is inonotone in $|b|$ aiid $\Vert rU^{b}\Vert_{L^{\infty}}arrow 0$ (or $\infty$ ) as $|b|arrow 0$ (or $\infty$). Recently
Sverak [15] $ol)served$ that Laiidau solutions were the only solutions of (1.1) in $\mathbb{R}^{3}\backslash \{0\}$

which are smooth and (-l)-homogeneous in $\mathbb{R}^{3}\backslash \{0\}$ , without assuming axisyminetry.
Hence Landau solutioiis can be regarded as the canonical family of the solutions for
(1.1). See also [18, 1, 9] for related results.

If $u,$ $p$ is a solution of (1.1), we will denote by

$T_{ij}(u,p)=p\delta_{ij}+u_{i}u_{j}-\partial_{i}\uparrow\iota_{j}-\partial_{j^{1/}i}$
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the momentum flux density tensor in the fluid, which plays an important role to
determine the equation for $(\tau\iota,p)$ at $0$ . Our main result is the following.

Theorem 1.1 For any $q\in(1,3)$ , there is a small $C_{*}=C_{*}(q)>0$ such that, if $u$

is a very weak solution of (1.1) with zero force in $B_{2}\backslash \{0\}$ satisfying (1.2) in $B_{2}\backslash \{0\}$ ,
$tf_{l_{\text{ノ}}}en$ there is a scalar function $p$ satisfying $|p(x)|\leq C|x|^{-2}$ , unique up to a constant,
so that $(u,p)$ satisfies (1.3) in $B_{2}$ with $b_{i}= \int_{\iota|=1}T_{i.j}(\uparrow\iota,p)7l_{j}(x)$ , and

$\Vert u-U^{b}\Vert_{W^{1,q}(B_{1})}+\sup_{x\in B_{1}}|x|^{3’ q-1}|(u-U^{b})(x)|\leq CC_{*}$ , (1.5)

where the constant $C$ is independent of $q$ and $u$ .

The exponent $q$ can be regarded as the degree of the approximation of $u$ by $U^{b}$ .
The closer $q$ gets to 3, the less singular $c\iota-U^{b}$ is. But in our theorem, $C_{*}(q)$ shrinks
to zero as $qarrow 3_{-}$ . Ideally, one would like to prove that $u-U^{b}\in L^{\infty}$ . However, it
seeins quite subtle in view of the following model equation for a scalar function,

$-\triangle v+cv=0$ , $c=\triangle v/v$ .

If we choose $v=\log|x|$ , then $c(x)\in L^{3/2}$ and $\lim_{|x|arrow 0}|x|^{2}|c(x)|=0$ , but $v\not\in L^{\infty}$ .
In equation (3.2) for the difference $w=u-U^{b}$ , there is a term $(w\cdot\nabla)U^{b}$ which has
similar behavior as $cv$ above.

This work is inspired by Korolev-Sverak [9] in which they study the asymptotic as
$|x|arrow\infty$ of solutions of (1.1) satisfying (1.2) in $\mathbb{R}^{3}\backslash B_{1}$ . They show that the leading
behavior is also given by Landau solutions if $C_{*}$ is sufficiently small. Our theorem can
be considered as a dual version of their result. However, their proof is based on the
unique existence of the difference $\varphi(u-U^{b})$ where $\varphi$ is a cut-off function supported
near infinity. If one tries the same approach for our problem, one needs to choose a
sequence $\varphi_{k}$ with the supports of $1-\varphi_{k}$ shrinking to the origin, which produce very
singular force terms near the origin. Instead, we prove Lemma 2.3 which defines the
equation for $(u, p)$ at the origin. Since the equation for $u$ is same as $U^{b}$ near the origin,
the $\delta$-functions at the origin cancel in the equation for the difference. Then applying
the approach of Kim-Kozono [8], we prove the unique existence of the difference in
$W_{0}^{1,r}(B_{2})$ for $3/2\leq r<3$ and uniqueness in $W_{0}^{1,r}\cap L_{wk}^{3}(B_{2})$ for $1<r<3/2$ , where
$W_{0}^{1,r}(B_{2})$ is the closure of $C_{0}^{\infty}(B_{2})$ in the norm $W_{0}^{1,r}(B_{2})$ .

