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Abstract

The Cosserat theory for continua with microstructure can be geometrically inter-
preted as a continuum dynamics on vector bundle. In this talk, we begin with ge-
ometrical settings for the continua with microstructure and construct its dynamics
as continuum dynamics on vector bundle. As an example, we deal with a Cosserat
rod, which is considered as a one-dimensional continuum with microstructure. In
addition, we suggest that we can describe lower microstructure of the elastic rods, by
extending the base manifold of the vector bundle to a three-dimensional continuum.
Such rod model well represents biomolecules involving various interacting factors, so
that the model can be applied to analysis of deformation behavior of biomolecules.
We expect that our geometrical method would contribute to development of the
molecular biomechanics.

1 Introduction

We attempt to construct geometrical foundations and dynamical frameworks of a directed
medium based on the fiber bundle theory. The directed medium is a continuum with
microstructures that is described by a deformable vector, called a director. Studies on the
directed medium were actively pursued in the $1960s$ , for example, by Ericksen [1], Toupin
[2], and Eringen and \S uhubi [3] and in recent years, have been investigated from many
point of views such as elast-plasticity [4, 5], advanced materials [6], and biomechanics
[7, 8]. In contrast, since about the $1960s$ , the elastic theory has been reconstructed using
differential geometry, for example, by Green and Rivilin [9], Noll [10], and Wang [11].
A modern text by Marsden and Hughes [12] helps us to consider geometrical settings of
elasticity (see also an early textbook [13]). In this study, we develop the dynamics of the
directed medium based on the fiber bundle theory in differential geometry.

In geometric continuum mechanics, an elastic body is viewed as a differentiable mani-
fold, while a directed medium is viewed as a vector bundle whose fiber denotes a collection
of the deformable directors. Hence, the mechanical behaviors of the directed medium
should be described as the continuum dynamics on a tangent bundle of a vector bundle.
Thus, we begin with a geometrical setting of the continuum dynamics on a vector bundle,
and derive a weak form and equations of motion for the directed medium. For future
applications, we use elasticity notations to provide a framework of continuum dynamics
on the vector bundle and present some figures for better understanding. Moreover, we
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apply our resultant equations to a Cosserat rod, as an example, and find that the derived
equations of motion coincide with the balance laws of large deformable rods. It is simple
to prove such a coincidence if the equations of motion are restricted to the special Cosserat
rod with undeformed cross-section.

We can use our description to examine such macro-micro interactive mechanisms, if
we have to consider only the geometrical structures of objects using the mechanisms,
i. e., the corresponding base manifolds and fiber spaces. Such geometrical considerations
help us to improve our understanding of the complicated mechanical behaviors of various
structures associated with the macro-micro interactive mechanisms.

2 Geometry and kinematics
In the geometric continuum mechanics, an elastic body is viewed as an m-dimen-sional
Riemannian manifold $\mathcal{B}$ , and deforms in an ambient space $S$ , an n-dimen-sional Rieman-
nian manifold $(m\leq n)[12]$ . In contrast, when we consider a deformation of a continuum
with microstructure, we must replace these manifolds with principal fiber bundles, de-
noting by $\mathcal{P}$ and 2, respectively, over the manifolds $\mathcal{B}$ and $S$ . The microstructure is
often expressed by a r-dimensional vector $(r\leq n)$ , called director. In this case, the space
consisting of the directors, 7, is exactly the fiber of the bundle $\mathcal{P}arrow \mathcal{B}$ , and then $\mathcal{P}$

can be considered as the real vector bundle $g\simeq \mathcal{B}\cross 7$ .
A configuration of the continuum with microstructure is given by a smooth embedding

$\Phi$ : $\mathcal{P}arrow 2$ , then the configuration space is a space of all embeddings,

$=$ { $\Phi$ : $\mathcal{P}arrow 2$ , smooth embedding}. (2.1)

Indeed, for an arbitrary point $p=(b, v)\in \mathcal{P}\simeq \mathcal{B}\cross\gamma/(b\in \mathcal{B}$ and $v\in\gamma)$ , we can define
the embedding $\Phi$ through embedding of the base manifold $\phi$ : $\mathcal{B}arrow S$ and projection
onto the fiber $\varphi$ : $\mathcal{B}\cross 7arrow \mathbb{R}^{r}$ ;

$\Phi(p)=(\phi(b), \varphi(b, v))$ . (2.2)

It is easy to verify that this map is the embedding. We note here that the ambient bundle
J2 is the vector bundle $9arrow S$ with fiber $\mathbb{R}^{r}$ , i. e., $9arrow S\cross \mathbb{R}^{r}$ , as shown in Fig. 1.

