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Abstract

As a trial to associate algorithms with quantum mechanical postulates in a sense,
the Karmarkar flow and an averaged learning equation of Hebb type are shown to be
generalized to gradient systems on the quantum information space. The former is a
continuous analogue of Karmarkar’s affine scaling algorithm for linear programming
and the latter is of a principal component analizer so that both systmems are sound
in engineering.

1 Introduction
Algorithms are looked upon as discrete-time dynamical systems in a sense that they
provide the evolution-rules of systems under consideration. Quite often, continuous ana-
logue of algorithms are investigated to obtain deeper understanding of those algorithms.
For example, the infinitesimal limit in the scaling parameter is applied to the celebrated
Karmarkar projective scaling algorithm [1] to obtain the differential equation named the
Karmarkar flow, which Karmarkar, the founder, has studied by himself [2]. As another
example, Oja’s rule of neuronal learning process is worth referred to, whose approxima-
tion in very small time-interval is introduced by Oja [3], the proposer of the rule. The
differential equation arising from the approximation will be referred to as the averaged
learning equation of Hebb type, which will be abbreviated to ALEH in this article.

In the middle of $1990’ s$ , Nakamura made a series of studies [4, 5, 6, 7] on differential
equations relevant to engineering algorithms including the Karmarkar flow [2, 6] and the
ALEH [3, 7] from integrability viewpoint: A Lax-type structure, gradient-system structure
and Hamiltonian structure. More than a decade after Nakamura’s works, an integrable
gradient system on the statistical manifold of multinomial distributions was shown by
Uwano [8, 9] to admit a very natural counterpart on the quantum information space
(QIS). The gradient system associated with the negative von Neumann entropy on the
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QIS was shown to be a generalization of the gradient system associated with the negative
Shannon entropy on the statistical manifold of multinomial distributions.

The encounter of the works by Nakamura [6] and by Uwano [8, 9] gave a strong
motivation to the authors to find other dynamical systems from Nakamura’s list [4, 5, 6, 7]
that allow natural counterpart on the QIS. The aim of the present article is to report that
the Karmarkar flow and the ALEH can be realized as gradient systems on the QIS.
The results on the Karmarkar flow in this article will be partially published soon in
the paper [10]. The results given in this paper could be placed as a clue to algorithms
with a quantum postulate since the dynamical systems dealt with are closely related to
engineering algorithms and since the manifold, the QIS, to describe their generalization
is highly quantum mechanical. Further, it could also be a clue to enlarge target area
for seeking a novel quantum algorithms other than Shor’s [11] and Grover’s [12] both of
which come from theory of computing. The contents of the present article are outlined in
what follows.

Section 2 is for preliminaries to geometry and dynamics used in this article. The QIS
is introduced as the space of $m\cross m$ regular density matrices endowed with the quantum
SLD (symmetric logarithmic derivative) Fisher metric. After the QIS, an explicit form
of the gradient gradient equation is derived through a differential geometric calculus.
Section 3 is one of the core parts, where the Karmarkar flow is realized as a gradient
system on the QIS. A gradient system form of the Karmarkar flow is reviewed along with
Nakamura’s paper [6]. After the review, the gradient system realizing the Karmarkar flow
on the QIS is derived by using preliminaries in Section 2. Section 4 is another of the
core parts, where the averaged learning equation of Hebb type (ALEH) is realized as a
gradient system on the QIS. The ALEH is introduced along the papers by Oja and by
Nakamura [3, 7], whose gradient system form is given together. After the review, the
ALEH is realized the gradient system on the QIS. In addition to the deriving method for
the Karmarkar flow on the QIS, a symmetry of the ALHE has to be revealed to ensure
the generalization. Section 5 is for concluding remarks.

2 Gradient systems on the QIS

2.1 The QIS

Following Uwano [8, 9], we introduce the quantum information space (QIS), which is
realized as the space of the regular density matrices endowed with the quantum SLD
(symmetric logarithmic derivative) Fisher metric in what follows.

Let us consider the space of $m\cross m$ regular density matrices,

$\dot{Q}_{m}=$ { $P\in M(m,$ $m)|p\dagger=P$ , tr $P=1,$ $P$ : positive definite}, (1)

where $M(m, m)$ is the set of $m\cross m$ complex matrices. The tangent space of $\dot{Q}_{m}$ at $P\in\dot{Q}_{m}$

is defined to be

$T_{P}\dot{Q}_{m}=\{\Xi\in M(m, m)|\Xi^{\dagger}=\Xi, tr \Xi=0\}$ . (2)

By the symmetric logarithmic derivative (SLD), denoted by $\mathcal{L}_{P}(\Xi)$ , at $P\in\dot{Q}_{m}$ subject to

$P\mathcal{L}_{P}(\Xi)+\mathcal{L}_{P}(\Xi)P=2\Xi$ $(\Xi\in T_{P}\dot{Q}_{m})$ (3)
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the quantum SLD Fisher metric, denoted by $((\cdot,$ $\cdot))^{QF}$ , is defined to be

$(( \Xi, \Xi’))_{P}^{QF}=\frac{1}{2}$ tr $[P(\mathcal{L}_{P}(\Xi)\mathcal{L}_{P}(\Xi’)+\mathcal{L}_{P}(\Xi’)\mathcal{L}_{P}(\Xi))]$ $(\Xi, \Xi’\in T_{P}\dot{Q}_{m})$ , (4)

(see [8, 9, 13]). Since $P\in\dot{Q}_{m}$ admits the expression,
$P=\prime r\Theta’r\dagger$ , $\prime r\in U(m)$ ,

(5)
$\Theta=$ diag $(\theta_{1}, \ldots, \theta_{m})$ with tr $\Theta=1$ , $\theta_{k}>0(k=1,2, \cdots, m)$ ,

$wher\underline{\underline{e}}\underline{\underline{U}}(mby((-,-,))_{P},hasanexp1icitexpressiond_{F}^{denotesthegroupofm\cross mu}$
nitary matrices, the SLD Fisher metric, denoted

$(( \Xi, \Xi’))_{P}^{QF}=2\sum_{j,k=1}^{m}\frac{\overline{X}_{jk}X_{jk}}{\theta_{j}+\theta_{k}}$, (6)

where $\Xi,$ $\Xi’\in T_{P}\dot{Q}_{m}$ are the Hermitean matrices subject to
$\Xi=TXT^{t},$ $\Xi’=TX’T^{t}$ . (7)

To summarize, we reach to the definition of the QIS.
Definition 2.1 The Riemannian manifold $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF})$ is called the quantum informa-
tion space, which is often abbreviated to as the $QIS$ henceforth.