2 Preliminaries
In this section we collect some lemmas for the proof of Theorem 1.1. The first lemma
recalls O’Neil’s inequalities [12], which are H\"older type inequalities in Lorentz spaces.
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Sce [10, 8] for siinpler proofs in these special cases. Wc denote the Lorentz spaces by
$L^{p,\prime}(1<l^{J<}\infty, 1\leq q\leq\infty)$ .

Note $L_{wk}^{3}=L’$}
$\infty$ .

Lemma 2.1 $LctB=B_{2}\subset \mathbb{R}^{\tau\iota},$ $n\geq 2$ .
i$)$ Let $1<p_{1},p_{2}<\infty$ with $1/p:=1/p_{1}+1/p_{2}<1$ and let $1\leq?_{1},$ $r_{2}\leq\infty$ . For

$f\in L^{p_{1},r_{1}}$ and $g\in L^{\rho_{2},r_{2}},$ $?\iota$) $e$ have

$\Vert fg\Vert_{L(B)}\rho,r\leq C\Vert f\Vert_{L^{p_{11}}(B)}\Vert g\Vert_{L,(B)}\iota^{r_{2}}$ for $r:= \min\{r_{1}, r_{2}\}$ ,

$u\prime l\iota ereC=C(p_{1}, r_{1},p_{2}, r_{2})$ .
ii) Let $1<r<n$ . For $f\in M^{\gamma 1,r}(B),$ $\iota ve$ have

$|If\Vert_{L^{n-\tau}(B)}\Delta L_{r}\leq C\Vert f\Vert_{W^{1,r}(B)}$ ,

where $C=C(n, r)$ .

For our application, we will let $n=3,1<r<3$ , and we have

$\Vert fg\Vert_{L(B)}\leq C\Vert f\Vert_{L_{u\dagger k}^{3}}\Vert g\Vert_{L}\mu_{-r},r\leq C_{r}\Vert f\Vert_{L_{wk}^{3}(B)}\Vert g\Vert_{W^{1},(B)}$ . (2.1)

The next lemma is on interior estimates for Stokes system with no assumption on
the pressure.

Lemma 2.2 Assume $v\in L^{1}$ is a distribution solution of the Stokes system

$-Av_{i}+\partial_{i}p=\partial_{j}f_{ij}$ , $divv=0$ $in$ $B_{2R}$

and $f\in L^{\mathfrak{l}}$ for some $r\in(1, \infty)$ . Then $v\in W_{loc}^{1,r}$ and, for some constant $C_{r}$ indepen-
dent of $v$ and $R$ ,

$\Vert\nabla v\Vert_{L^{r}(B_{R})}\leq C_{r}\Vert f\Vert_{L^{r}(\cdot)}B_{\vee}R)+C_{r}R^{-4+3/r}\Vert\uparrow)\Vert_{L^{1}(B_{2R})}$ .

Tliis lemma is [17], Theorem 2.2. Although the statement in [17] assumes $v\in$

$W_{loc}^{1,r}$ , its proof only requires $v\in L^{1}$ . This lemma can be also considered as [?, Lemma
A.2] restricted to time-independent functions.

The following lemma shows the first part of Theorem 1.1, except (1.5). In partic-
ular, it shows that $(c\iota,p)$ solves (1.3).

