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1 Introduction
It is well-known that (super) twistor spaces themselves are very interesting
objects to study, and besides, they give excellent and practical view points
to study the Yang-Mills theory, eg. the ADHM-construction of instanton
solutions, and the Atiyah-Ward correspondence, see [8, 32] in for details.

In this article, we are concerned with deformation quantization of a
twistor space. Deformation quantization introduced in [1], is a fruitful ap-
proach to developing quantum theory in a purely algebraic framework, and
was also a prototype for noncommutative calculus on noncommutative spaces
(cf. [1, 2, 3, 7, 9, 11, 12, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 34]).

We believe that these new features with techiques which are employed in
the development of the argument of deformation quantization will provide
a new approach to noncommutative nonformal calculus which also plays a
pivotal role in geometric quantization (cf. [33]), strict deformation quanti-
zation, theory of operator algebra (cf. [17]) and (geometrically) asymptotic
analysis (cf. [5]).

In this article, we are not concerned with the delicate issues associated
with convergence of deformation quantization and nonformal calculus.
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The first purpose of this article is to give an even-even (to an ordinary
Poisson structure directionl) deformation quantization of twistor space $\mathbb{C}\mathbb{P}^{3}$ ,
and showing the existence of globally well-defined noncommutative, associa-
tive product $\#$ on the twistor space.

The second purpose is to compute star exponentials with respect to star
product $\#$ of quadratic polynomials with respect to homogeneous coordinate
of twistor space $\mathbb{C}\mathbb{P}^{3}$ of double fibrations (cf. Fig. 1 below) which appears in
describing the twistor space, and then, to show that the star exponentials
give transcendental elements on the twistor space.
Main Theorem (cf. [16]) Consider the following diagram Fig.1:

$((x^{\alpha,\dot{\alpha}}), [\pi_{1}:\pi_{2}])\in M:=\mathbb{C}^{4}\cross \mathbb{C}\mathbb{P}^{1}$

$([z_{1} :. . . :z_{4}])\in \mathbb{C}\mathbb{P}^{3}$ $(x^{\alpha,\dot{\alpha}})\in \mathbb{C}^{4}$

where $x^{\alpha,\dot{\alpha}}$ are even variables, we set
$(x^{\alpha,\dot{\alpha}}):=(x^{1,i}, x^{1,2}, x^{2,i}, x^{2,2})$ ,
$([z_{1}: . . . :z_{4}]):=([x^{\alpha,i}\pi_{\alpha}:x^{\alpha,\dot{2}}\pi_{\alpha}:\pi_{1}:\pi_{2}])$.

Here we use Einstein’s convention (we will often omit $\sum unless$ there is a
danger of confusion). We call $([z_{1} :. . . : z_{4}])$ the homogeneous coordinate
system of $\mathbb{C}\mathbb{P}^{3}$ .

1. The relations2 $(\dot{\alpha},\dot{\beta}=i,\dot{2})$

$[z^{\dot{\alpha}}, z^{\beta}]=\hslash D^{\alpha\dot{\alpha},\beta\beta}\pi_{\alpha}\pi_{\beta}$ , (1)
lMore precisely, defromation quantization to the direction of the holomorphic Poisson

structure.
2Here $[$ , $]$ denotes the commutator bracket.
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where $z^{i}:=z_{1},$ $z^{2}$
$:=z_{2}$ , give a globally defined noncommutative asso-

ciative product $\#$ on $\mathbb{C}\mathbb{P}^{3}$ , where $(D^{\alpha\dot{\alpha},\beta\beta})$ is a skew symmetric matrix.

2. Let $A[Z]$ be a homogeneous polynomiaP of $z^{i}=z_{1}=x^{\alpha,i}\pi_{\alpha},$ $z^{2}=z_{2}=$

$x^{\alpha,2}\pi_{\alpha}$ with degree 2. Then a star exponential function $e^{\frac{1}{\#\mu}A[Z]}$ gives a
“function” on $\mathbb{C}\mathbb{P}^{3}$ .