2.2 Gradient equation
Let us derive the gradient equation on the QIS associated with an arbitrary potential
function. By differential geometric convention, functions are assumed to be of $C^{\infty}$ class
if no other conditions are mentioned of. The gradient vector field for any given potential
function $\phi$ is determined not only on the potential $\phi$ but also on the Riemannian metric
$((\cdot,$ $\cdot))^{QF}[14]$ : The gradient vector field denoted by $grad\phi$ is defined by

$((( grad\phi)(P), \Xi’))_{P}^{QF}=(d\phi)_{P}(\Xi’)=\frac{d}{dt}\phi(\Gamma’(t))t=0$ $(^{\forall}\Xi’\in T_{P}\dot{Q}_{m})$ , (8)

where $\Gamma’(t)$ with $a\leq t\leq b(a<0<b)$ in (8) is a $C^{\infty}$ curve in $\dot{Q}_{m}$ subject to

$\Gamma’:t\in[a, b]\mapsto\Gamma’(t)\in\dot{Q}_{m}$ , $\Gamma’(0)=P$ , $\frac{d\Gamma’}{dt}=\Xi’t=0^{\cdot}$ (9)

To calculate (8), we introduce the partial differentiations,

$\frac{\partial}{\partial P_{jk}}=\frac{1}{2}(\frac{\partial}{\partial\xi_{jk}}-i\frac{\partial}{\partial\eta_{jk}})$ , $\frac{\partial}{\partial\overline{P}_{jk}}=\frac{1}{2}(\frac{\partial}{\partial\xi_{jk}}+i\frac{\partial}{\partial\eta_{jk}})$ $(1\leq j<k\leq m)$ , (10)

where the $i$ indicates the imaginary unit throughout the present paper. In terms of those
differentiations, we prepare the matrix-valued operator $\mathcal{M}$ to $\phi$ to be

$(\mathcal{M}(\phi))_{jk}=\{\begin{array}{ll}\frac{\partial\phi}{\partial\overline{P}_{jk}}=\overline{\frac{\partial\phi}{\partial P_{jk}}} (1 \leq j<k\leq m)\frac{\partial\phi}{\partial P_{kj}} (1\leq k<j\leq m)\frac{\partial\phi}{\partial P_{jj}} (j=1,2, \cdots, m).\end{array}$ (11)
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The rhs of (8) is calculated with (9) $-(11)$ to be

$\frac{d}{dt}\phi(\Gamma’(t))t=0$

$=$ $\sum_{1\leq a<b\leq m}\{\frac{\partial\phi}{\partial\xi_{ab}}(P)\Re(\Xi_{ab}’)+\frac{\partial\phi}{\partial\psi_{ab}}(P)\Im(\Xi_{ab}’)\}+\sum_{c=1}^{m}\frac{\partial\phi}{\partial\zeta_{c}}(P)\Xi_{cc}’$

$=$ $\sum_{1\leq a<b\leq m}\{\frac{\partial\phi}{\partial\xi_{ab}}(P)\frac{1}{2}(\Xi_{ab}+_{-}^{-}--ab)+\frac{\partial\phi}{\partial\psi_{ab}}(P)\frac{1}{2i}(\Xi\prime^{-}ab^{-\prime}---ab)\}+\sum_{\subset 1}^{m}\frac{\partial\phi}{\partial\zeta_{c}}(P)\Xi_{cc}$

$=$ $\sum_{1\leq a<b\leq m}\{\frac{\partial\phi}{\partial\rho_{ab}}(P)\Xi_{ab}’+\frac{\partial\phi}{\partial\overline{\rho}_{ab}}(P)_{-}^{-\prime}--ab\}+\sum_{\subset 1}^{m}\frac{\partial\phi}{\partial\zeta_{c}}(P)\Xi_{cc}’$

$=$ $\sum_{1\leq a<b\leq m}\{(\mathcal{M}(\phi))_{ba}\Xi_{ab}+(\mathcal{M}(\phi))_{ab}\Xi_{ba}’\}+\sum_{1\subset}^{m}(\mathcal{M}(\phi))_{cc}\Xi_{cc}$

$=$ tr $(\mathcal{M}(\phi)\Xi’)$ , (12)

where the symbols, $\Re$ and $\Im$ , stand for the real part and the imaginary part of complex
numbers, respectively.

We move on to calculate the lhs of (8). Let us express the gradient vector $(grad\phi)(P)$

at $P\in\dot{Q}_{m}$ to be
$(grad\phi)(P)=\prime r\Psi’r\dagger$ (13)

where $T\in U(m)$ is chosen in (5) to P. The $\Psi$ is a traceless Hermitean matrix. On
recalling the explicit expression (6) of the quantum Fisher metric, the lhs of (8) is then
calculated to be

$((( grad\phi)(P), \Xi’))_{P}^{QF}=2\sum_{j,k=1}^{m}\frac{\overline{\Psi}_{jk}X_{jk}}{\theta_{j}+\theta_{k}}=2\sum_{j,k=1}^{m}\frac{\Psi_{kj}}{\theta_{j}+\theta_{k}}(\prime r\dagger r_{bk})$

$=2 \sum_{a,b=1}^{m}(\wedge’((’\Gamma\tilde{\Psi}’r\uparrow)\Xi’)$ , (14)

where $\tilde{\Psi}$ is the Hermitean matrix subject to

$\tilde{\Psi}_{jk}=\frac{\Psi_{jk}}{\theta_{j}+\theta_{k}}$ $(j, k=1,2, \cdots, m)$ . (15)

Since the bilinear form,
$(\Xi, \Xi’)\in T_{P}\dot{Q}_{m}\cross T_{P}\dot{Q}_{m}\mapsto$ $tr$ $(\Xi^{\uparrow}\Xi’)\in C$ , (16)

is well-known to be non-degenerate, we have the equation
$\mathcal{M}(\phi)=2’r\tilde{\Psi}’r\dagger+2\nu I$ (17)

from (12) and (14), where $\nu$ is a constant determined soon below. From (13) and (17),
The entries of $\Psi$ turns out to take the form

$\Psi_{jk}$ $=$ $\frac{1}{2}(\theta_{j}+\theta_{k})(\prime r\uparrow \mathcal{M}(\phi)’r-2\nu I)_{jk}$

$=$ $\frac{1}{2}(\Theta’\Gamma^{\dagger}\mathcal{M}(\phi)’r+\prime r\uparrow \mathcal{M}(\phi)’r\Theta-4\nu\Theta)_{jk}$ $(j, k=1,2, \cdots)$ , (18)
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where $\delta_{jk}$ denotes the Kronecker delta. Througli (5) and (13), we get

$( grad\phi)(P)=\frac{1}{2}(P\mathcal{M}(\phi)+\mathcal{M}(\phi)P)-2\nu P$ . (19)

Since tangent vectors in $T_{P}\dot{Q}_{m}$ have the traceless property, we can determine the value of
$\nu$ . On taking the trace in both sides of (19), we have the value $of\nu$ ,

$\nu=\frac{1}{2}$ $tr$ $(P\mathcal{M}(\phi))$ . (20)

Therefore, the gradient equation associated with the potential function $\phi$ takes the form

$\frac{dP}{dt}=-(grad\phi)(P)=-\frac{1}{2}(P\mathcal{M}(\phi)+\mathcal{M}(\phi)P)+(tr(P\mathcal{M}(\phi)))$ $P$ . (21)

To summarize, we have the following lemma.

Lemma 2.2 [10, 15, 16] A gradient system on the $QIS(\dot{Q}_{m}, ((\cdot, \cdot))^{QF})$ associated with a
potential function $\phi$ is governed by (21), where $\mathcal{M}(\phi)$ is the Hermitean matnx defined by
(11).

Remark As a related work on the gradient equation on the QIS, the paper [17] by
Braunstein would be worth being cited. In [17], the gradient equation on the QIS is
discussed in tensorial local-coordinate framework, in contrast with our global description.
As an intuitive example, the gradient equation leading a quantum inference problem is
given, which is looked upon as a special case of our ALEH equation on the QIS discussed
in the succeeding section.