For sake of simplicity, we take the ambient space as the n-dimensional Euclidean
space; $S\simeq \mathbb{R}^{n}$ , and we embed the fiber space $\mathbb{R}^{r}$ into the same Euclidean space $\mathbb{R}^{n}$ .
Then we denote position vectors of points in the reference body $\mathcal{B}_{0}$ and current body
$\mathcal{B}$ by $X=\phi_{0}(b_{0})(b_{0}\in \mathcal{B}_{0})$ and $x=\phi(b)(b\in \mathcal{B})$ , respectively. Also, we denote
reference and current directors associated with their points by $\Xi=\varphi_{0}(b_{0}, v_{0})(v_{0}\in 7_{0}’)$

and $\xi=\varphi(b, v)(v\in Y)$ , as shown Fig. 1. Accordingly, three deformation gradient tensors
can be defined as

$F= \frac{\partial x}{\partial X}$ , $\mathfrak{F}=\frac{\partial\xi}{\partial X}$ , $\mathcal{F}=\frac{\partial\xi}{\partial_{-}^{-}-}$ , (2.3)

called the macro, mixture, and micro deformation gradient, respectively.
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Figure 1: Illustration of the continuum with microstructure, $\mathcal{P}\simeq \mathcal{B}\cross 7$ , embedded into
the ambient bundle, $\ovalbox{\tt\small REJECT}\simeq S\cross \mathbb{R}^{r}$ , and its local coordinates in 2.

Since the trivialization of bundle 2 is expressed as
$9\simeq S\cross \mathbb{R}^{r}$ , (2.4)

the flat connection is defined on the bundle 2. Accordingly, the tangent bundle T.2 is
decomposed into the tangent bundles $TS$ and $T\mathbb{R}^{r}$ ;

$T2\simeq TS\oplus T\mathbb{R}^{r}$ . (2.5)

Also, the cotangent bundle $T^{*}9$ is decomposed by the flat connection, so that one-form
$dq\in T_{q}^{*}2$ is put in the form

$dq=dx+d\xi$ , (2.6)

and expressed, in terms of the reference coordinates $q_{0}=(X, \Xi)$ , as
$dq=(F+\mathfrak{F})dX+\mathcal{F}d\Xi$ . (2.7)

From Eq. (2.7), the quadratic form $dq^{2}$ is calculated as
$dq^{2}=dX^{T}(F+\mathfrak{F})^{T}(F+\mathfrak{F})dX$

$+dX^{T}(F+\mathfrak{F})^{T}\mathcal{F}d\Xi+d\Xi^{T}\mathcal{F}^{T}(F+\mathfrak{F})dX$

$+d\Xi^{T}\mathcal{F}^{T}\mathcal{F}d\Xi$ , (2.8)

where $T$ denotes the transposition of tensors. Here, we set
$C=(F+\mathfrak{F})^{T}(F+\mathfrak{F})$ , (2.9a)
$C=\mathcal{F}^{T}\mathcal{F}$ , (2.9b)
$C=\mathcal{F}^{T}(F+\mathfrak{F})$ , (2.9c)
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called macro deformation, micro deformation, and (macro-micro) mixture deformation,
respectively. The reference deformations put in the form

$C_{0}=(I+\mathfrak{F}_{0})^{T}(I+\mathfrak{F}_{0})$ , (2.10a)
$C_{0}=I$ , (2.10b)
$C_{0}=I^{T}(I+\mathfrak{F}_{0})$ , (2.10c)

where $I$ is n-th order identity tensor, and where $\mathfrak{F}_{0}=\partial\Xi/\partial X$ , as well. Thus, we have
the difference of the current and reference quadratic forms,