Lemma 2.3 If $u$ is a $ve7^{\cdot}y$ weak solution of (1.1) rvith $zer\cdot 0$ force in $B_{2}\backslash \{0\}$ satisfy$ing$

(1.2) $ir\iota B_{2}\backslash \{0\}(v)itl\iota C_{*}$ (illowed to be large), there is a scalar function, $p$ satisfyirig
$|p(x)|\leq C|.r|^{-2}$ , unique up to a $co$ nstant, such that $(u, p)$ satisfies (1.3) in $B_{2}$ with
$b_{i}= \int_{x|=1’}T_{ij}(c\iota, p)n_{j}(x)$ . Moreover, $?\iota,$ $p$ are $S7nooth$ in $B_{2}\backslash \{0\}$ .
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Proof. For each $R\in(0,1/2],$ $\uparrow($ is a very weak solution in $B_{2}-\overline{B}_{R}$ in $L^{\infty}$ . Lemina
2.2 shows $u$ is a weak solution in $W_{loc}^{1,2}$ . Tlic usual theory shows that $u$ is smooth and
tliere is a scalar function $p_{R}$ , unique up to a constant, so that $(u, p_{R})$ solves (1.1) in
$B_{2}-\overline{B}_{R}$ , see e.g. [5]. By the scaling argunient in Sverak-Tsai [17] using Lemma 2.2,
we have for $x\in B_{3R}-B_{2ti}$ ,

$| \nabla^{h}u(x)|\leq\frac{C_{h}^{t}C_{*}\prime}{|x|^{k+1}}$ for $k=1,2,$ $\ldots$ , (2.2)

where $C_{k}=C_{k}(C_{*})$ are independent of $R\in(0,1/2]$ and its dependence on $C_{*}$ can be
dropped if $C_{*}\in(O, 1)$ . Varying $R,$ $(2.2)$ is valid for $x\in B_{3/2}\backslash \{0\}$ . Since $p_{R}$ is unique
up to a constant, we can fix it by requiring $p_{R}=p_{1/2}$ in $B_{2}\backslash \overline{B}_{1’ 2}$ , and define $p(x)=$

$p_{R}(x)$ for any $x\in B_{2}\backslash \{0\}$ with $R=|x|/2$ . By the equation, $|\nabla p(x)|\leq CC_{*}|x|^{-3}$ .
Integrating from $|x|=1$ we get $|p(x)|\leq CC_{*}|x|^{-2}$ . In particular

$|T_{ij}(u,p)(x)|\leq CC_{*}|x|^{-2}$ for $x\in B_{3’ 2}\backslash \{0\}$ . (2.3)

Denote $NS(u)=-\triangle u+(?r, \cdot\nabla)u+\nabla p$ . We have $NS(u)_{i}=\partial_{j}T_{ij}(u)$ in the sense
of distributions. Thus, by divergence theorem and $NS(u)=0$ in $B_{2}\backslash \{0\}$ ,

$b_{i}= \int_{|x|=1}T_{ij}(u,p)n_{j}(x)=\int_{|x|=R}T_{ij},(u,p)n_{j}(x)$ (2.4)

for any $R\in(0,2)$ . Let $\phi$ be any test function in $C_{c}^{\infty}(B_{1})$ . For small $\epsilon>0$ ,

$\langle NS(u)_{i},$ $\phi\}=-/T_{ij}(u)\partial_{j}\phi$

$=-.[B_{1} \backslash B_{\epsilon}T_{ij}(\iota x)\partial_{j}\phi-\int_{B_{\epsilon}}T_{ii}(u)\partial_{j}\phi$

$= \int_{B}\partial_{j}T_{ij}(u)\phi+.[T_{ij}(u)\phi\uparrow z_{j}-\int_{oB_{1}}T_{ij}(u)\phi n,$ $- \int_{B_{\epsilon}}T_{ij}(u)\partial_{j}\phi$ .

In the last line, the first integral is zero since $NS(u)=0$ and the third integral is zero
since $\phi=0$ . By the pointwise estimate (2.3), the last integral is bounded by $C\epsilon^{3-2}$ .
On the other hand, by (2.4),

$1_{\partial B_{\in}}^{T_{ij}(u)\phi n_{j}}arrow b_{i}\phi(0)$ as $\epsilonarrow 0$ .