3 The Karmarkar flow realized on the QIS

3.1 The Karmarkar flow
Karmarkar’s projective scaling algorithm is defined for the canonical linear programming
problem of unconstrained case,

minimize $c^{T}x$

subject to $e^{T}x=1$ , $x_{j}\geq 0(j=1,2, \cdots, m)$ (22)

where $c$ is a nonvanishing vector, $x=(x_{j})$ the real-valued variables and $e$ the vector of
all whose entries are one [2, 6];

$e=(1,1, \cdots, 1)^{T}$ . (23)

The account for unconstrained is that we usually pose additional linear constraints ex-
pressed as $Ax=b$ to the canonical problem, where $A$ and $b$ are a matrix and a vectors
suitably chosen. Due to the constraint $e^{T}x=1$ in (22), Karmarkar’s algorithm for our
canonical problem is described on the $m-1$ dimensional canonical simplex,

$S_{m}= \{x\in R^{m}|\sum_{j=1}^{m}x_{j}=1,$ $x_{j}\geq 0(j=1,2, \cdots, m)\}$ . (24)
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Accoding to Karmarkar, the continuous-time version of the Karmarkar’s algorithm takes
the form

$\frac{dx_{j}}{dt}=-c_{j}x_{j}^{2}+x_{j}(\sum_{k=1}^{m}c_{k}x_{k}^{2})$ $(j=1,2, \cdots, m)$ . (25)

The dynamical system governed by (25) is what we call the Karmarkar flow. In present
article, both of the differential equation (25) itself and the family of trajectories governed
by (25) will be also referred to as the Karmarkar flow.

Following Nakamura [6], we show that the Karmarkar flow (25) admits the gradient
system form. To be free from boundary of $S_{m}$ , we restrict (25) to the regular part

$S_{m}=\{x\in R^{m}|\sum_{j=1}^{m}x_{j}=1,$ $x_{j}>0(j=1,2, \cdots, m)\}$ , (26)

of the simplex $S_{m}$ . With $\dot{S}_{m}$ , we endow the Riemannian metric

$((u, u’))_{x}^{Smp}= \sum_{j=1}^{m}\frac{u_{j}u_{j}’}{x_{j}}$
$(u, u’\in T_{x}\dot{S}_{m})$ (27)

where $T_{x}S_{m}$ denotes the tangent space of $\dot{S}_{m}$ at $x\in\dot{S}_{m}$ defined to be

$T_{x} \dot{S}_{m}=\{u\in R^{m}|\sum_{j=1}^{m}u_{j}=0\}$ . (28)

If we take the potential function

$k(x)= \frac{1}{2}x^{T}Cx$ $(x\in\dot{S}_{m})$ , $C=$ diag $(c_{1}, c_{2}, \cdots, c_{m})$ , (29)

the dynamical system (25) is brought into the gradient equation

$\frac{dx}{dt}=-(gradk)(x)$ (30)

on $\dot{S}_{m}$ , where the symbol $(gradk)(x)$ denotes the gradient vector at $x\in\dot{S}_{m}$ for $k(x)$ . The
$(gradk)(x)$ is defined to satisfy

$((( gradk)(x), u’))_{x}^{Smp}=\frac{d}{dt}k(\sigma(t))t=0$ $(^{\forall}u’\in T_{x}\dot{S}_{m})$ , (31)

where $\sigma(t)$ with $a\leq t\leq b(a<0<b)$ is a curve in $S_{m}$ subject to

$t\in[a, b]\mapsto\sigma(t)\in\dot{S}_{m}$ , $\sigma(0)=x$ , $\frac{d\sigma}{dt}=u’t=0$ (32)

(cf. (8) with (9)). By straightforward calculation, we obtain the gradient form

$\frac{dx_{j}}{dt}=-((gradk)(x))_{j}=-c_{j}x_{j}^{2}+x_{j}(\sum_{k=1}^{m}c_{k}x_{k}^{2})$ $(j=1,2, \cdots, m)$ . (33)

Proposition 3.1 [6] The Karmarkar flow (25) admits the gradient system form (30)
associated with the potential function $k(x)$ given by (29).
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3.2 The gradient system realizing the Karmarkar flow on the
QIS

As a crucial key in realizing the Karmarkar flow as a gradient system on the QIS, we
study the Riemannian submanifold,

$D_{m}=\{\Theta\in\dot{Q}_{m}|\Theta=$ diag $(\theta_{1}, \cdots, \theta_{m})$ , tr $\Theta=1,$ $\theta_{j}>0(j=1,2, \cdots, m)\}$ , (34)

of the QIS, whose tangent space at $\Theta$ is given by

$T\ominus D_{m}=\{Z\in M(m, m)|Z=$ diag $(\zeta_{1}, \cdots, \zeta_{m})$ , tr $Z=0\}$ . (35)

To show that $D_{m}$ is isometrically diffeomorphic to the canonical simplex $\dot{S}_{m}$ endowed with
the metric $((\cdot,$ $\cdot))^{Smp}$ , we consider the inclusion map,

$\iota^{D_{m}}:\Theta\in D_{m}(\subset\dot{Q}_{m})\mapsto\Theta\in\dot{Q}_{m}$, (36)

whose differential is given by

$\iota_{*\ominus}^{D_{m}}(Z)=Z\in T_{\Theta}\dot{Q}_{m}$ $(Z\in T_{\Theta}D_{m})$ . (37)

The submanifold $D_{m}$ is then allowed to have the Riemannian metric $((\cdot,$ $\cdot))^{D}$ defined by

$((Z, Z’))_{\Theta}^{D}$ $=$ $((\iota_{*\ominus}^{D_{m}}(Z), \iota_{*,e}^{D_{m}}(Z’)))_{\Theta}^{QF}$

$=$ $((Z, Z’))_{\ominus}^{QF}$ $(Z, Z’\in T\ominus D_{m})$ , (38)

which makes $D_{m}$ the Riemannian submanifold of the QIS $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF})$ . As for the
differentiable one-to-one onto map

$\alpha$ : $x\in\dot{S}_{m}\mapsto$ diag $(x_{1}, \cdots, x_{m})\in D_{m}\subset\dot{Q}_{m}$ (39)

of $S$ , to $D_{m}$ , we show the following.

Lemma 3.2 The Riemannian submanifold $(D_{m}, ((\cdot,.\cdot))^{D})$ of the $QIS(\dot{Q}_{m}, ((\cdot, \cdot))^{QF})$ is iso-
metrically diffeomorphic to the canonical simplex $(S_{m}, ((\cdot, \cdot))^{Smp})$ .

Proof. From the definition (39) of $\alpha$ , we immediately see that $\alpha$ is a one-to-one and onto
map, so that we have only to show an isometric property of $\alpha$ below. In fact, since the
differential, $\alpha_{*,x}$ of the map $\alpha$ at $x\in\dot{S}_{m}$ takes the form

$\alpha_{*,x}(u)=$ diag $(u_{1}, \cdots, u_{m})\in T_{\Theta}D_{m}$ $(u\in T_{x}\dot{S}_{m})$ . (40)

we have the identity,

$((\mu_{*,x}(u), \mu_{*,x}(u’)))_{\mu(x)}^{D}=((\mu_{*,x}(u), \mu_{*,x}(u’)))_{\mu(x)}^{QF}$

$=2 \sum_{j,k=1}^{m}\frac{\overline{(\mu_{*,x}(u))}_{jk}(\mu_{*,x}(u’))_{jk}}{x_{j}+x_{k}}=\sum_{j=1}^{m}\frac{u_{j}u_{j}}{x_{j}}=((u, u’))_{x}^{Smp}$ , (41)

which shows that $\alpha$ is an isometry. This completes the proof.
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Using the isometric diffeomorphism $\alpha$ , we transfer the gradient vector field $gradk$ for
the Karmarkar flow on $\dot{S}_{m}$ to the vector field denoted by $\alpha_{*}(gradk)$ on $D_{m}$ , which is
determined through