We hope that the results above will shed a light on the study of deforma-
tion theory of the Atiyah-Ward correspondence and the Ward transform.
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Gomi, Y. Homma, H. Kajiura, T. Kori, Y. Maeda, H. Moriyoshi, H. Omori,
M. Pevzner, D. Sternheimer, T. Suzuki, T. Taniguchi, T. Tate, Y. Terashima,
K. Uchino and A. Yoshioka for the fruitful discussions with them.

This research is partially supported by Grant-in-Aid for Scientific Re-
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Japan and Keio Gijuku Academic Funds.

2 Deformation quantization

2.1 Definition
In the $1970’ s$ , supported by the mathematical developments, Bayen, Flato,
Fronsdal, Lichnerowicz and Sternheimer considered quantization as a de-
formation of the usual commutative product of classical observables into a
noncommutative associative product which is parametrized by the Planck
constant $\hslash$ and satisfies the correspondence principle.

In the approach above, the precise definition of the space of quantum
observables and star product 4 is given in the following way(cf. [1]):

Definition 2.1 $A$ star product of Poisson manifold $(M, \pi)$ is a $product*on$
the space $C^{\infty}(M)[[\hslash]]$ of formal power series of parameter $\hslash$ with coefficients
in $C^{\infty}(M)$ , defined by

$f*g=fg+\hslash\pi_{1}(f, g)+\cdots+\hslash^{n}\pi_{n}(f, g)+\cdots$ , $\forall f,$ $g\in C^{\infty}(M)$

3In our situation, it should be regarded as an $\mathcal{O}_{\mathbb{C}\mathbb{P}^{3}}$ (2)-sheaf cohomology class.
4In the present paper, we use this notion in a quite different situation, i.e., in holomor-

phic categories.
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satisfying

1. $*is$ associative,

2. $\pi_{1}(f, g)=\frac{1}{2\sqrt{-1}}\{f, g\}$ ,

3. each $\pi_{n}(n\geq 1)$ is a $\mathbb{C}[[\hslash]]$ -bilinear and bidifferential operator, where
$\{$ , $\}$ is the Poisson bracket defined by the Poisson structure $\pi$ .

A deformed algebra (resp. a deformed algebra structure) is called a star
algebm (resp. a star product).

2.2 Existence of formal deformation quantization I (Omori-
Maeda-Yoshioka quantization)

As to a symplectic manifold $(M, \omega)$ , DeWilde-Lecomte [2], Omori-Maeda-
Yoshioka [26] found the method of construction for formal deformation quan-
tization by patching work of the Weyl algebra bundle with suitable condi-
tions.

2.3 Existence of formal deformation quantization II
(Fedosov quantization)

Fedosov [3] found a geometric method of formal deformation quantization
of a symplectic manifold via adjusting the canonical connection of the jet
bundle so that it is compatible with fibre-wise Moyal-Weyl product on the
symmetric tensor algebra of the cotangent bundle of $(M, \omega)$ .

Let $(M, \omega)$ be a symplectic and $\nabla^{symp}$ a symplectic connection. Set

$\delta^{-1}(\nu^{m}Z^{\alpha}dz^{\beta})=\{\begin{array}{ll}\sum_{i=1}^{2n}dz_{i}\iota_{Z_{i}}\nu^{m}Z^{\alpha}dz^{\beta} (|\alpha|+|\beta|\neq 0),0 (|\alpha|+|\beta|=0), \end{array}$ (2)

where $\iota$ is a inner product. We may write $\nabla^{F}|_{W_{M}}=\nabla^{symp}-\delta+r$ , where $W_{M}$

is the Weyl algebra bundle on $M$ , and $r$ is a l-form with $\Gamma(W_{M})$ coefficient.
Then as in [3], $r$ satisfies the following equation

$\delta r=R_{\omega}+\nabla^{symp}r+\frac{1}{2\nu}[r, r]$ , (3)

4



where $R_{\omega}$ is a curvature of symplectic connection. Or equivalently $r$ satisfies

$r= \delta^{-1}\{(\nabla^{symp}+\frac{1}{2\nu}[r, r])+R_{\omega}\}$ , (4)

under the assumptions $\deg r\geq 2,$ $\delta^{-1}r=0,$ $r_{0}=0$ . Set $r_{k}$ is the degree
$k$ term of $r$ . Since it is easy to verify that this equation can be solved by
recursively in the following way

$r_{3}=\delta^{-1}R_{\omega}$ ,
$r_{n+3}= \delta^{-1}(\nabla^{symp}r_{n+2}+\frac{1}{\nu}\sum_{l=1}^{k-1}r_{l+2}*r_{k+2-l})$ .

