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Abstract
A reaction-diffusion problem with an obstacle potential is considered in a bounded

domain of $\mathbb{R}^{N}$ . Under the assumption that the obstacle $\mathcal{K}$ is a closed convex and bounded
subset of $\mathbb{R}$

“ with smooth boundary or it is a closed n-dimensional simplex, we prove
that the long-time behavior of the solution semigroup associated with this problem can be
described in terms of an exponential attractor. In particular, the latter means that the
fractal dimension of the associated global attractor is also finite.

1 Introduction
Let us consider the following reaction-diffusion system with an obstacle potential in a bounded
and regular domain $\Omega\subset \mathbb{R}^{N}$

$\{\begin{array}{l}\partial_{t}u-\Delta_{x}u+\partial I_{X’}(u)-\lambda u\ni 0,u|_{t=0}=u_{0}, u|_{\partial\Omega}=0.\end{array}$ (1.1)

Here $u=(u_{1}(t, x), \cdots, \tau\mu_{1}(t, x))$ is an unknown vector-valued function, $A_{x}$ is a Laplacian with
respect to the variable $x,$ $\lambda>0$ is a given constant, $\mathcal{K}$ is a given bounded closed convex set in
$\mathbb{R}^{n}$ containing zero and $\partial I_{X’}$ stands for the subdifferential of its indicator function $I_{X’}$ , that is

$I\chi(u):=\{\begin{array}{l}0, u\in \mathcal{K},\infty, u\not\in \mathcal{K}.\end{array}$ (1.2)

Equations and $\backslash y_{f^{\backslash }}$’tems of the type (1.1) appear quite often in the mathematical analysis of phage
transitions models or in reaction diffusion processes with constraints. In the first physical situa-
tion, the umknown $u$ denotes usually the order parameter which, in the case of multicomponent
systems, is an n-dimensional vector that attains values only in a bounded (convex) subset of
$\mathbb{R}$“, usually an n-dimensional simplex

$\mathcal{K}$ $:=\{p=(p_{1}, \ldots,p_{n})\in \mathbb{R}^{n}$ such that $\sum_{i=1}^{n}p_{1}\leq 1,$ $p_{i}\geq 0,$ $i=1,$ $\cdots,$ $n\}$ . (1.3)

This is motivated by the requirement that no void nor overlapping should appear between the
phases. In particular, equation (1.1) with $n=2$ and $\lambda=0$ appears in the Fr\’emond models
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of shape memory alloys; equation (1.1) $wh\dot{e}nn=1$ and $\lambda>0$ is usually called Allen-Cahn
equation with constraint and appears for instance in some Penrose-Fife type models for ph$li\backslash e$

transition (see [20]). We refer to [10] for other models of phase change showing the ubiquity of
subdifferential operators in this framework.

Equation (1.1) is one of the simplest example, albeit rich of interesting features, of a
nonlinear (parabolic) evolution equation a.ssociated to a multivalued maximal monotone opera-
tor, in this case the subdifferential $\partial I\chi$ . The mathematical analysis of these kind of evolutions
has attracted the attention of researchers for many years. In the particular $ca\backslash \backslash e$ of equation
(1.1), results conceming existence, approximation and long time behavior of solutions (e.g., in
terms of global attractors) are known and by now cla.ssic (without any sake of completeness
and referring only to results in the Hilbert space framework, we quote [3], [4], [2], [22], [19] $)$ .