Thus $(u,p)$ solves (1.3) and we have proved the lemma. $\square$

It follows from the proof tliat $|b|\leq CC_{*}$, for $C_{*}<1$ . With tliis lemma, we have
completely proved Theorem 1.1 in the case $q<3/2$ . In the case $3/2\leq q<3$ , it
remains to prove $($ 1.5 $)$ .
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3 Proof of main theorem
In tliis section, we present the proof of Theorem 1.1. We first prove that solutions
belong to $I\eta_{!}^{r1,q}$ . Wc next apply this result to obtain thc pointwise estimate. For what
follows, denote

$u)=u-U$, $U=U^{b}$ . (3.1)

By Lemma 2.3, there is a function $\tilde{p}$ such that $(w,\tilde{p})$ satisfies in $B_{2}$ that

$-\triangle w+U\cdot\nabla w+\tau v\cdot\nabla(U+w)+\nabla\tilde{p}=0$ , $divw=0$ ,

$|w(x)| \leq\frac{CC}{|x|}*$ , $| \tilde{p}(x)|\leq\frac{c,c}{|x|^{2}}*$ .
(3.2)

Note that the $\delta$-functions at the origin cancel.

3.1 $W^{1,q}$ regularity
In this subsection we will show $w\in W^{1,q}(B_{1})$ . Fix a cut off function $\varphi$ with $\varphi=1$ in
$B_{9/8}$ and $\varphi=0$ in $B_{11/8}^{c}$ . We localize $w$ by introducing

$v=\varphi w+\zeta$

where $\zeta$ is a solution of the problem $div\zeta=-\nabla\varphi\cdot w$ . By Galdi [4, Ch.3] Theorem
3.1, tlrere exists such a $\zeta$ satisfying

$supp\zeta\subset B_{3\prime 2}\backslash B_{1}$ , $\Vert\nabla\zeta\Vert_{L^{100}}\leq C\Vert\nabla\varphi\cdot w\Vert_{L^{100}}\leq CC_{*}$ .

The vector $v$ is supported in $\overline{B}_{3’ 2}$ and satisfies $v\in W^{1,r}\cap L_{wk}^{3}$ for $r<3/2$ ,

$-\triangle v+U\cdot\nabla u+v\cdot\nabla(U+u)+\nabla\pi=f$, $divv=0$ , (3.3)

where $\pi=\varphi\tilde{p}$ ,

$f=-2(\nabla\varphi\cdot\nabla)w-(\triangle\varphi)c\{)+(U\cdot\nabla\varphi)w+(\varphi^{2}-\varphi)w\cdot\nabla w+(w\cdot\nabla\varphi)w+\tilde{p}\nabla\varphi$

$-\triangle\zeta+(U\cdot\nabla)\zeta+\zeta\cdot\nabla(U+\varphi w+\zeta)+\varphi w\cdot\nabla\zeta$

is supportcd in the annulus $\overline{B}_{3’ 2}\backslash B_{1}$ . One verifies directly that, for some $C_{1}$ ,

$1\leq’\cdot\leq 100s\iota\iota 1)\Vert f\Vert_{\nu V_{0}^{-1}’(B_{2})}\leq C_{1}C_{*}$
. (3.4)

Our proof is based on tlie following lemmas.
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Lemma 3.1 (Unique existence) For any $3/2\leq r<3_{f}$ for sufficiently $s$ mall $C_{*}=$

$C_{*}(r)>0_{f}$ there is a unique solution $v$ of $(3.3)-(3.4)$ in the set

$V=\{v\in W_{0}^{1,\tau}(B_{2}), \Vert v\Vert_{V} :=\Vert v\Vert_{W_{0}^{1}’(B_{2})}\leq C_{2}C_{*}\}$

for$\cdot$ some $C_{2}>0$ independent of $r\in[3/2,3)$ .