(5)

The connection obtained as above is called the Fedosov connection.

Theorem 2.2 Restriction of fiber-wise Moyal- Weyl product into the space
of parallel sections with respect to the Fedosov connection gives a formal
deformation quantization on a symplectic manifold.

2.4 Existence of formal deformation quantization III
$(L_{\infty}$-algebras as an exhibition for Kontsevich’s for-
mality theorem)

As to general Poisson manifolds, Kontsevich [7] establised the formality theo-
rem. Roughly speaking, he considered the Batalin-Vilkovisky-Maurer-Cartan
equation 5 in the category of $L_{\infty}$ -algebras.

We review the basics of formal deformation quantization for readers. See
[3, 7] for details.

Let $V=\oplus_{k\in \mathbb{Z}}V^{k}$ be a graded vector space, and [1] a shift-functor, that
is, $V[1]^{k}=V^{k+1}$ . $V[1]=\oplus_{k}V[1]^{k}$ is called a shifted graded vector space of
V. We set $C(V)=\oplus_{n\geq 1}$Sy$m^{}$ (V) where

Sy$m^{}$ $(V)=T^{n}(V)/\{\cdots\otimes(x_{1}x_{2}-(-1)^{k_{1}k_{2}}x_{2}x_{1})\otimes\cdots ; x_{i}\in V^{k_{i}}\}$ .

This space has a coproduct $\triangle$ : $C(V)arrow C(V)\otimes C(V)$ defined in the
following way:

$\triangle(x_{1}\cdots x_{n})$

$=$ $\sum_{k=1}^{n-1}\frac{1}{k!(n-k)!}\sum_{\sigma\in S_{n}}$ sign $(\sigma;x_{1}\cdots x_{n})$

$\cross(x_{\sigma(1)}\cdots x_{\sigma(k)})\otimes(x_{\sigma(k+1)}\cdots x_{\sigma(n)})$ ,
5For example, it is well-known that the Maurer-Cartan equation appears in geometry

of connection.
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where sign $(\sigma;x_{1}\cdots x_{n})$ is defined by

$x_{\sigma(1)}\cdots x_{\sigma(n)}=$ sign $(\sigma;x_{1}\cdots x_{n})x_{1}\cdots x_{n}$ .

This coproduct is coassociative, i.e. $(1\otimes\triangle)\circ\triangle=(\triangle\otimes 1)\circ\triangle$ . We denote
$k_{1}+k_{2}+\cdots+k_{n}$ by $\deg(x_{1}\cdots x_{n})$ , where $(x_{i}\in V^{k_{i}})$ .

Definition 2.3 A map $f$ : $C(V_{1})arrow C(V_{2})$ is called $a$ coalgebra homomor-
phism if (1) $\triangle of=(f\otimes f)0\triangle,$ (2) $f$ preserves the gmding.

The coderivation is defined in the following way.

Definition 2.4 A map $\ell$ : $C(V)arrow C(V)$ is called $a$ coderivation if the
following properties are satisfied: (1) $\ell$ is an odd vector field of degree $+1$ ,
(2) $(\ell\otimes id\wedge+id\otimes\ell)0\triangle\wedge=\triangle 0\ell$ , where $(id\otimes\ell)(x\wedge\otimes y)=(-1)^{\deg x}x\otimes\ell(y)$ .