$(\alpha_{*}(gradk))(\alpha(x))=\alpha_{*,x}((gradk)(x))$ $(x\in\dot{S}_{m})$ . (42)

Let us seek the gradient vector field, denoted by $grad\kappa(P)$ , on the QIS subject to

$(grad\kappa)(\Theta)=\alpha_{*,x}((gradk)(x))$ $(\Theta=\alpha(x)\in D_{m}\subset\dot{Q}_{m})$ , (43)

where $\kappa$ denotes the associated potential function. We draw a necessary condition for the
potential function $\kappa$ . To do this, let us consider a curve $r(t)$ subject to $r(t)=\alpha(\sigma(t))$ ,
where $t$ is in a sufficiently small interval $[a, b]$ with $a<0<b$ and $\sigma(t)$ satisfies (32). The
curve $r(t)$ then satisfies

$t\in[a, b]\mapsto r(t)=\alpha(\sigma(t))\in D_{m}$ , $r(O)=\alpha(\sigma(0))$ ,

$\frac{dr}{dt}|_{t=0}=\frac{d}{dt}\alpha(\sigma(t))|_{t=0}=\alpha_{*,x}(u’)$ . (44)

Owing to the diffeomorphism $\alpha$ of $S_{m}$ to $D_{m}$ , we can write down any $Z’\in T_{\alpha(x)}D_{m}$ in the
form

$Z’=\alpha_{*,x}(u’)$ (45)

with $u’\in T_{x}\dot{S}_{m}$ . Then, Equation (43) is put together with (37) and (38) to show

$(((grad\kappa)(\Theta), Z’))_{\Theta}^{QF}=((\alpha_{*,x}((gradk)(x)), Z’))_{\Theta}^{QF}$

$=$ $((\alpha_{*,x}((gradk)(x)), Z’))_{\Theta}^{D}=((\alpha_{*,x}((gradk)(x)), \alpha_{*,x}(u’)))_{\Theta}^{D}$

$=$ $((( gradk)(x), u’))_{x}^{Smp}=\frac{d}{dt}k(\sigma(t))t=0^{\cdot}$ (46)

The lhs of eq.(46) admits an alternative calculation,

$((grad\kappa(\Theta), Z’))_{\Theta}^{QF}$ $=$ $\frac{d}{dt}|_{t=0}\kappa(r(t))=\frac{d}{dt}|_{t=0}\kappa(\alpha(\sigma(t)))$

$=$ $\frac{d}{dt}(\kappa\circ\alpha)(\sigma(t))t=0$
’ (47)

which leads us to

$\frac{d}{dt}|_{t=0}k(\sigma(t))=\frac{d}{dt}|_{t=0}(\kappa 0\alpha)(\sigma(t))$ . (48)

Namely, (48) implies a necessary condition

$(\kappa\circ\alpha)(x)-k(x)=$ constant $(x\in\dot{S}_{m})$ . (49)

for (48), which suggests us to take $\kappa$ to be

$\kappa(P)=\frac{1}{2}$tr $(CP^{2})$ , (50)
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where $C$ is the diagonal inatrix given $iI1(29)$ . The matrix $\mathcal{M}(\kappa)$ given by (11) with
$\phi(P)=\kappa(P)$ is calculated to be

$\mathcal{M}(\kappa)=\frac{1}{2}(CP+PC)$ . (51)

Putting (50) and (51) into (21), we obtain the gradient system subject to the equation

$\frac{dP}{dt}=-(grad\kappa)(P)=-\frac{1}{4}(P^{2}C+2PCP+CP^{2})+(tr(CP^{2}))$ P. (52)

Since the gradient vector $(grad\kappa)(\Theta)$ at $\Theta\in D_{m}\subset\dot{Q}_{m}$ is shown to be tangent to $D_{m}$ ,
we can restrict (52) to the submanifold $D_{m}$ of $\dot{Q}_{m}$ . The restriction gives the differential
equation

$\frac{d\Theta}{dt}=-C\Theta^{2}+(tr(C\Theta^{2}))\Theta$ (53)

on $D_{m}$ , which coincides with the Karmarkar flow. Thus, we reach to the following theorem.

Theorem 3.3 [15, $10J$ The gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \kappa)$ on the $QIS$ realizes the Kar-
markar flow on the submanifold $D_{m}$ of the $QIS$.

3.3 Trajectories of the Karmarkar flow on the QIS

(54)

The solution of the Karmarkar flow on the simplex $S_{m}$ is given by Nakamura [6]. In a
matrix form, Nakamura’s solution is brought into the solution of (52) with the initial
condition $P(O)=\Theta(0)$ ,

$\Theta(t)=\Theta(0)(\xi(t)C\Theta(0)+I)^{-1}\cdot\{$ tr $(\Theta(0)(\xi(t)C\Theta(0)+I)^{-1})\}^{-1}$ ,

(56)

where $\xi(t)$ satisfies

$t=$ tr $(C^{-1}\log(\xi(t)C\Theta(0)+I))$ . (55)

Let us start with checking the realized Karmarkar flow satisfies (54). By (55), we obtain
the equation

$\frac{d\xi}{dt}=\{$ tr $(\Theta(0)(\xi(t)C\Theta(0)+I)^{-1})\}^{-1}$

Then, equation (54) takes the form

$\Theta(t)=\frac{d\xi}{dt}\Theta(0)(\xi(t)C\Theta(0)+I)^{-1}$ (57)

whose derivative is expressed as

$\frac{d\Theta}{dt}=\frac{d\xi^{2}}{dt^{2}}\Theta(0)(\xi(t)C\Theta(0)+I)^{-1}+\frac{d\xi}{dt}\Theta(0)\frac{d}{dt}\{(\xi(t)C\Theta(0)+I)^{-1}\}$ . (58)
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(60)

From (57), since we obtain the equations

$\frac{d\xi^{2}}{dt^{2}}=\frac{d\xi}{dt}$ tr $(C\Theta(t)^{2})$

$\frac{d}{dt}\{(\xi(t)C\Theta(0)+I)^{-1}\}=-C\Theta(t)(\xi(t)C\Theta(0)+I)^{-1}$ , (59)

equation (58) is calculated to be

$\frac{d\Theta}{dt}=-C\Theta^{2}+(tr(C\Theta^{2}))\Theta$

Thus, we have shown that the solution of the realized Karmarkar flow on $D_{m}$ is expressed
by (54). To summarize, we have the following proposition.

Proposition 3.4 The solution of the gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \kappa)$ running on the
submanifold $D_{m}$ of the $QIS$ is expressed as (54).