Lemma 3.2 (Uniqueness) Let 1 $<r<3/2$ . If $botl\iota v_{1}$ and $v_{2}$ are solutions of
$(3.3)-(3.4)$ in $W_{0}^{1,r}\cap L_{wk}^{3}$ and $C_{*}+\Vert v_{1}\Vert_{L_{w\Lambda}^{3}}+\Vert v_{2}\Vert_{L_{wk}^{3}}$ is sufficiently small, then $v_{1}=v_{2}$ .

Assuming the above lemmas, we get $W^{1,q}$ regularity as follows. First we have a
solution $\tilde{v}$ of (3.3) in $W_{0}^{1,q}(B_{2})$ by Lemma 3.1. On the other hand, both $v=\varphi?v+\zeta$

and $\tilde{v}$ are small solutions of (3.3) in $W_{0}^{1}""\cap L_{wk}^{3}(B_{2})$ for $r=5/4$ , and thus $v=\tilde{v}$ by
Lemma 3.2. Thus $v\in W_{0}^{1,q}(B_{2})$ and $w\in W^{1,q}(B_{1})$ .

Proof of Lemma 3.1. Consider the following mapping $\Phi$ : For each $v\in V$ , let
$\overline{v}=\Phi v$ be the unique solution in $W_{0}^{1,r}(B_{2})$ of the Stokes system

$-\triangle\overline{v}+\nabla\overline{\pi}=f-\nabla\cdot(U\otimes v+v\otimes(U+v))$

$div\overline{v}=0$ .

By estimates for the Stokes system, see Galdi [4, Ch.4] Theorem 6.1, in particular
(6.9), for $1<r<3$ , we have

$\Vert\overline{v}\Vert_{\nu V_{0}^{1,r}(B_{2})}\leq C_{r}\Vert f\Vert_{W_{0}^{-1,r}}+C_{r}\Vert\nabla\cdot(U\otimes v+v\otimes(U+v))\Vert_{W_{0}^{-1,r}}$

$\leq c_{m_{l}}..C_{1}C_{*}+C_{r}\Vert U\otimes v+u\otimes(U+v)\Vert_{L^{r}}$ .

By Lemma 2.1, in particular (2.1), for $1<r<3$ ,

$\Vert\overline{v}\Vert_{W_{0}^{1,?}(B_{2})}\leq C_{r}C_{1}C_{*}+C_{7}.\tilde{C}_{r}(\Vert U\Vert_{L_{u\iota k}^{3}}+\Vert v\Vert_{L_{wk}^{3}})\Vert v\Vert_{V}$ .

We now choose $C_{2}=2C_{r}C_{1}$ . Since $V\subset L_{wk}^{3}$ if $r\geq 3/2$ , we get $\overline{v}=\Phi v\in V$ if $C_{*}$ is
sufficiently small.

We next consider the difference estimate. Let $v_{1},$ $v_{2}\in V,\overline{v}_{1}=\Phi v_{1}$ , and $\overline{v}_{2}=\Phi v_{2}$ .
Then

$\Vert\Phi v_{1}-\Phi v_{2}\Vert_{lV^{1,r}}\leq C(\Vert U\Vert_{I_{u}^{3}}wk\cdot+\Vert v_{1}\Vert_{T_{\lrcorner}^{3}}+\Vert v_{2}\Vert_{L_{wk}^{3}})\Vert v_{1}-v_{2}\Vert_{W^{1,r}}wk$. (3.5)

Taking $C_{*}$ sufficiently small for $32\leq\uparrow’<3$ , we get $\Vert\Phi v_{1}-\Phi v_{2}\Vert_{V}\leq\frac{1}{2}\Vert v_{1}-v_{2}\Vert_{V}$ ,
which shows that $\Phi$ is a contractioii mapping in $V$ and thus has a unique fixed point.
We have proved the unique existence of the solution for $(3.3)-(3.4)$ in V. $\square$
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$Re$mark. Since the constant $C_{7}$. for the Stokes estimate can bc taken the same
for $\uparrow\in[3/2,3],$ $C_{2}$ is independent of $r$ . However, the constant $C_{r}$ from Lemma 2.1
(ii) blows up as $rarrow 3_{-}$ , thus $C_{*}$ has to shrink to zero as $rarrow 3_{-}$ .