$dq^{2}-dq_{0}^{2}=dX^{T}(C-C_{0})dX$

$+dX^{T}(C-C_{0})^{T}d\Xi+d\Xi^{T}(C-C_{0})dX$

$+d\Xi^{T}(C-C_{0})d\Xi$ , (2.11)

so that we define the strains as

$E= \frac{1}{2}(C-C_{0})$ , (2.12a)

$\mathcal{E}=\frac{1}{2}(C-C_{0})$ , (2.12b)

$\not\subset=\frac{1}{2}(C-C_{0})$ . (2.12c)

Then we call them macro strain, micro strain, and (macro-micro) mixture strain, re-
spectively. Here, we comment on the terminologies used by Eringen’s textbook for the
microcontinuum [14]. In the textbook, our mixture deformation $C$ is decomposed into
$\mathcal{F}^{T}F$ and $\mathcal{F}^{T}\mathfrak{F}$ , called the Cosserats deformation tensor, when the director is deformed
rigidly, “micropolar continua” according to the textbook, and the wryness tensor, respec-
tively. Additionally, the micro deformation tensor is defined in the same manner, while
the macro deformation tensor is linearized to $F^{T}F$ .

3 Dynamics
Now, we consider a Lagrangian $\mathcal{L}=\mathcal{T}-\mathcal{W}$ , where $\mathcal{T}$ is the kinetic energy, defined through
a metric on , and $\mathcal{W}$ is a potential function on . Then the dynamics of the continuum
with microstructure is described on the tangent bundle $T$ of the configuration space ,
that is, the Lagrangian $\mathcal{L}$ is defined as a function of the tangent bundle $T$ to $\mathbb{R}$ ,

$\mathcal{L}(\Phi,\dot{\Phi})=\mathcal{T}(\Phi,\dot{\Phi})-\mathcal{W}(\Phi)$ . (3.1)

Usually, the strain energy $\mathcal{W}(\Phi)$ is expressed as a functional of $\psi$ , which is difined as a
function of the deformation gradient tensors $F_{:}\mathfrak{F}$ , and $\mathcal{F}$ :

$\mathcal{W}(\Phi)=\int_{p}\psi(F, \mathfrak{F}, \mathcal{F})dV$. (3.2)

Here, $dV$ is the volume form of the rnaterial bundle $\mathcal{P}$ .
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We also denote the Lagrangian and kinetic enegy densities by $\mathcal{L}$ and ,9, respectively,
i. e., $\mathcal{L}=\int \mathcal{L}dV$ and $\mathcal{T}=\int\ovalbox{\tt\small REJECT} dV$ , and, for simplicity, we consider those densities as
functions of the local coordinates $(x, \xi,\dot{x},\dot{\xi})$ on the tangent bundle $T\ovalbox{\tt\small REJECT}$ . In this case, the
Hamilton’s principle for any time interval $[t_{0}, t_{1}]$ is expressed as follows:

$\int_{t_{0}}^{t_{1}}\int_{\Phi(\mathcal{P})}(\frac{\partial \mathcal{L}}{\partial x}$ . $\delta x+\frac{\partial \mathcal{L}}{\partial\dot{x}}$ . $\delta\dot{x}+\frac{\partial \mathcal{L}}{\partial\xi}$ . $\delta\xi+\frac{\partial \mathcal{L}}{\partial\dot{\xi}}$ . $\delta\dot{\xi}$

$+ \frac{\partial \mathcal{L}}{\partial F}$ : $\delta F+\frac{\partial \mathcal{L}}{\partial \mathfrak{F}}$ : $\delta \mathfrak{F}+\frac{\partial \mathcal{L}}{\partial \mathcal{F}}$ : $\delta \mathcal{F})\Phi(dV)dt=0$ , (3.3)

where we have denoted, by. and :, the inner product of vectors and double contraction
of tensors, respectively, or equivalently the simple-dot and double-dot products in the
dyadics. Then, by performing partial integration and using the divergence theorem, we
obtain the weak form for the continuum with microstructure,