We also use the following notation: Set $f^{(n)}=p\circ f|_{Sym^{n}(V_{1})}$ : Sy$m^{}$ $(V_{1})arrow V_{2}$ ,
and $\ell^{(n)}=p\circ\ell|_{Sym^{n}(V_{1})}$ : Sy$m^{}$ $(V_{1})arrow V_{2}$ , where $p=$ canonical projection :
$C(V_{2})arrow V_{2}$ .

Under the above notation, $L_{\infty}$ -algebras and $L_{\infty}$ -morphisms are defined
in the following way:

Definition 2.5 An $L_{\infty}$ -algebra is a pair $(V, \ell)_{z}$ where $V$ is a graded vector
space and $\ell$ is a coderivation on the graded coalgebra $C(V)$ , such that $\ell^{2}=0$ .

Definition 2.6 An $L_{\infty}$ -morphism $F_{*}$ between two $L_{\infty}$ -algebras $(V_{1}, \ell_{1})$ and
$(V_{2}, \ell_{2})$ is a coalgebm homomorphism such that $\ell_{2}\circ F_{*}=F_{*}\circ\ell_{1}$ .

Remark (example) If $\ell=\ell^{(1)}+\ell^{(2)}$ , and $d=\ell^{(1)},$ $[x, y]=(-1)^{\deg x-1}\ell^{(2)}(x, y)$ ,
then $\ell^{2}=0$ if and only if

$d^{2}=0$ ,
$d[x, y]=[dx, y]+(-1)^{\deg x-1}[x, dy]$ ,
$[[x, y], z]+(-1)^{(x+y)(z+1)}[[z, x], y]+(-1)^{(y+z)(x+1)}[[y, z], x]=0$ ,

that is, $(V, \ell)$ is a graded differential Lie algebra.

We next recall examples which play important roles in Kontsevich’s for-
mality theorem.
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Differential Graded Lie algebra of $T_{poly^{-}}fields$

Let $M$ be a smooth manifold. Set $T_{poly}(M)=\oplus_{k\geq-1}\Gamma(M, \wedge^{k+1}TM)$ , and let
$[\cdot,$ $\cdot]_{S}$ be the Schouten bracket:

$[X_{0}\wedge\cdots\wedge X_{m}, Y_{0}\wedge\cdots\wedge Y_{n}]_{S}$

$;=$
$\sum_{i,j}(-1)^{i+j+m}[X_{i}, Y_{j}]\cdots\wedge\hat{X}_{i}\wedge\cdots\wedge\hat{Y}_{j}\wedge\cdots$

,

where $X_{i},$ $Y_{i}\in\Gamma(M, TM)$ . Then, the triple

$(T_{poly}(M)[[\hslash]], d:=0, [\cdot, \cdot]:=[\cdot, \cdot]_{S})$

forms a differential graded Lie algebra. It is well-known that for any bivector
$\pi\in\Gamma(M, \wedge^{2}TM),$ $\pi$ is a Poisson structure if and only if

$[\pi, \pi]_{S}=0$ . (6)

Differential Grade Lie algebra of $D_{poly}-fields$

Let $(A, \bullet)$ be an associative algebra and set $C(A)$ $:=\oplus_{k\geq-1}C^{k},$ $C^{k}=Hom(A^{\otimes k+1};A)$ .
For $\varphi_{i}\in C^{k_{i}}(i=1,2)$ , we set

$\varphi_{1}\circ\hat{\varphi}_{2}(a_{0}\otimes a_{1}\otimes\cdots\otimes a_{k_{1}+k_{2}})$

$:= \sum_{i=0}^{k}(-1)^{ik_{2}}\varphi_{1}(a_{0}\otimes\cdots\otimes a_{i-1}\otimes\varphi_{2}(a_{i}\otimes\cdots\otimes a_{i+k_{2}})\otimes a_{i+k_{2}+1}\otimes\cdots\otimes a_{k_{1}+k_{2}})$ .