However, to the best of our knowledge, the $finite/infinite$ dimensionality of the global
attractor $iu\backslash ;sociated$ with the obstacle problems has not been yet umderstood (even in the
simplest case of Allen-Cahn equation with double obstacle). Let us stress that thit; is not a
purely academic question. In fact, being a subset of the phase space, the global attractor
is a priori of infinite dimension. On the other hand, a deep Theorem proved by Man\’e (see
[11] $)$ asserts that once the global attractor is shown to have finite fractal dimension, then
it is possible to construct a reduced dynamical system via projection on finite dimensional
spaces which is finite dimensional (namely it lies in $\mathbb{R}^{2m+1}$ , with $m$ properly related to the
fractal dimension of the attractor) and which is Holder continuous with respect to the initial
conditions. The classical machinery for proving the finite-dimensionality (in terms of fractal
$or/$and Hausdorff dimension) of the global attractor (which perfectly works in many cases
of dissipative systems generated by non-linear PDEs with regular non-linearities and often
gives sharp estimates on the dimension, see [1, 22] and references therein) is based on the so-
called volume contraction arguments. Roughly speaking, this method consists in studying the
evolution of infinitesimal volumes on the attractor. To successfully implement this method,
some differentiability is needed for the semigroup $S(t)$ . Here differentiability means that the
$u\backslash \cdot;ociated$ solution semigroup is (uniformly $q\iota 1lk;i-$) differentiable with respect to the initial
data at least on the attractor (see [22]). Unfortunately, this differentiability condition is usually
violated if the underlying PDE has singularities or and degenerations. In particular, it is clearly
violat$ed$ for the obstacle problems like (1.1). Thus, the cl $k\backslash \backslash sical$ scheme is not applicable here
and this makes the problem much more difficult and interesting since it may happen that the
singular/degenerate character of the equation forces the attractor to be infinite dimensional.
This is indeed the case of the degenerate analogue of the real Ginzburg-Landau equation

$\{\begin{array}{l}\partial_{t}u-\Delta_{x}(u^{3})+u^{3}-u=0, in \Omega u=0 on \partial\Omega.\end{array}$ (1.4)

In [8] it ha. been recently shown that the global attractor of the dynamical system generated
by (1.4) has infinite dimension even if $\Omega$ is bounded. On the other hand, in recent years the
finite-dimensionality of the global attractor has been established for many important classes
of degenerate/singular dissipative systems including Cahn-Hilliard equations with logarithmic
potentials (see [15]), porous media equations (under some natural restrictions which exclude
the example of (1.4), see [8] $)$ , doubly non-linear parabolic equations of different types (see
[17, 18, $9|)$ , etc. In these papers, the finite dimensionality of the global attractor is typically
a consequence of the existence of a more refined object called erponential attractor, whose
existence proof is often $b\iota \mathfrak{B}ed$ on proper forms of the so called squeezing/smoothing property
for the differences of solutions.

We remind that the concept of exponential attractor $h_{tk^{s}i}$ been introduced in [5] in order
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to overcome two major drawbacks of the global attractors: the slow (uncontrollable) rate of
attraction and the sensitivity to perturbations. Roughly speaking, an exponential attractor
(which always contains the global one) is a compact finite-dimensional set in the $ph$ } $x\backslash \backslash e$ space
which attracts exponentially fast the images of all bounded sets as time tends to infinity (see
Section 3 for the rigorous definition). Thus it tums out that, in contrast to global attractors, the
exponential attractors are much more robust to perturbations (imsually, Holder continuous with
respect to the perturbation parameter). AIoreover, the rate of convergence to the exponential
attractor can be controlled in term of physical parameters of the system considered, see [5] and
the more recent survey [16] (and also references therein) for more details. Finally, the finite
dimensionality of the global attractor immediately follows from the finite dimensionality of the
exponential attractor.

In this note, we report some results contained in the recent [21] about the extension of
the exponential attractors theory to some classes of reaction-diffusion problems with obstacle
potentials. In the remaining part of this introduction, we informally $pre\searrow^{\backslash }ent$ the strategy
adopted in [21] to prove the existence of an exponential attractor and thus obtain the finite
dimensionality of the global one. First of all, we recall a general abstract result, competitive with
the volume contraction method, which serves as a ground base both for proving the finiteness
of the fractal dimension und both for proving, when combined with some other estimates, the
existence of an exponential attractor.