We move to the next stage, where we consider the solution of the realized Karmarkar
flow on the QIS with a special object function. Namely, we study the case of $C=-2I$
in (52). In the case, the gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \kappa)$ also realizes the eigenvalue
problem of the anti-Hermitian matrices. On looking carefully at the solution (54) on $D_{m}$ ,
we conjecture that the solution on the QIS with $C=-2I$ takes the form

$P(t)=P(0)(-2\tau(t)P(0)+I)^{-1}\cdot\{$ tr $(P(0)(-2\tau(t)P(0)+I)^{-1})\}^{-1}$ ,

(62)

where $\tau$ is defined by

$t=- \frac{1}{2}$ tr $(\log(-2\tau(t)P(0)+I))$ . (61)

We are to confirm that our conjecture is correct. From (61), we get the derivation of $\tau$

$\frac{d\tau}{dt}=\{$ tr $(P(0)(-2\tau(t)P(0)+I)^{-1})\}^{-1}$ ,

which is combined with (60) to show

$P(t)=\frac{d\tau}{dt}P(0)(-2\tau(t)P(0)+I)^{-1}$ (63)

The derivation of (62) and of (63) yield

$\frac{dP}{dt}=\frac{d\tau^{2}}{dt^{2}}P(0)(-2\tau(t)P(0)+I)^{-1}+\frac{d\tau}{dt}P(0)\frac{d}{dt}\{(-2\tau(t)P(0)+I)^{-1}\}$ (64)

and

$\frac{d\tau^{2}}{dt^{2}}=-2\frac{d\tau}{dt}$tr $(P(t)^{2})$ , (65)
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respectively. Further, since (63) provides

$\frac{d}{dt}\{(-2\tau(t)P(0)+I)^{-1}\}=2(-2\tau(t)P(0)+I)^{-1}P(t)$ . (66)

Equations (64), (65) and (66) are put into Eq.(63) to show

$\frac{dP}{dt}=2P^{2}-2(tr(P^{2}))P$

Thus, we found that the solution of the Karmarkar flow on the QIS with $C=-2I$ is
expressed by (60). To summarize, we have the following proposition.

Proposition 3.5 The solution of the gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \kappa)$ on the $QIS$ if
$C=-2I$ in (52) is expressed as (60).

We study the asymptotic behavior of the solution (60) in turn as $tarrow\infty$ . Since $\tau$

tends to infinity as $tarrow\infty$ , the limit of $P$ as $tarrow\infty$ is calculated to be

$\lim_{tarrow\infty}P(t)=\lim_{tarrow\infty}\{\frac{1}{\tau(t)}P(0)(-2P(0)+\frac{1}{\tau(t)}I)^{-1}$

. $\{$ tr $( P(0)\frac{1}{\tau(t)}(-2P(0)+\frac{1}{\tau(t)}I)^{-1})\}^{-1}\}$

$=P(O)(-2P(0))^{-1}\{$ tr $( P(0)(-2P(0))^{-1})\}^{-1}=\frac{1}{m}$

from (60). Therefore, we reach to the following.

Proposition 3.6 The gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \kappa)$ on the $QIS$ if $C=-2I$ in (52)
converges on the center-of-mass of the simplex as $tarrow\infty$ .

On closing this subsection, we remark on a physical meaning of the case $C=-2I$ . In
this case, the potential function $\kappa$ is understood to be the Renyi potential which measures
the $($ purity’ of the quantum states [18] associated with density matrices, P. In this sense,
Proposition 3.6looks very natural since in our gradient system with $C=-2I$ all the
trajectories tend to the density matrices with the highest purity. The solutions of (52)
with general $C$ haven’t been revealed explicitly yet.

4 The ALEH realized on the QIS

4.1 Learning equation
We start with an introduction of a standard neuronal model. Let $q(s)$ and $r(s)$ be the
$R^{m}$-valued functions, which carry the input signals to a synaptic neuron and the coupling
strength coefficients of inputs, respectively. The membrane potential value expressed by
the R-valued function $p(s)$ is determined by the relation

$p(s)=q^{T}(s)r(s)$ . (67)
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Figure 1: The neuronal model

Figure 4.1 presents a graphical description for our setting with (67).
In neural network theory, learning amounts to updating the coupling strength coef-

ficient to improve the output along with a learning rule. This idea comes from Hebb’s
hypothesis [19]; When an axon of cell $A$ is near enough to excite a cell $B$ and repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that $A$ ’s efficiency, as one of the cells firing $B$ , is increased.
According to our setting, Hebb’s hypothesis is brought to the recurrence rule

$r(s+1)=r(s)+\epsilon p(s)q(s)$ , (68)

where $\epsilon$ stands for the learning rate parameter. Unfortunately, the rule (68) allows an
unbounded growth of the norm $\Vert r(s)\Vert$ of the coupling strength coefficient vector $r(s)$ ,
which is usually unacceptable. To avoid the unbounded growth of $r(s)$ , we apply Oja’s
rule [3]

$r(s+1)= \frac{r(s)+\epsilon p(s)q(s)}{\Vert r(s)+\epsilon p(s)q(s)\Vert}$ , (69)

in this thesis, which admits the norm-preserving property,

$\Vert r(s)\Vert=1$ for $\Vert r(0)\Vert=1$ . (70)

We derive a differential equation from Oja’s rule (69) with the learning equation (67)
as follows. Under the relation (67), Eq.(69) is put in the form

$r(s+1)= \frac{r(s)+\epsilon q(s)q^{T}(s)r(s)}{\Vert r(s)+\epsilon q(s)q^{T}(s)r(s)\Vert}$ , (71)

which admits the Maclaurin expansion

$r(s+1)=r(s)+\epsilon\{q(s)q^{T}(s)r(s)-(r^{T}(s)q(s)q^{T}(s)r(s))r(s)\}+O(\epsilon^{2})$ (72)

for sufficiently small $\epsilon$ . The $O(\epsilon^{2})$ in (72) denotes the second-order infinitesimal. Elim-
ination of the term $O(\epsilon^{2})$ from the rhs of (72) therefore provides us with the recurrence
equation

$r(s+1)=r(s)+\epsilon\{q(s)q^{T}(s)r(s)-(r^{T}(s)q(s)q^{T}(s)r(s))r(s)\}$ . (73)

Equation (73) will be averaged in the succeeding subsection, which leads us to the ALEH
through a continuous limit in time.
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4.2 The ALEH
We are to average Eq.(73) under the assumption made as follows: The input signals
$q(s)$ and the coupling strength coefficients $r(s)$ are assumed to be stochastic processes
which are statistically independent to each other. Further, the stochastic process $q(t)$ is
a stationary process [3]. Taking the expectation of (73) on the sample space, we obtain

$E[r(s+1)|r(s)]-E[r(s)]$
$=$ $\epsilon\{E[q(s)q^{T}(s)]E[r(s)]-(E[r(s)]^{T}E[q(s)q^{T}(s)]E[r(s)])E[r(s)]\}$ , (74)

where the symbol $E[\cdot]$ denotes expectation operation. From the stationaries of $q(s)$ ,
the correlation matrix $E[q(s)q^{T}(s)]$ turns out to be invariant along $s$ . Hence, when
$E[q(s)q^{T}(s)]$ is diagonalized to be

$A=$ diag $(a_{1}, a_{2}, \cdots, a_{m})=G^{T}E[q(s)q^{T}(s)]G$ , (75)

with an orthogonal matrix $G$ , both the orthogonal matrix $G$ and the diagonal matrix $A$

are invariant along $s$ . The change of time-variables

$t=\epsilon s$ (76)

with the introduction,

$w(t)=(w_{1}(t), w_{2}(t), \cdots, w_{m}(t))^{T}=G^{T}r(t/\epsilon)$ , (77)

of $w(t)$ brings Eq.(74) to the form

$w(t+\epsilon)-w(t)=\epsilon(Aw(t)-(w^{T}(t)Aw(t))w(t))$ . (78)

In the case that the learning rate parameter $\epsilon$ is sufficiently small, Eq.(78) is understood
as the forward Euler integration formula to the differential equation

$\frac{dw}{dt}=Aw-(w^{T}Aw)w$ . (79)

The equation (79) is what is dealt with as a continuous-time analogue of (78) [7, 3].
The (79) is referred to as the averaged learning equation of Hebb type, which will be
abbreviated to the ALEH throughout this article.