Then the Gerstenhaber bracket is defined in the following way:
$[\varphi_{1}, \varphi_{2}]_{G}=\varphi_{1}0\hat{\varphi}_{2}-(-1)^{k_{1}k_{2}}\varphi_{2}0\hat{\varphi}_{1}$ (7)

and Hochschild coboundary operator $\delta=\delta$. with respect to $\bullet$ is defined by
$\delta.(\varphi)=(-1)^{k}$ $[\bullet, \varphi]$ $(\varphi\in C^{k})$ . Then it is known that the triple

$(C(A), d:=\delta., [\cdot, \cdot]:=[\cdot, \cdot]_{G})$

is a differential graded Lie algebra.
Let $M$ be a smooth manifold. Set $\mathcal{F}$ $:=C^{\infty}(M)$ , and $D_{poly}(M)^{n}(M)$

equals a space of all multidifferential operators from $\mathcal{F}^{\otimes n+1}$ into $\mathcal{F}$ . Then

$D_{poly}(M)[[\hslash]]:=\oplus_{n\geq-1}D_{poly}^{n}(M)[[\hslash]]$

is a subcomplex of $C(\mathcal{F}[[\hslash]])$ .
Furthermore, the triple $(D_{poly}(M)[[\hslash]], \delta, [\cdot, \cdot]_{G})$ is a differential graded Lie

algebra.
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Proposition 2.7 Let $B$ be a bilinear opemtor and $f\star g=f\cdot g+B(f, g)$ .
Then the product $\star$ is associative if and only if $B$ satisfies

$\delta.B+\frac{1}{2}[B, B]_{G}=0$ . (8)

Next we recall the moduli space $\mathcal{M}C(C(V[1]))$ . For $b\in V[1]$ , set $e^{b}$
$:=$

$1+b+ \frac{b\otimes b}{2!}+\cdots\in C(V[1])$ .

Definition 2.8 $\ell(e^{b})=0$ is called $a$ Batalin-Vilkovisky-Maurer-Cartan equa-
tion, where $\ell$ is a $L_{\infty}$ -structure.

Using this equation, we define the moduli space as follows:

Definition 2.9

$\overline{\mathcal{M}C}(C(V[1]))$ $:=$

$\mathcal{M}C(C(V[1]))$ $:=$

$\{b;\ell(e^{b})=0\}$ , (9)
$\overline{\mathcal{M}C}(C(V[1]))/\sim$ , (10)

where $V$ stands for $T_{poly}(M)[[\hslash]]$ ($i.e$ . T-poly vector fields), and $D_{poly}(M)[[\hslash]]$

($i.e$ . D-poly vector fields), $and\sim$ means the gauge equivalence 6.

With these preliminaries, we can state precise version of the formality theo-
rem:

Theorem 2.10 There exists a map $\mathcal{U}$ such that

$\mathcal{U}$ : $\mathcal{M}C(C(T_{poly}(M)[[\hslash]][1]))\cong \mathcal{M}C(C(D_{poly}(M)[[\hslash]][1]))$ .

As a biproduct, we have

Theorem 2.11 For any Poisson manifold $(M, \pi)$ there exists a formal de-
formation quantization ($i.e$ . noncommutative associative product (say Kont-
sevich’s star pmduct) on $C^{\infty}(M)[[\hslash]])$ .

In the proof of the formality theorem, Kontsevich constructed the map de-
noted by $\mathcal{U}$ which seems to be deeply depending on the conbinatorial methods
based on the Feynman diagram which was, may be, inspired by the pioneer
works by Dirac.

6Strictly speaking, as for formal Poisson bivectors, $\pi_{1}(\hslash)\sim\pi_{2}(\hslash)$ if there exists a formal
vector field $D\in \mathfrak{X}(M)[[\hslash]]$ such that $\exp\hslash D\circ\pi_{1}(\hslash)=\pi_{2}(\hslash)\circ(\exp\hslash D\otimes\exp\hslash D)$
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2.5 Sketch of the proof of the first assertion 1 in main
result

We can consider formal deformation quantization with respect to an even-
even part direction (an ordinary Poisson structure $direction^{7}$ ) of it.