Theorem 1.1 ([14],[16], [23]). Let $X$ be a compact subset of the Banach space E. If there
eststs another Banach space $E_{1}$ compactly embedded in $E$ and a map $L$ : $Xarrow X$ such that
$L(X)=X$ and, for a positive $C_{L}$ ,

$\Vert L(v_{1})-L(v_{2})\Vert_{E_{1}}\leq C_{L}\Vert v_{1}-v_{2}\Vert_{E},$ $\forall v_{1},$ $v_{2}\in X$ , (1.5)

then the fmctal dimension of $X$ is finite and the following estimate holds

$dim_{F}(X)\leq \mathcal{H}_{1’ 4C_{L}}(B_{E_{1}})$ , (1.6)

where $\mathcal{H}_{1’ 4C_{L}}(B_{E_{1}})\dot{u}s$ a quantity, $name,d$ Kolmogorov entropy, related to the (minimal) number
$N_{1’ 4C_{L}}(B_{E_{1}})$ of balls of radius 1/4$C_{L}$ needed to cover $B_{E_{1}}$ rria the formula $\mathcal{H}_{1’ 4C_{L}}(B_{E_{1}})$ $:=$

$\log_{2}N_{1\prime 4C_{L}}(B_{E_{1}})$ .

In order to use this Theorem to investigate the finiteness of the fractal dimension of
the global attractor, one has to properly define the map $L$ and the space $E_{1}$ . The usual choices
when one has to deal with parabolic problems are to define $L$ to be $L:t40\mapsto S(1)u_{0}$ , where
$u_{0}$ lies in the attractor and the space $E_{1}$ in such a way that $S(1)u_{0}\in E_{1}$ for all $u_{0}$ on the
attractor. Then, the parabolic character of the problem would $g\rceil iarantee$ some regularity for
$S(1)u_{0}$ and thus the required compactness of $E_{1}\subset E$ . Of course, the choice of $E_{1}$ should
be also calibrated with the requirement that also (1.5), which thus appears $a_{\iota}s$ a smoothing
estimate for the difference of two solutions, holds. Now, tuming back to our obstacle problem,
the natural choice $L=S(1)$ and $E_{1}=(H_{0}^{1})^{N}$ turns out to be the wrong one: in fact, proving
a point wise (in time) estimate for the difference of two solutions in the norm of $(H0)^{N}$ reveals
to be hopeless due to the presence of the subdifferential $\partial I_{X}$ . On the contrary, the correct
choice here is to (at first) apply Theorem 1.1 in a space of trajectories and then try to recover
the resiilts in the physical phase space. In our situation, the correct choices for $E$ and $E_{1}$ turn
out to be $E$ $:=L^{2}(0,1;(L^{2})^{\tau\iota})$ a $E_{1}$ $:=\{u\in L^{2}(0,1;(H_{0}^{1})^{n})$ : $\partial_{t}u\in L^{1}(0,1;(H^{-s})^{\iota})\}$ with
$s>N/2$ . Correspondingly, the map $L$ will be $L=S(1)$ with @(t) being the lifted (semigroup)
of the $t;emigro\iota ipS(t)$ (see [21] for the correct definition). In other words, we are applying some
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modification of the method of $\ell$-trajectories which was originally introduced by M\’alek and
$Nd$as in [13] and later extended in [14]. In this last paper, it is also shown how to canonically
recover, e.g., the finiteness of the fractal dimension of the attractor in the usual phase space
once the analogous result is proven in the extended trajectory space.
However, it should be noted that the application of this theory to our obstacle problem is far
from being standard and immediate. In fact, in order to obtain the estimate (1.6) when $E_{1}$ is as
above, we have to control the difference $(\partial_{t}u_{1}-\partial_{t}u_{2})$ in $L^{1}(0,1;(H^{-s})^{\tau\iota})$ . As a consequence, it
is evident that we have to produce estimates for the difference between the Lagrange multipliers
(namely the selection of the subdifferential $\partial I\chi(u)$ which tums the differential inclusion (1.1)
into an equation) aissociated with the solutions $u_{1}$ and $u_{2}$ . These kind of estimates, roughly
speaking, look as follows

$\int_{0}^{1}||\partial I_{X’}(u_{1}(t))-\partial I_{X^{r}}(u_{2}(t))\Vert_{L^{1}(\Omega)}dt\leq C\Vert u_{1}(0)-u_{2}(0)\Vert_{L^{2}}$ (1.7)

where $u_{1}$ and $u_{2}$ denote two solutions starting from the proper absorbing set and, with a little
abuse of notation, we refer to $\partial I\chi t\mathfrak{B}$ it were single valued. Such kind of estimates ar$e$ the core
of the problem and, to the best of our knowledge, do not seem to be already known. The proof
of (1.7) is contained in the paper [21], in the case in which $\mathcal{K}$ is a smooth and bounded convex
subset or is the simplex (1.3). With (1.7) in hand, the existence of the exponential attractor
(even in the physical phase space) and thus the finite dimensionality of the global one, can be
obtained by standardly applying the method of $\ell$-trajectories.