We are to draw the gradient system form of the ALEH following Nakamura [7] in what
follows. To do this, we start with the norm preserving property

$\Vert w(t)\Vert=1$ for $\Vert w(0)\Vert=1$ (80)

of $w(t)$ subject to the ALEH (79), which is understood to be a counterpart to (70) of (67)
with Oja’s rule (69). Indeed, (80) is ensured by the calculation,

$\frac{d}{dt}\Vert w(t)\Vert^{2}$ $=$ $2w^{T}(t) \frac{dw}{dt}(t)=2w^{T}(t)(Aw-(w^{T}Aw)w)$

$=$ 2 $(w^{T}Aw)(1-\Vert w(t)\Vert^{2})=0$ , (81)
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under $\Vert w(0)\Vert=1$ . Since the norm preserving property (80) is put together with (76) and
(77) to yield the norm preserving property

$\Vert w(t)\Vert=\Vert Gr(\epsilon t)\Vert=\Vert r(\epsilon t)\Vert=\Vert r(s)\Vert=1$ (82)

of $r(s)$ , which is understood as a counterpart of (70).
Owing to the norm preserving property (80), we can deal with the ALEH as a differ-

ential equation on the $(m-1)$-dimensional unit sphere,

$S^{m-1}=\{w\in R^{m}|\Vert w\Vert=1\}$ . (83)

To avoid excessive calculus on boundaries of the QIS in the succeeding section, we will
restrict our discussion henceforth on the dense submanifold

$\dot{S}^{m-1}=S^{m-1}\backslash \bigcup_{k=1}^{m}\mathcal{N}_{m}^{(k)}$ (84)

where $\mathcal{N}_{m}^{(k)}s$ are measure-zero subsets of the sphere $S^{m-1}$ defined by

$\mathcal{N}_{m}^{(k)}=\{w\in S^{m-1}|w_{k}=0\}$ $(k=1,2, \cdots, m)$ . (85)

With $\dot{S}^{m-1}$ , we endow the standard Riemannian metric

$((v, v’))_{w}^{Sph}=v^{T}v’$ $(v, v’\in T_{w}\dot{S}^{m-1}, w\in\dot{S}^{m-1})$ , (86)

where $T_{w}\dot{S}^{m-1}$ denotes the tangent space of $\dot{S}^{m-1}$ at $w$ defined to be

$T_{w}\dot{S}^{m-1}=\{v\in R^{m}|w^{T}v=0\}$ $(w\in\dot{S}^{m}‘ 1)$ . (87)

To show that the ALEH on $\dot{S}^{m-1}$ admits the gradient system form, we introduce the
function

$\ell(w)=-\frac{1}{2}w^{T}Aw=-\frac{1}{2}\sum_{k=1}^{m}a_{k}w_{k^{2}}$ $(w\in\dot{S}^{m-1})$ (88)

as the potential function for our gradient system form. The gradient vector field, denoted
by $grad\ell$ , for the gradient system $(\dot{S}^{m-1}, ((\cdot, \cdot))^{Sph}, \ell)$ is defined by

$(( grad\ell(w), v’))_{w}^{Sph}=\frac{d}{dt}\ell(\gamma(t))t=0$ $(v’\in T_{w}\dot{S}^{m-1})$ . (89)

where $\gamma$ with $a\leq t\leq b(a<0<b)$ is a curve in $\dot{S}^{m-1}$ subject to

$t\in[a, b]\mapsto\gamma(t)\in\dot{S}^{m-1}$ , $\gamma(0)=w$ , $\frac{d\gamma}{dt}=v’\in T_{w}\dot{S}^{m-1}t=0^{\cdot}$ (90)

By straightforward calculation, we obtain the gradient system form

$\frac{dw}{dt}=-(grad\ell)(w)=Aw-(w^{T}Aw)w$ . (91)

We have the following proposition.

Proposition 4.1 [7] The averaged learning equation of Hebb type (ALEH) (79) admits
the gradient system form (91) associated with the potential function $\ell(w)$ given by (88).
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4.3 Geometric setting for the ALEH on the QIS
To realize the ALEH on the QIS, we prepare a pair of geometric devices. One is a metric-
preserving immersion from $S^{m-1}$ to the submanifold $D_{m}$ of the QIS, where $D_{m}$ consists of
diag.onal matrices in the QIS (see (34) for definition). Another is a natural $(Z_{2})^{m}$ action
on $S^{m-1}$ .

In the case of the Karmarkar flow dealt with in section 2, the map $\alpha$ of $\dot{S}_{m}$ to $D_{m}$

is surjective and injective, so that the Karmarkar flow can be mapped to $D_{m}$ through $\alpha$

immediately. By contrast, the metric-preserving immersion which we are going to apply to
the ALEH is surjective but not injective since the disconnected manifold $\dot{S}^{m-1}$ is mapped
onto the connected manifold $D_{m}$ through the immersion. Due to the non-injectivity, we
have to ensure that the gradient vectors at $w\in\dot{S}^{m-1}$ and $w’\in\dot{S}^{m-1}$ are mapped to the
same tangent vector at $\Theta\in D_{m}$ if both $w$ and $w’$ are mapped to $\Theta$ . To check this, the
natural $(Z_{2})^{m}$ action plays a key role in what follows.

Let us start with introducing the map $\beta$ of $\dot{S}^{m-1}$ to $D_{m}$ of the form
$\beta$ : $w=(w_{1}, w_{2}, \cdots, w_{m})^{T}\in\dot{S}^{m-1}\mapsto$ diag $(w_{1^{2}}, w_{2^{2}}, \cdots, w_{m^{2}})\in D_{m}$ (92)

together with the natural $(Z_{2})^{m}$ action of the form

$\mu_{\sigma}:(w_{1}, w_{2}, \cdots, w_{m})^{T}\in\dot{S}^{m-1}\mapsto(\sigma_{1}w_{1}, \sigma_{2}w_{2}, \cdots, \sigma_{m}w_{m})^{T}\in\dot{S}^{m-1}$ (93)

on $\dot{S}^{m-1}$ , where $\sigma\in(Z_{2})^{m}$ takes the form

$\sigma=(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{m})^{T}\in(Z_{2})^{m}$ $(Z_{2}=\{-1,1\})$ . (94)

The differential maps of $\beta$ and $\mu$ at $w\in\dot{S}^{m-1}$ turn out to take the forms,

$\beta_{*,w}(v)=2$ diag $(w_{1}v_{1}, w_{2}v_{2}, \cdots, w_{m}v_{m})$ $(v\in T_{w}\dot{S}^{m-1})$ (95)

and

$(\mu_{\sigma})_{*,w}(v)=(\sigma_{1}v_{1}, \sigma_{2}v_{2}, \cdots, \sigma_{m}v_{m})^{T}$ $(v\in T_{w}\dot{S}^{m-1}, \sigma\in(Z_{2})^{m})$ , (96)

respectively. We show the following lemmas.

Lemma 4.2 The map $\beta$ given by (92) is an isometric immersion of $\dot{S}^{m-1}$ to $D_{m}$ . The
isometric $prope\hslash y$ is thought of up to the constant multiple 4.