$\int_{t_{0}}^{t_{1}}\int_{\Phi(9)}[(\frac{\partial}{\partial t}(\frac{\partial ff}{\partial\dot{x}})-\frac{\partial F}{\partial x}-\frac{\partial}{\partial X}\cdot(\frac{\partial\Psi}{\partial F}))\cdot\delta x$

$+( \frac{\partial}{\partial t}(\frac{\partial F}{\partial\dot{\xi}})-\frac{\partial\ovalbox{\tt\small REJECT}}{\partial\xi}-\frac{\partial}{\partial X}\cdot(\frac{\partial\psi}{\partial \mathfrak{F}})-\frac{\partial}{\partial_{-}^{-}-}\cdot(\frac{\partial\psi}{\partial \mathcal{F}}))\cdot\delta\xi]\Phi(dV)dt$

$+ \int_{t_{0}}^{t_{1}}\int_{\Phi(\partial 9)}[N\cdot\frac{\partial\Psi}{\partial F}\cdot\delta x+N\cdot(\frac{\partial\psi}{\partial \mathfrak{F}}+\frac{\partial\psi}{\partial \mathcal{F}})\cdot\delta\xi]\Phi(dA)dt=0$, (3.4)

where $\partial \mathcal{P}$ denotes the boundary of the material bundle $\mathcal{P}$ , and $N$ and $dA$ are the unit
normal to $\partial \mathcal{P}$ and the area form of $\partial \mathcal{P}$ , respectively.

Finally, we assume that the Lagrangian density $\mathcal{L}=\ovalbox{\tt\small REJECT}-\psi$ has a compact support
and that the variations are fixed at the end points, $\delta x=\delta\xi=0(t=t_{0}, t_{1})$ . Then we
have equations of motion for the continuum with microstructure

$\frac{\partial}{\partial t}(\frac{\partial F}{\partial\dot{x}})=\frac{\partial ff}{\partial x}+\frac{\partial}{\partial X}\cdot(\frac{\partial\Psi}{\partial F})$ , (3.5a)

$\frac{\partial}{\partial t}(\frac{\partial ff}{\partial\dot{\xi}})=\frac{\partial ff}{\partial\xi}+\frac{\partial}{\partial X}\cdot(\frac{\partial\Psi}{\partial \mathfrak{F}})+\frac{\partial}{\partial_{-}^{-}-}\cdot(\frac{\partial\Psi}{\partial \mathcal{F}})$ . (3.5b)

By introducing the generalized Piola-Kirchhoff stress tensors,

$P= \frac{\partial\psi}{\partial F}$ , $\mathfrak{P}=\frac{\partial\Psi}{\partial \mathfrak{F}}$ , $\mathcal{P}=\frac{\partial\psi}{\partial \mathcal{F}}$ , (3.6)

we obtain the equations of motion, in terms of the generalized stress tensors,

$\frac{\partial}{\partial t}(\frac{\partial g}{\partial\dot{x}})=\frac{\partial ff}{\partial x}+P\cdot(\frac{\partial}{\partial X})$ , (3.7a)

$\frac{\partial}{\partial t,}(\frac{\partial ff}{\partial\dot{\xi}})=\frac{\partial F}{\partial\xi}+\mathfrak{P}\cdot(\frac{\partial}{\partial X})+\mathcal{P}\cdot(\frac{\partial}{\partial_{-}^{--}})$ . (3.7b)

Thus, the balance laws for the continuum with microstructure are reconstituted.
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4 An example: Cosserat rods
As an example, we consider a Cossrat rod laid in the three-dimensional Euclidean space
$\mathbb{R}^{3}(n=3)$ . In this case, the bundle $\mathcal{P}$ is the Cosserat rod, a one-dimensional continuum
$\mathcal{B}$ expresses the center axis of rod, and the director attached to each point of $\mathcal{B}$ is the
three-dimensional vector to describe points in the cross-section at each point on the axis
$(m=1, r=3)$ . Then, it is enough that the vector bundle $e2$ is taken as $\mathbb{R}^{3}\cross \mathbb{R}^{3}$ .