Theorem 2.12 ([16]) For the double fibmtion Fig.1, the relations $(\dot{\alpha},\dot{\beta}=$

$i,\dot{2})$ below
$[z^{\dot{\alpha}}, z^{\beta}]=\hslash D^{\alpha\dot{\alpha},\beta\dot{\beta}}\pi_{\alpha}\pi_{\beta}$ , (11)

where $z^{i}:=z_{1},$ $z^{2}$
$:=z_{2}$ , give a globally defined noncommutative associative

product 8 $\#$ on $\mathbb{C}\mathbb{P}^{3}$ , where $(D^{\alpha\dot{\alpha},\beta\beta})$ is a skew symmetric matrix.

Remark. Normalizing the above relations, our product is closely related to
the algebra obtained in [6]. For other approaches to the problem of deforma-
tion quantization of complex projective spaces, see also [1, 6, 7, 18, 19, 31].

Proof We give two proofs of this statement.

(I) In our situation, $D^{\alpha\dot{\alpha},\beta\beta}\pi_{\alpha}\pi_{\beta}\partial_{\dot{\alpha}}\wedge\partial_{\beta}$ gives a holomorphic Poisson struc-
ture on the projective space 9. Since for any Poisson manifold has a formal
deformation on it, as seen in the previous subsection 2.4, we have the asser-
tion.

(II) Second pmof is more direct and referent formula enables us to compute
star exponentials explicitly. First we remark that Weyl type star product
means the following product:

$f(Z)*g(Z)=f(Z) \exp[\frac{\mu}{2}\partial_{Z_{\alpha}}\Lambda^{\dot{\alpha},\beta}\partial_{Z_{\beta}}arrowarrow ]$$g(Z)$ , (12)

that is, the Moyal type pmduct formula, where $Z=(Z_{1}, \ldots, Z_{2n})$ and $\mu=$

$-\sqrt{-1}\hslash$ . Then we have the following.

7More precisely, defromation quantization to the direction of the holomorphic Poisson
structure.

8Moreprecisely, it gives a globally defined noncommutative associative product on the
structure sheaf $\mathcal{O}_{\mathbb{C}\mathbb{P}^{3}}[[\mu, \mu],$ $\mu=-\sqrt{-1}\hslash$ .

9Note that this Poisson structure is not the Fubini-Study fundamental form.
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Proposition 2.13 Suppose the assumption below:

$\partial_{Z_{\alpha_{1}}}arrow\Lambda^{\dot{\alpha}_{1},\beta_{1}}\partial_{Z_{\beta_{1}}}\cdots\partial_{Z_{\alpha_{k}}}arrowarrow\Lambda^{\dot{\alpha}_{k},\beta_{k}}\partial_{Z_{\beta_{k}}}arrow$

$=$ $\partial_{Z_{\alpha_{1}..\alpha_{k}}}arrow.\Lambda^{\dot{\alpha}_{1},\beta_{1}}\cdots\Lambda^{\dot{\alpha}_{k},\beta_{k}}\partial_{Z_{\beta_{1}\ldots\beta_{k}}^{arrow}}$ (13)

Then, the Weyl type star product gives a noncommutative, associative pmd-
$uct$ . Hence, it gives a star pmduct.

In order to realize the noncommutative, associative product, we use the Weyl
type star product ($i.e$ . Weyl ordering) 10. For abbreviation, we set a matrix

$\hat{\Lambda}:=[\frac{2}{\sqrt{-1}}D^{\alpha\dot{\alpha},\beta\beta}\pi_{\alpha}\pi_{\beta}]_{\dot{\alpha},\beta}$ , (14)

and then $\hat{\Lambda}$ is a skew symmetric matrix.

Proposition 2.14 The coefficients of $\hat{\Lambda}$ depend on the variables on the base
manifold in our case. However, $\hat{\Lambda}$ satisfies the above assumption (13).

Combining these Propositions 2.13 and 2.14 completes the proof of Theo-
rem2.12, thus the first assertion 1 of main theorem. $\square$

3 Sketch of the proof of the second assertion
2 in main result

In this section, we would like to compute star exponentials for quadratic
polynomials with the form $f(Z)=g(t)e^{\frac{1}{\mu}Q[Z](t)}$ under a quite general setting
more than settings of [9, 10, 18, 20, 21, 22, 24, 25].