Proof of Lemma 3.2. By the difference estimate (3.5), we have

$\Vert\iota’\iota-v_{2}\Vert_{W^{1,r}}\leq C(\Vert U\Vert_{L_{wk}^{3}}+\Vert v_{1}\Vert_{L_{wk}^{3}}+\Vert v_{2}\Vert_{L_{wk}^{3}})\Vert v_{1}-v_{2}\Vert_{W^{1,r}}$ .

Thus, if $C(\Vert U\Vert_{L_{u’ k}^{3}}+\Vert v_{1}\Vert_{L_{wk}^{3}}+\Vert v_{2}\Vert_{L_{wk}^{3}})<1$ , we conclude $v_{1}=v_{2}$ . $\square$

3.2 Pointwise bound
In this subsection, we will prove pointwise bound of $w$ using $\Vert w\Vert_{W^{1,q}}\sim<C_{*}$ .

For any fixed $x_{0}\in B_{1/2}\backslash \{0\}$ , let $R=|x_{0}|/4$ and $E_{k}=B(x_{0}, kR),$ $k=1,2$ .
Note $q^{*}\in(3, \infty)$ . Let $s$ be tlie dual exponent of $q^{*},$ $1/s+1/q^{*}=1$ . We have

$\Vert w\Vert_{L^{1}(E_{2})}\sim<\Vert u)\Vert_{L(b_{2})}q^{*}\Vert 1\Vert_{L^{s}(E_{2})}\leq C_{*}R^{4-3\prime q}$.

By the interior estimate Lemma 2.2,

$\Vert\nabla_{\mathfrak{l}\ell 1}’\Vert_{L(E_{1})}q^{v}\sim<\Vert f\Vert_{L(E_{2})}q^{*}+R^{-4+3\prime q^{*}}\Vert w\Vert_{L^{1}(F_{\lrcorner 2})}$

where $f=U\otimes w+rv\otimes(U+co)$ . Since $|U|+|w|_{\sim}<C_{*}|x|_{\sim}^{-1}<C_{*}R^{-1}$ in $E_{2}$ ,

$\Vert f\Vert_{L(E_{2})}q^{*}\sim<C_{*}R^{-1}\Vert w\Vert_{L(E_{2})}q^{*}\sim<C_{*}^{2}R^{-1}$ .

We also have $R^{-4+3’ q^{t}}\Vert w\Vert_{\Gamma_{\text{ノ}}^{1}(F_{2})}\sim<R^{-4+3/q^{*}}C_{*}R^{4-3\prime q}=C_{*}R^{-1}$ . Thus

$\Vert\nabla w\Vert_{L(E_{1})}q^{*}\sim<C_{*}R^{-1}$

By Gagliardo-Nirenberg incquality in $E_{1}$ ,

$\Vert w\Vert_{L^{\infty}(E_{1})\sim}<$ I $w\Vert_{L(E_{1})}^{1-\theta}q^{*}\Vert\nabla w||_{L^{q^{*}}(E_{1})}^{\theta}+R^{-3}||w\Vert_{L^{1}(E_{1})}$ ,

where $1/\infty=(1-\theta)/q^{*}+\theta(1/q_{*}-1/3)$ and thus $\theta=3/q-1$ . We conclude
$\Vert tl)\Vert_{L^{\infty}(E_{1})}\leq C_{*}R^{-\theta}$ . Since $x_{0}$ is arbitrary, we have proved the pointwise bound,
and completed the proof of Tlieorem 1.1.
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