We parameterize a position vector $r(s, t)$ of an arbitrary point on $\phi(\mathcal{B})$ by the arc-
length parameter $s$ and the time parameter $t$ . We define a right-handed orthonormal
basis, $\{d_{1}(s, t), d_{2}(s, t), d_{3}(s, t)\}$ , along $\phi(\mathcal{B})$ at $s$ with $d_{1}=\partial r/\partial s$ , and introduce the
curvature vector $\kappa(s, t)$ in the current body through

$\frac{\partial d_{k}}{\partial s}=\kappa\cross d_{k}$ . (4.1)

The component $\kappa^{1}=\langle d_{1},$ $\kappa\}$ of $\kappa$ gives the torsion of $\phi(\mathcal{B})$ in the current configuration;
the two components, $\kappa^{\alpha}=\langle d_{\alpha},$ $\kappa\rangle,$ $\alpha=2,3$ , are components of the current curvature of
$\phi(\mathcal{B})$ and are related to the geometric curvature $\tilde{\kappa}$ of the current axial curve through the
formula $(\tilde{\kappa})^{2}=(\kappa^{2})^{2}+(\kappa^{3})^{2}$ . Then the Cosserat rod is provided as

$x(s, t)=r(s, t)$ , $\xi(s, t)=\xi^{k}d_{k}(s, t)$ . (4.2)

It is illustrated as Fig. 2. We use curvilinear coordinates with respect to $\{d_{k}\}$ . Throughout
this article, the summation convention is used for repeated indices, with Latin indices
taking the values {1, 2, 3} and Greek indices taking the values {2, 3}.

Figure 2: Illustration of the reference and current configurations of the Cosserat rod.

Additionally, we denote quantities for reference body by the capital letters of the
corresponding ones for current body, that is, $R(S, 0)$ is the position vector of an ar-
bitrary point on $\phi_{0}(\mathcal{B}_{0})$ by the arc-length parameter $S$ associated with $\phi_{0}(\mathcal{B}_{0})$ , and
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$\{D_{1}(S,$ $0),$ $D_{2}(S, 0),$ $D_{3}(S, 0)\}$ is a right-handed orthonormal basis along $\phi_{0}(\mathcal{B}_{0})$ at $S$ such
that $D_{1}=\partial R/\partial S$ . Then, the reference curvature vector $\mathcal{K}_{0}(S, 0)$ is similarly defined by

$\frac{\partial D_{k}}{\partial S}=\mathcal{K}_{0}\cross D_{k}$ . (4.3)

The component $\mathcal{K}_{0}^{1}=\langle D_{1},$ $\mathcal{K}_{0}\}$ of $\mathcal{K}_{0}$ gives the torsion of $\phi_{0}(\mathcal{B}_{0})$ in the reference config-
uration; the two components, $\mathcal{K}_{0}^{\alpha}=\langle D_{\alpha},$ $\mathcal{K}_{0}\rangle,$ $\alpha=2,3$ , are components of the reference
curvature of $\phi_{0}(\mathcal{B}_{0})$ and are related to the geometric curvature $\tilde{\mathcal{K}}_{0}$ of the reference axial
curve through the formula $(\tilde{\mathcal{K}}_{0})^{2}=(\mathcal{K}_{0}^{2})^{2}+(\mathcal{K}_{0}^{3})^{2}$ . Thus, the reference configuration is
provide as

$X(S, 0)=R(S, 0)$ , $\Xi(S, 0)=\Xi^{\alpha}D_{\alpha}(S, 0)$ . (4.4)

It is shown as Fig. 2. Here, we consider that the reference configuration is unstressed
state, and then the cross-sections of the reference filament is assumed to be normal to its
axial curve. If the cross-sections of the current filament remain normal to the current axial
curve, we may constrain $\xi^{1}=0$ . When we suppose the special Cosserat rod, in which it
is assumed that the cross-sections of the current filament remain plane, undeformed, and
normal to the current axial curve, we have to append the constraints $\xi^{1}=0$ and $\xi^{\alpha}=\Xi^{\alpha}$ .