Proof. Owing to (95), we easily see that $\beta$ is an immersion (see [14] for the definition
of immersion, for example). What we have to show is then an isometric property of $\beta$ .
Using (36), (37), (38), (86), (92) and (95), we confirm

$((\beta_{*,w}(v), \beta_{*,w}(v’)))_{\beta(w)}^{D}$ $=$ $(((\iota_{*,\beta(w)}^{D_{m}}0\beta_{*,w})(v), (\iota_{*,\beta(w)}^{D_{m}*}0\beta_{*,w})(v’)))_{\beta(w)}^{QF}$

$=$ $((\beta_{*,w}(v), \beta_{*,w}(v’)))_{\beta(w)}^{QF}$

$=$ $2 \sum_{j,k=1}^{m}\frac{\overline{(\beta_{*,w}(v))}_{jk}(\beta_{*,w}(v’))_{jk}}{w_{j^{2}}+w_{k^{2}}}$

$=$ $4 \sum_{j=1}^{m}v_{j}v_{j}’=4((v, v’))_{w}^{Sph}$ (97)

for any $w\in\dot{S}^{m-1}$ and $v,$ $v’\in T_{w}\dot{S}^{m-1}$ , which proves our assertion.
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Lemma 4.3 The map $\beta$ of $\dot{S}^{m-1}$ to $D_{m}$ is invariant under the $(Z_{2})^{m}$ action $\sigma$ given by
(94). The invariance stands for the equation

$(\beta\circ\mu_{\sigma})(w)=\beta(\mu_{\sigma}(w))=\beta(w)$ $(w\in\dot{S}^{m-1}, \sigma\in(Z_{2})^{m})$ . (98)

Proof. On account of $(\sigma_{j})^{2}=1(j=1,2, \cdots, m)$ , we immediately have

$(\beta\circ\mu_{\sigma})(w)=\beta(\mu_{\sigma}(w))$ $=$ diag $((\sigma_{1}w_{1})^{2},$ $(\sigma_{2}w_{2})^{2},$
$\cdots,$ $(\sigma_{m}w_{m})^{2})$

$=$ diag $(w_{1}^{2}, w_{2}^{2}, \cdots, w_{m}^{2})=\beta(w)$ , (99)

which completes the proof.
We are now in a position to show the $(Z_{2})^{m}$ invariance of the gradient vector field

$grad\ell$ given by (91). Namely, we show

$\mu_{*,w}((grad\ell)(w))=(grad\ell)(\mu_{\sigma}(w))$ $(w\in\dot{S}^{m-1}, \sigma\in(Z_{2})^{m})$ . (100)

Indeed, on putting (91) and (95) together, the rhs of (100) is calculated to be

$(grad\ell)(\mu_{\sigma}(w))=-A\mu_{\sigma}(w)+(\mu_{\sigma}(w)^{T}A\mu_{\sigma}(w))\mu_{\sigma}(w)$

$=$ diag $(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{m})\{-Aw+(w^{T}Aw)w\}$

$=$ $(\sigma_{1}((grad\ell)(w))_{1},$ $\sigma_{2}((grad\ell)(w))_{2},$ $\cdots,$
$\sigma_{m}((grad\ell)(w))_{m})^{T}$

$=$ $(\mu_{\sigma})_{*,w}(grad\ell(w))$ $(w\in\dot{S}^{m-1}, \sigma\in(Z_{2})^{m})$ , (101)

which proves (100). To summarize, we have the following.

Lemma 4.4 [1 $OJ$ The gradient vector field, $grad\ell$ , for the ALEH given by (91) is invari-
ant under the $(Z_{2})^{m}$ action $((93)$ .

Lemmas 4.3 and 4.4 are put together with (95) and (96) to show the following.

Proposition 4.5 $[16J$ For the gradient vector field, $grad\ell$ , for the ALEH given by (91),
there exists the unique vector field denoted by $\beta_{*}(grad\ell)$ on the submanifold $D_{m}$ of the
$QIS$ which satisfies

$(\beta_{*}(grad\ell))(\Theta)=\beta_{*,\overline{w}}((grad\ell))(\tilde{w}))$ $(\Theta\in D_{m},\tilde{w}\in\beta^{-1}(\Theta))$ . (102)

The $\beta^{-1}(\Theta)$ denotes the inverse image of $\Theta\in D_{m}$ given by

$\beta^{-1}(\Theta)$ $=$ $\{w\in\dot{S}^{m-1}|\beta(w)=\Theta\}$

$=$ $\{w\in\dot{S}^{m-1}|w_{j}=\sigma_{j}\sqrt{\Theta}, \sigma=(\sigma_{j})\in(Z_{2})^{m}\}$ $(\Theta\in D_{m})$ . (103)

Proof. We have only to show that the rhs of (102) is independent of the choice of
$\tilde{w}\in\beta^{-1}(\Theta)$ . In view of (103), we consider a pair of points, $\tilde{w}$ and $\tilde{w}’$ , in $\beta^{-1}(\Theta)$ , which
turn to satisfy

$\tilde{w}’=\mu_{\sigma}(\tilde{w})$ $(^{\text{ョ}}\sigma\in(Z_{2})^{m})$ . (104)

Further, differentiating (99), we have

$\beta_{*,\mu_{\sigma}w}\circ(\mu_{\sigma})_{*,w}=(\beta 0\mu_{\sigma})_{*,w}=\beta_{*,w}$ $(w\in\dot{S}^{m-1}, \sigma\in(Z_{2})^{m})$ . (105)
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Then. for aiiy $\tilde{w},\tilde{w}’\in\beta^{-1}(\Theta)$ subject to (104), Equations. (101) and (105) are put together
to show

$\beta_{*,\overline{w}’}((grad\ell)(\tilde{w}’))$ $=$ $\beta_{*},l^{\iota_{\sigma}(\overline{w})}((grad\ell)(\mu_{\sigma}(\tilde{w})))$

$=$ $\beta_{*,\mu_{\sigma}(\tilde{w})}((\mu_{\sigma})_{*,\tilde{w}}((grad\ell)(\tilde{w})))$

$=$ $(\beta_{*,\mu_{\sigma}(\overline{w})}o(\mu_{\sigma})_{*,\tilde{w}})((grad\ell)(\tilde{w}))$

$=$ $\beta_{*,\overline{w}}((grad\ell)(\tilde{w}))$ . (106)

This ensures that the rhs of (102) is well-defined as a tangent vector of $D_{m}$ at $\Theta$ . This
completes the proof.

The vector field $\beta_{*}(grad\ell)$ on $D_{m}$ can be understood to be a ‘copy’ of the gradient
vector field $grad\ell$ in the following sense. Let us denote by $C_{m}^{\sigma}(\sigma\in(Z_{2})^{m})$ all the possible
connected components of $\dot{S}^{m-1}$ , which are described to be

$C_{m}^{\sigma}=\{w\in\dot{S}^{m-1}|w=\mu_{\sigma}w’, w’\in C_{m}^{id}\}$ $(\sigma\in(Z_{2})^{m})$ (107)

with

$C_{m}^{id}=\{w\in\dot{S}^{m-1}|w_{j}>0(j=1,2, \cdots, m)\}$ . (108)

If the domain of the isometric immersion $\beta$ : $\dot{S}^{m-1}arrow D_{m}$ is restricted to each of $C_{m}^{\sigma}(\sigma\in$

(Z) $)$ , then the restriction denoted by $\beta^{\sigma}$ of $\beta$ to $C_{m}^{\sigma}$ turns out to be a diffeomorphism,
namely, a differentiable one-to-one and onto map. Further, since the $\beta^{\sigma}$ works in the same
way as $\beta$ to any $w\in C_{m}^{\sigma}$ , we have

$\beta_{*,w}^{\sigma}((grad\ell)(w))=(\beta_{*}(grad\ell))(\beta^{\sigma}(w))$ $(w\in C_{m}^{\sigma})$ , (109)

where $\beta_{*}(grad\ell)$ is the vector field on $D_{m}$ defined by (102). This confirms our assertion.
The vector field $\beta_{*}(grad\ell)$ on $D_{m}$ is what should be realized by a gradient vector on the
QIS in the succeeding section.