2 Well-posedness and regularity
In this section we recall some known facts about the solutions of reaction-diffusion problem
(1.1) with obstacle potential and to formulate some additional estimates which will be crucial
for what follows. Before entering into the details, we advise the reader that, although the
unknown function $u$ is actually a vector valued function, for the sake of simplicity, will be
denoted $af$ a scalar valued function. Consequently, also the functional spaces we will use in
the course of the paper we will have a“scalar” notation. This means that a notation like, e.g.,
$L^{2}$ will be preferred to a (more precise) notation like $(L^{2}(\Omega))^{n}$ . The same applies to dualitiae
$(\langle\cdot, \cdot\})$ and scalar products $((\cdot,$ $\cdot))$ . Moreover, we will indicate with same symbols $\mathcal{K}$ and $I\chi$

the convex in $\mathbb{R}^{n}$ and its indicator function and their realization in $L^{2}$ . Thus, the definition of
(weak) solutions of our problem is.

Deflnition 2.1. A function $u=u(t, x)$ is a solution of the obstacle problem (1.1) if $u(t, x)\in \mathcal{K}$

for almost all $(t, x)\in[0, T]\cross\Omega$ ,

$u\in C([0,T];L^{2})\cap L^{2}(0,T;H_{0}^{1})$ , $\partial_{t}u\in L^{2}(0, T;H^{-1})$ , (2.1)

and the following variational inequality holds for almost every $t\in(O, T]$

$\langle\partial_{t}u(t),u(t)-z\rangle+(Vu, V(u-z))\leq\lambda(u,u-z)$ , for any $z\in H_{0}^{1}\cap \mathcal{K}$ . (2.2)

The next theorem is a standard result in the theory of the evolution equations $i_{k9}sociated$

with maximal monotone operators (see the seminal references [3], [4] and [2]).

Theorem 2.2. [Well posednessJ When $\mathcal{K}$ is a closed and bounded convex set containing the
origin in $\mathbb{R}^{n}$ there $exi_{\tau}9ts$ a unique globd weak solution for any given measurable $u_{0}$ such that
$u_{0}(x)\in \mathcal{K}$ for almost all $x\in\Omega$ .
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Let us introduce the function (named Lagrange multiplier in what follows)

$h_{u}(t)$ $:=-\partial_{t}u(t)+\Delta_{x}u(t)+$ Au, $h_{u}(t)\in\partial I\chi(u)$ . (2.3)

The next proposition, which has an independent interest and turns out to be crucial for the rest
of our investigations, shows that the function $h_{u}$ is, in fact, globally bounded in the $L^{\infty}$-norm.

Proposition 2.3 ([21]). Let the a.ssumptions of Theorem 2. 2 hold and let $h.(t)$ be the Lagrange
multiplier associated uyith the solution $u(t)$ of problem (1.1). Then, $h_{u}\in L^{\infty}(\mathbb{R}+\cross\Omega)$ and

$\Vert h_{u}(t)||_{L}\infty\leq C$, (2.4)

where the constant $C$ depend, only on $\mathcal{K}$ and $\lambda$ (and $i_{\backslash }$ independent of $u$ and $t\geq 0$).

We refer to [21] for all the details of the proof. Here it is worthwhile to comment
a bit on the ingredients of the proof. To prove (2.4), we llae an approximation argument
combined with the maximum principle. The key point here is the use of an $ad$ hoc approximation
scheme different from the Yosida approximation usually used in these contexts. This kind of
approximation consists in approximating the indicator function $I_{X’}$ as follows. First, we let
$M(u)$ to be the distance from the point $u\in \mathbb{R}^{n}$ to the convex set $\mathcal{K}$ , namely the real valued
function $M$

$M(u)$ $:=$ dist $(u,\mathcal{K})$ . (2.5)

Then, $M$ is convex, globally Lipschitz $continuotL^{\backslash }i$ and smooth outside $\mathcal{K}$ . In addition there
holds that