Further, the extension $\epsilon(s, t)$ of the axial curve can be defined through

$\frac{\partial s}{\partial S}=(1+\epsilon)$ . (4.5)

Using the above the deference relation, we obtain the deformation gradients

$F=(1+\epsilon)d_{1}\otimes D^{1}$ , (4.6a)

$\mathfrak{F}=(1+\epsilon)(\frac{\partial\xi^{k}}{\partial s}+\xi^{k}R(\kappa))d_{k}\otimes D^{1}$ , (4.6b)

$\mathcal{F}=\frac{\partial\xi^{k}}{\partial_{-}^{-\alpha}-}d_{k}\otimes D^{\alpha}$ , (4.6c)

where $R(a)$ is the skew symmetric tensor associated with a polar vector $a$ . Then the
current and reference deformations are calculated as, respectively,

$C=(1+ \epsilon)^{2}\Vert\frac{\partial}{\partial s}(r+\xi)\Vert^{2}D^{1}\otimes D^{1}$ , (4.7a)

$\not\subset=\langle\frac{\partial\xi}{\partial_{-}^{-\alpha}-},$ $(1+ \epsilon)\frac{\partial}{\partial s}(r+\xi)\rangle D^{\alpha}\otimes D^{1}$ , (4.7b)

$C= \langle\frac{\partial\xi}{\partial_{-}^{-\alpha}-},$ $\frac{\partial\xi}{\partial_{-}^{-\beta}-}\}D^{\alpha}\otimes D^{\beta}$ , (4.7c)

and

$C_{0}= \Vert\frac{\partial}{\partial S}(R+\Xi)\Vert^{2}D^{1}\otimes D^{1}$ , (4.8a)

Co $=\langle D_{\alpha},$ $\frac{\partial}{\partial S}(R+\Xi)\}D^{\alpha}\otimes D^{1}=\epsilon_{1\alpha\beta}\mathcal{K}_{0}^{1}\Xi^{\alpha}D^{\beta}\otimes D^{1}$ , (4.8b)

$C_{0}=\delta_{\alpha\beta}D^{\alpha}\otimes D^{\beta}$ , (4.8c)
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where $\epsilon_{klm}$ is the Edinton’s epsilon, and $\Vert\cdot\Vert$ denotes the standard inner product on the
Euclidean spaces. Thus, we obtain the strains as follows:

$E= \frac{1}{2}[(1+\epsilon)^{2}\Vert d_{1}+\xi^{\alpha}R(\kappa)d_{\alpha}\Vert^{2}-\Vert D_{1}+\Xi^{\alpha}R(\mathcal{K}_{0})D_{\alpha}\Vert^{2}]D^{1}\otimes D^{1}$ , (4.9a)

$\not\subset=\frac{1}{2}[\langle\frac{\partial\xi}{\partial_{-}^{-\alpha}-},$ $(1+ \epsilon)\frac{\partial}{\partial s}(r+\xi)\rangle-\langle D_{\alpha},$ $\frac{\partial}{\partial S}(R+\Xi)\rangle]D^{\beta}\otimes D^{1}$ , (4.9b)

$\mathcal{E}=\frac{1}{2}[\langle\frac{\partial\xi}{\partial_{-}^{-\alpha}-},$ $\frac{\partial\xi}{\partial_{-}^{-\beta}-}\}-\delta_{\alpha\beta}]D^{\alpha}\otimes D^{\beta}$. (4.9c)

Because of using the moving frame, we must rewrite the variational formulation. To
this end, we begin with defining the variation $\delta k$ , associated with the orthonomal basis,
through

$\delta d_{k}=\delta k\cross d_{k}$ , (4.10)

so that the variation of the director $\xi$ is expressed as

$\delta\xi=\delta k\cross\xi$ , (4.11)

and the variations of the deformation gradients $F,$ $\mathfrak{F}$ , and $\mathcal{F}$ become

$\delta F=\frac{\partial}{\partial R}(\delta r)+R(\delta k)F$, (4.12a)