We begin this section with remarking that we can demonstrate our com-
putation of star product under a slightly general setting with the assump-
tion above as seen in the previous subsection: Let $Z={}^{t}(Z^{1},$

$\ldots,$
$Z^{2n})$ ,

$A[Z]$ $:={}^{t}ZAZ$ , where $A\in Sym(2n, \mathbb{R})$ , i.e. $A$ is a $2n\cross 2n$-real symmet-
ric matrix. In order to compute the star exponential function $e^{\frac{1}{*\mu}A[Z]}$ with

$1_{It}$ is well-known that under the suitable conditions, Kontsevich’s star product reduces
the Moyal type product.
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respect to the Moyal type product formula, we treat the following evolution
equation:

$\partial_{t}F=\frac{1}{\mu}A[Z]*F$, (15)

with an initial condition
$F_{0}=e^{\frac{1}{\mu}B[Z]}$ , (16)

where $B\in Sym(2n, \mathbb{R}),$ $\mu=-\sqrt{-1}\hslash$ .
As seen above, our settingll is rather different from the situations consid-

ered in the article [10] by Maillard, in [9, 18, 20, 21, 22, 24, 25] by OMMY,
and in the book [18] entitled Physics in Mathematics, Univ. Tokyo Press
by Omori (see also [28]). However, to compute star exponentials, we can
use similar methods employed in the articles and book above, as will be seen
below:

Under the assumption $F(t)=g\cdot e^{\frac{1}{\mu}Q[Z]}(g=g(t), Q=Q(t))$ , we would
like to find a solution of the equations (15) and (16).

Direct computations give

L.H.S. of (15) $=$ $g’e^{\frac{1}{\mu}Q[Z]}+g \frac{1}{\mu}Q’[Z]e^{\frac{1}{\mu}Q[Z]}$ ,

R.H.S. of (15) $=$ $\frac{1}{\mu}A[Z]*F$

$(12)=$
$\frac{1}{\mu}A[Z]\cdot F+\frac{i\hslash}{2}\Lambda^{i_{1}j_{1}}\partial_{i_{1}}\frac{1}{\mu}A[Z]\cdot\partial_{j_{1}}F$

$- \frac{\hslash^{2}}{2\cdot 4}\Lambda^{i_{1}j_{1}}\Lambda^{i_{2}j_{2}}\partial_{i_{1}i_{2}}\frac{1}{\mu}A[Z]\partial_{j_{1}j_{2}}F$

(17)

where $A=(A_{ij}),$ $\Lambda=(\Lambda^{ij})$ and $Q=(Q_{ij})$ . Comparing the coefficient of
$\mu^{-1}$ gives

$Q’[Z]=A[Z]-2^{t}A\Lambda Q[Z]-Q\Lambda A\Lambda Q[Z]$ . (18)

Applying $\Lambda$ by left and setting $q:=\Lambda Q$ and $a:=\Lambda A$ , we easily obtain

$\Lambda Q’$ $=$ $\Lambda A+\Lambda Q\Lambda A-\Lambda A\Lambda Q-\Lambda Q\Lambda A\Lambda Q$

1li.e. deformation quantization of the structure sheaf $\mathcal{O}_{\mathbb{C}\mathbb{P}^{3}}$ to the direction of holomor-
phic Poisson structure.

12Quillen’s method is very useful to compute superconnection character forms and su-
pertrace of Dirac-Laplacian heat kernels (cf. [4, 13])
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$=$ $(1+\Lambda Q)\Lambda A(1-\Lambda Q)$

$=$ $(1+q)a(1-q)$ . (19)

As to the coefficient of $\mu^{0}$ , we have

$g’$ $=$ $\frac{1}{2}\Lambda^{i_{1}j_{1}}\Lambda^{i_{2}j_{2}}A_{i_{1}i_{2}}gQ_{j_{1}j_{2}}$

$=$ $- \frac{1}{2}tr(aq)\cdot g$ . (20)

Thus

Theorem 3.1 The equation (15) is rewritten by

$\partial_{t}q$ $=$ $(1+q)a(1-q)$ , (21)

$\partial_{t}g$ $=$ $- \frac{1}{2}tr(aq)\cdot g$ . (22)

In order to solve the equations (21) and (22), we now recall the “Cayley
transform.”