$M(u)\geq 0,$ $M(u)=0$, if $u\in \mathcal{K}$ , (2.6a)
$|\nabla M(u)|=1$ , if $u\not\in \mathcal{K}$ . (2.6b)

Then, for any $\epsilon>0$ , we introduce the real function

$f_{e}(z):=\{\begin{array}{l}0, z\leq\epsilon,\epsilon^{-1}(z-\epsilon)^{2}, z\geq\epsilon.\end{array}$ (2.7)

Finally, the desired approximation is defined a

$F_{\epsilon}(u)$ $:=f_{e}(M(u))$ . (2.8)

Remark 2.4. Contrary to Theorem 2.2 which is $ba:;ed$ only on the energy type estimates
which are valid for much more general equations, e.g., with non-scalar diffusion matrix, etc.,
the $L^{\infty}$-estimate obtained in Proposition 2.3 is $ba\cdot \mathfrak{j}ed$ on the maximum/comparison principle
and requires the diffusion matrix to be scalar. In particular, we do not know whether or not
this estimate remains true even for the case of diagonal, but non-scalar diffusion matrix.

As direct consequence of the previous Proposition, we have that (1.1) could be under-
stood as the heat equation

$\partial_{t}u-\Delta_{x}u=\lambda u-h_{u}$

with the extemal forces belonging to $L^{\infty}$ . Thus, the parabolic interior regularity estimates give
(see. e.g., [12])

$\Vert u(t)\Vert_{C^{2-\nu}}\leq C_{\nu}\frac{1+t^{\alpha}}{t^{\alpha}}$ , for any $\nu>,$ $0$ . (2.9)
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3 Global and exponential attractors
In this section we present the long-time behavior results for the solutions of problem (1.1) in
terms of global and exponential attractors. We first recall that, due to Theorem 2.2, equation
(1.1) generate a (dissipative) and Lipshitz continuous in the $L^{2}$-metric semigroup $\{S(t), t\geq 0\}$

in the phase space

$\Phi=\Phi_{X}$ $:=$ { $u\in L^{\infty}$ : $u(x)\in \mathcal{K}$ for almost all $x\in\Omega$ }, (3.1)

i.e.,
$S(t)$ : $\Phiarrow\Phi$ , $S(t)u_{0}$ $:=u(t)$ , (3.2)

where $u(t)$ is the solution to (1.1) at time $t$ . Moreover, it can be standardly proved the following

Theorem 3.1. [Global AttractorJ Under the assumptions of Theorem 2.2, the semigroup $S(t)$

associated with the obstacle equation (1.1) possesses the global attractor $\mathcal{A}$ in $\Phi$ which is bounded
in $C^{2-\nu}(\Omega)$ for $ever\eta\nu>0$ . This attmctor is generated by all the trajectories of the semigroup
$S(t)$ defined for $dlt\in \mathbb{R}$ :

$\mathcal{A}=\mathcal{K}|_{t=0}$ , (3.3)

where $\mathcal{K}\subset L^{\infty}(\mathbb{R}, \Phi)$ is a set of all solutions of (1.1) defined for $dlt\in \mathbb{R}$ .
Now, we turn our attention to the construction of the exponential attractor and to the

study of the finite dimensionality of the global attractor $\mathcal{A}$. First of all, recall that the semigroup
$S(t)$ a.ssociated with the obstacle problem (1.1) possesses a global Lyapunov function of the form

$\mathcal{L}(u):=\Vert\nabla_{x}u\Vert_{L^{2}}^{2}-\lambda||u\Vert_{L^{2}}^{2}$ . (3.4)

Indeed, using the test function $z=u(t-h)$ in the variational inequality (2.2), dividing it by
$h>0$ and passing to the limit $harrow 0$ , we arrive at

$\Vert\partial_{t}u(t)\Vert_{L^{2}}^{2}+\frac{d}{dt}\mathcal{L}(u(t))\leq 0$ .