$\delta \mathfrak{F}=\frac{\partial}{\partial R}(\delta\xi)+R(\delta k)\mathfrak{F}$, (4.12b)

$\delta \mathcal{F}=\frac{\partial}{\partial_{-}^{-}-}(\delta\xi)+R(\delta k)\mathcal{F}$. (4.12c)

Then the weak form is rewretten as

$\int_{t_{0}}^{t_{1}}\int_{\Phi(9)}[(\frac{\partial}{\partial t}(\frac{\partial F}{\partial\dot{r}})-\frac{\partial ff}{\partial r}-\frac{\partial}{\partial R}\cdot(\frac{\partial\psi}{\partial F}))\cdot\delta r$

$-( \frac{\partial\psi}{\partial F}$ : $R( \delta k)F+\frac{\partial\Psi}{\partial \mathfrak{F}}$ : $R( \delta k)\mathfrak{F}+\frac{\partial\Psi}{\partial \mathcal{F}}$ : $R(\delta k)\mathcal{F})$

$+( \xi\cross(\frac{\partial}{\partial t}(\frac{\partial ff}{\partial\dot{\xi}})-\frac{\partial ff}{\partial\xi}-\frac{\partial}{\partial R}\cdot(\frac{\partial\Psi}{\partial \mathfrak{F}})-\frac{\partial}{\partial_{-}^{-}-}\cdot(\frac{\partial\Psi}{\partial \mathcal{F}})))\cdot\delta k]\Phi(dV)dt$

$+ \int_{t_{0}}^{t_{1}}\int_{\Phi(\partial p)}[N\cdot\frac{\partial\psi}{\partial F}\cdot\delta r+\xi\cross(N\cdot(\frac{\partial\psi}{\partial \mathfrak{F}}+\frac{\partial\ovalbox{\tt\small REJECT}’}{\partial \mathcal{F}}))\cdot\delta k]\Phi(dA)dt=0$. (4.13)

Hence, under the fixed end points conditons, $\delta r=\delta k=0$ , the equations of motion for
the Cosserat rod is derived as

$\frac{\partial}{\partial t}(\frac{\partial F}{\partial\dot{r}})=\frac{\partial\ovalbox{\tt\small REJECT}}{\partial r}+\frac{\partial}{\partial R}\cdot(\frac{\partial\psi}{\partial F})$ , (4.14a)

$\xi\cross\frac{\partial}{\partial t}(\frac{\partial F}{\partial\dot{\xi}})=\xi\cross(\frac{\partial\ovalbox{\tt\small REJECT}}{\partial\xi}+\frac{\partial}{\partial R}\cdot(\frac{\partial\Psi}{\partial \mathfrak{F}}I+\frac{\partial}{\partial_{-}^{-}-}\cdot(\frac{\partial\psi}{\partial \mathcal{F}}))$

$+F^{x} \frac{\partial\Psi}{\partial F}+\mathfrak{F}^{\cross}\frac{\partial\Psi}{\partial \mathfrak{F}}+\mathcal{F}^{x}\frac{\partial\psi}{\partial \mathcal{F}}$ , (4.14b)
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where
$\cross$

denotes the cross-dot product in the dyadics, and it is defined as

$(a_{1}\otimes a_{2})^{\cross}(a_{3}\otimes a_{4})=(a_{1}\cross a_{3})(a_{2}\cdot a_{4})$, (4.15)

for any vectors $a_{i}\in \mathbb{R}^{3}$ .
In terms of the local coordinates, the kinetic enegy density is expressed as

$eZ(r, \xi,\dot{r},\dot{\xi})=\frac{1}{2}\rho(r)(\Vert\dot{r}\Vert^{2}+\Vert\dot{\xi}\Vert^{2})$ , (4.16)

where $\rho(r)$ is a mass density of the body at $r$ in the current configuration $\phi(\mathcal{B})$ . Thus,
we obtain the equations of motion for the special Cosserat rods expressed in terms of the
generalized stress tensors,