Proposition 3.2 Set $C(X)$ $:= \frac{1-X}{1+X}$ if $\det(1+X)\neq 0$ Then

1. $X\in sp_{\Lambda}(n, \mathbb{R})\Leftrightarrow\Lambda X\in Sym(2n, \mathbb{R})$ ,
and then $C(X)\in Sp_{\Lambda}(n, \mathbb{R})$ , where

$Sp_{\Lambda}(n, \mathbb{R}):=\{g\in M(2n, \mathbb{R})|^{t}g\Lambda g=\Lambda\}$ ,
$sp_{\Lambda}(n, \mathbb{R})$ $:=Lie(Sp_{\Lambda}(n, \mathbb{R}))$ .

2. $C^{-1}(g)= \frac{1}{1}+g-\Delta$ , (the Snverse Cayley transform”).

3. $e^{2\sqrt{-1}a}=c(-\sqrt{-1}\tan(a))$ .

4. $\log a=2\sqrt{-1}$ arctan$(\sqrt{-1}C^{-1}(g))$ .

5. $\partial_{t}q=(1+q)a(1-q)$ニ $\partial_{t}C(q)=-2aC(q)$ .

Proof Direct computations show these assertions. $\square$
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Solving the above equation 5 in Proposition 3.2, we have

$C(q)=e^{-2at}C(b)$ ,

where $b=\Lambda B$ and then

$q=C^{-1}(e^{-2at}\cdot C(b))=C^{-1}(C(-\sqrt{-1}\tan(\sqrt{-1}at) \cdot C(b))$ .

Hence, according to the inverse Cayley transform, we can get $Q$ in the fol-
lowing way.

Proposition 3.3

$Q=-\Lambda\cdot C^{-1}(C(-\sqrt{-1}\tan(\sqrt{-1}\Lambda At))\cdot C(\Lambda B))$ . (23)

Next we compute the amplitude coefficient part $g$ . Solving

$g’=- \frac{1}{2}Tr(aq)\cdot g$ (24)

gives

Proposition 3.4

$g= \det^{-\frac{1}{2}}(\frac{e^{at}(1+b)+e^{-at}(1-b)}{2})$ . (25)

Setting $t=1,$ $a=\Lambda A$ and $b=0$ , we get

Theorem 3.5

$e^{\frac{1}{*\mu}A[Z]}$

$=$ $\det^{-\frac{1}{2}}(\frac{e^{\Lambda A}+e^{-\Lambda A}}{2})$ . $e^{\frac{1}{\mu}(\frac{\Lambda^{-1}}{\sqrt{-1}}\tan(\sqrt{-1}\Lambda A))[Z]}$

. (26)

Combining Theorems 2.12, 3.5 with sheaf cohomology of projective space,
we have the following (cf. [16]).

Theorem 3.6 Assume that $\Lambda$
$:=\hat{\Lambda}$ and $A[Z]$ a homogeneous polynomial of

$z^{i}=x^{\alpha,i}\pi_{\alpha},$ $z^{2}=x^{\alpha,2}\pi_{\alpha}$ with degree 2. Then a star exponential function
$e^{\frac{1}{\#\mu}A[Z]}$ gives a cohomology class of $\mathbb{C}\mathbb{P}^{3}$ with coefficients in a suitable sheaf.
This completes the proof of main theorem. $\square$
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4 Concluding remarks
In this article, we are mainly concerned with only typical twistor space.
However, we believe that these arguments can be extended to a certain class
of Lie tensor contact manifolds in the sense of [29]. We also remark that we
can deform the super twistor spaces to odd-odd direction and then obtain
non-anti-commutative products (cf. [16] and [31]).
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