4.4 The gradient system on the QIS realizing the ALEH
We are to seek to a gradient vector field, denoted by $grad\lambda(P)$ , on the QIS which satisfies

$grad\lambda(\Theta)=\beta_{*,w}(grad\ell(w))$ $(\Theta=\beta(w)\in D_{m}\subset\dot{Q}_{m})$ , (110)

where $\lambda$ is the associated potential function. On an analogous line of thought to realize the
Karmarkar flow in the QIS in section 3, we draw a necessary condition for the potential
function for $\lambda$ . To do this, we consider a curve $r(t)$ subject to $r(t)=\beta(\gamma(t))$ , where $t$ is
in a sufficiently small interval $[a, b]$ with $a<0<b$ and $\sigma(t)$ satisfies (90). The curve $r(t)$

then satisfies

$t\in[a, b]\mapsto r(t)=\beta(\gamma(t))\in D_{m}$ , $r(O)=\beta(w)$ ,

$\frac{dr}{dt}|_{t=0}=\frac{d}{dt}\beta(\gamma(t))|_{t=0}=\beta_{*,w}(v’)$. (111)

Recalling that any $w\in\dot{S}^{m-1}$ belongs to a connected component $C_{m}^{\sigma}$ of the QIS and that
the restriction $\beta^{\sigma}$ of the isometric immersion $\beta$ is a diffeomorphism, we can write down
any $Z’\in T_{\beta(w)}D_{m}$ in the form

$Z’=\beta_{*,w}(v’)=\beta_{*,w}^{\sigma}(v’)$ (112)
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with $v’\in T_{w}\dot{S}^{m-1}$ . Then, Equation (110) is put together with (37) and (38) to show

$((grad\lambda(\Theta), Z’))_{\Theta}^{QF}=((\beta_{*,w}(grad\ell(w)), Z’))_{\Theta}^{QF}$

$=$ $((\beta_{*,w}(grad\ell(w)), Z’))_{\Theta}^{D}=((\beta_{*,w}(grad\ell(w)), \beta_{*,w}(v’)))_{\Theta}^{D}$

$=$ $4(( grad\ell(w), v’))_{w}^{Sph}=4\frac{d}{dt}\ell(\sigma(t))t=0^{\cdot}$ (113)

Further, the definition of the gradient vector (see [14] and cf. (8)) gives rise to the other
expression

$((grad\lambda(\Theta), Z’))_{\Theta}^{QF}$ $=$ $\frac{d}{dt}|_{t=0}\lambda(r(t))=\frac{d}{dt}|_{t=0}\lambda(\beta(\gamma(t)))$

$=$ $= \frac{d}{dt}(\lambda 0\beta)(\gamma(t))t=0$ (114)

of $((grad\lambda(\Theta), Z’))_{\Theta}^{QF}$ than that given by (113), so that we have

$\frac{d}{dt}|_{t=0}\ell(\gamma(t))=\frac{d}{dt}|_{t=0}(\lambda 0\beta)(\gamma(t))$ (115)

as an equivalent condition to (110). A necessary condition

$(\lambda 0\beta)(w)-4\ell(w)=$ constant $(w\in\dot{S}^{m-1})$ . (116)

for (115) suggests us to take $\lambda$ to be

$\lambda(P)=-2tr(AP)$ , (117)

as a candidate for the potential function satisfying (110), where $A$ is the diagonal matrix
given in (75). Indeed, we can confirm that (117) satisfies (116):

$\lambda(\beta(w))=-2tr(A\beta(w))=-2\sum_{k=1}^{m}c_{k}w_{k^{2}}=4(-\frac{1}{2}\sum_{k=1}^{m}c_{k}w_{k^{2}})=4\ell(w)$ . (118)

The matrix $\mathcal{M}(\lambda)$ given by (11) with $\phi(P)=\lambda(P)$ takes the form

$\mathcal{M}(\lambda)=-2A$ , (119)

Combining (21) with (119), the gradient system associated the potential function $\lambda$ is
expressed as

$\frac{dP}{dt}=-(grad\lambda)(P)=(PA+AP)-2(tr(AP))$ P. (120)

Since the gradient vector $(grad\lambda).(\Theta)$ at $\Theta\in D_{m}\subset\dot{Q}_{m}$ is tangent to $D_{m}$ , we can restrict
(120) to the submanifold $D_{m}$ of $Q_{m}$ . The restriction gives

$\frac{d\Theta}{dt}=2A\Theta-2(tr(A\Theta))\Theta\in T_{\Theta}D_{m}\subset T_{\Theta}\dot{Q}_{m}$ , (121)

which indicates the realization of the ALEH on the submanifold $D_{m}$ of $\dot{Q}_{m}$ with $w_{j^{2}}=\theta_{j}$

$(j=1,2, \cdots, m)$ . Therefore, we reach the following theorem.

Theorem 4.6 The gradient system $(\dot{Q}_{m}, ((\cdot, \cdot))^{QF}, \lambda)$ on the $QIS$ realizes the ALEH on
the submanifold $D_{m}$ of the $QIS$.
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5 Concluding remarks
We have reported the realization of the engineering algorithms, the Karmarkar flow and
the averaged learning equation of Hebb type (ALEH), as the gradient systems on the
quantum information space (QIS). For ALEH, we have an alternative way to realize it on
the QIS. The way is constructed by compositon of a pair of maps; one is the isometric
surj ection,

$\triangle$ : $w\in\dot{S}^{m-1}\mapsto\tilde{w}=(w_{1}^{2}, w_{2}^{2}, \cdots, w_{m}^{2})^{T}\in\dot{S}_{m}$, (122)

of $\dot{S}^{m-1}$ to $S_{m}$ and another is the map $\alpha$ of $S_{m}$ to $D_{m}$ given by (39). We note here that
Faybusovich used the map $\triangle$ in some works, which permits us to avoid a delicate treatment
of the boundary of simplex for Karmarkar-type interior point algorithms [20, 21].

In the case of $C=-2I$ , the gradient systems have following features. One is that
the Karmarkar flow on the QIS is understood to be a generalization of an eigenvalue
solver of anti-Hermitean matrices studied by Nakamura [4]. Another is that the potential
function $\kappa(P)$ with $C=-2I$ turns out to express purity whose logarithm provides the
quantum Renyi potential $\log(tr(P^{q}))/(1-q)$ with $q=2[18]$ . Further, the gradient
system realizing the ALEH in the case of $C=-2I$ turns out to be equivalent to a
quantum inference problem dealt with Braunstein [17].

The future problems would be thought of as follows. One is on convergence of trajec-
tories. In the present study, we cannot clearify the convergence of trajectories of gradient
systems on the QIS except for the case of $C=-2I$ . The other is to return discrete-time
versions of the fKarmarkar flow and the ALEH on the QIS or on a certain Hilbert space,
which is however seems to be big. Several approach could be thought of to this problem.
For example, a ‘lift’ those systems to systems on a certain Hilbert space is worth applied
(see [9] for example). After the lift, discretization in time could be applied. Alternatively,
the order of lift and discritization could be switched.
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