$\frac{\partial}{\partial t}(\rho\dot{r})=\frac{1}{2}\frac{\partial\rho}{\partial r}\Vert\dot{r}\Vert^{2}+\frac{\partial}{\partial S}(P\cdot D^{1})$ , (4.17a)

$\xi\cross\frac{\partial}{\partial t}(\rho\dot{\xi})=\xi\cross(\frac{\partial}{\partial S}(\mathfrak{P}\cdot D^{1}+\mathcal{P}\cdot\Xi^{\alpha}R(\mathcal{K}_{0})^{T}D^{\alpha})+\frac{\partial}{\partial_{-}^{-\alpha}-}(\mathcal{P}\cdot D^{\alpha}))$

$+ \frac{\partial r}{\partial S}\cross(P\cdot D^{1})+\frac{\partial\xi}{\partial S}\cross(\mathfrak{P}\cdot D^{1}+\mathcal{P}\cdot D^{\alpha})+\frac{\partial\xi}{\partial_{-}^{-\alpha}-}\cross(\mathcal{P}\cdot D^{\alpha})$ .

(4.17b)

By these expressions, it is well to reconstruct the balance laws for the Cosserat rod.
At the last in this section, we reduce the above equations to those for the special

Cosserat rod, that is, we impose the constraints $\xi^{1}=0$ and $\xi^{\alpha}=\Xi^{\alpha}$ . In this case, the
micro deformation gradient becomes

$\mathcal{F}=\delta_{\beta}^{\alpha}d_{\alpha}\otimes D^{\beta}$, (4.18)

so that the generalized micro stress tensor vanishes; $\mathcal{P}=0$ , because of the assumption
about the undeformation of the cross-sections. Indeed, the micro strain vanishes, i. e.,
$\mathcal{E}=0$ . Here, we note that the linearlized macro and mixture strains become

$E_{1inear}=\epsilon D^{1}\otimes D^{1}$ , (4.19a)

$C_{linear}=\frac{1}{2}\epsilon_{1\alpha\beta}(\kappa^{1}-\mathcal{K}_{0}^{1})\Xi^{\alpha}D^{\beta}\otimes D^{1}$. (4.19b)

Then we obtain the well-known equations of motion for the special Cosserat rods expressed
in terms of the generalized stress tensors,

$\frac{\partial}{\partial t}(\rho\dot{r})=\frac{1}{2}\frac{\partial\rho}{\partial r}\Vert\dot{r}\Vert^{2}+\frac{\partial}{\partial S}(P\cdot D^{1})$ , (4.20a)

$\xi\cross\frac{\partial}{\partial t}(\rho\dot{\xi})=\frac{\partial}{\partial S}(\xi\cross(\mathfrak{P}\cdot D^{1}))+\frac{\partial r}{\partial S}\cross(P\cdot D^{1})$ . (4.20b)

We comment that $P\cdot D^{1}$ and $\xi\cross(\mathfrak{P}\cdot D^{1})$ is exactly the stress and couple-stress along
the center axis, respectively.
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5 Summary
In this study, we developed formulations for continuum dynamics on a tangent bundle of
a vector bundle that accurately describes the mechanical behavior of a directed medium.
Indeed, the dynamics of the one-dimensional continuum with a director are well expressed
as one of the Cosserat rod, in which the cross-sectional structure is considered as the
microstructure of the rod. For future developments, it is important to examine geometrical
structures of various continua with microstructures. Especially, in the case where we
consider a classification of microcontinua, it is necessary to investigate group actions
on the bodies and microstructures. For example, the group structures correspond to
Eringen’s classification, i. e., micromorphic, microstretch, and micropolar continua [14].

Moreover, we can extend the Cosserat rod to a model describing smaller microstruc-
ture of the elastic rod. Then the expressions for the smaller microstructure to analyze
deformation behavior of filaments including biopolymers. When a biopolymer expresses a
certain function within a living organism, its conformation is an important factor that de-
termes the function. Therefore, we believe to obtain a new knowledge of the interactions
between the dynamical situations and the biological circumstances of biopolymers, which
have been investigated recently by considering the deformation behavior of biopolymers
together with their microstructures.
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