Therefore, according to the general theory (see e.g., [1]), every trajectory $u(t)=S(t)u_{0}$ tends
$li:;tarrow\infty$ to the $ft$et $\mathcal{R}$ of all equilibria of problem (1.1)

dist $(S(t)u_{0},\mathcal{R})arrow 0$ , as $tarrow\infty$ .
However, in contrast to the case of regular systems, the equilibria set $\mathcal{R}$ is generically not discrete
for the obstacle type singular problems. Thus, in our situation, the existence of a Lyapunov
function does not allow to obtain the stabilization of every trajectory to a single equilibrium
even in ‘’generic” situation. In addition, the semigroup $S(t)$ is not differentiable with respect to
the initial data (it is in fact only globally Lipschitz continuous), so we are not able to construct
the stable/unstable manifolds associated with an equilibrium. Thus, the so-called theory of
regular attractors is not applicable to equations of the type (1.1). Moreover, due to the above
mentioned non-differentiability, the standard way of proving the finitedimensionality of the
global attractor based on the volume contraction method does not work here. So, the existence
of the finitedimensional reduction for the associated long time dynamics becomes a non-trivial
problem which, to the best of our knowledge, it has not been yet tackled. In this paper we will
prove that the global attractor for (1.1) has finite fractal dimension by using the concept of the
$s(\succ called$ exponential attractor and the estimation of the dimension ba.wed on the proper chosen
squeezing/smoothing property for the difference between two solutions. This method has the
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advantage that it does not require the differentiability with respect to the initial data The
existence of an exponential attractor is interest in itself. In fact, we recall once more that the
global attractor represents the first (although extremely important) step in the understanding
of the long-time dynamics of a given evolutive process. However, it may also present some severe
drawbacks. Indeed, $l_{\wedge}’$’ simple examples show, the rate of convergence to the global attractor
may be arbitrarily $t;low$ . This fact makes the global attractor very sensitive to perturbations
and to numerical approximation. In addition, it is usually extremely difficult to estimate the
rate of convergence to the global attractor and to express it in terms of the physical parameters
of the system. In particular, it may even be reduced to a single point, $th\iota x$; failing in capturing
the very rich and most interesting transient behavior of the system considered. The simplest
example of such a system is the following lD real Ginzburg-Landau equation

$\partial_{t}u=\epsilon\partial_{x}^{2}u+u-u^{3}$ , $x\in[0,1]$ , $u|_{x=0}=u|_{x=1}=-1$ .

In that ca.se, the global attractor $\mathcal{A}=\{-1\}$ is trivial for all $\epsilon>0$ . However, this attractor is,
factually, invisible and unreachable if $\epsilon$ is small enough since the transient structures (which
are very far from the attractor) have an extremely large lifetime $T\sim e^{1’\sqrt{e}}$ .

In order to overcome these drawbacks, the concept of exponentiaJ attractor hts then
been proposed in [5] $)$ to possibly overcome this difficulty. We recall below the definition of
exponential attractor adopted for our ciise, see e.g., [5] amd [16] for more detailed exposition.

Definition 3.2. A compact subset $\mathcal{M}$ of the phase space $\Phi$ is called an exponential attractor
for the semigroup $S(t)$ if the following conditions are satisfied:
$(El)$ The set $\mathcal{M}$ is positively invariant, i.e., $S(t)\mathcal{M}\subset \mathcal{M}$ for all $t\geq 0$ ;
$(E2)$ The fractal dimension (see, e.g., [22]) of $\mathcal{M}$ in $\Phi$ is finite;
$(E3)$ The set $\mathcal{M}$ attracts exponentially fast the image the phase space $\Phi$ . Namely, there exist
$C,\beta>0$ such that

dist $\iota\infty(S(t)\Phi,\mathcal{M})\leq Ce^{-\beta t}$ , $\forall t\geq 0$ . (3.5)

Thanks to the control of the convergence rate $(E3)$ it follows that, compared to the
global attractor, an exponential attractor is much more robust to perturbation (usually it
is H\"older continuo$tLi$ with respect to the perturbation parameter). However, since the the
exponential attractor $\mathcal{M}$ is only positively invariant (see (El)), it is obviously not unique. Thus,
the concrete choice of an exponential attractor and its explicit construction becomes essential.
We recall also that, in the original paper [5] the construction was extremely implicit (involving
the Zorn lemma) and this fact did not allow to develop a reasonable perturbation theory. This
drawback hiki been overcome later in [6] and [7] where an alternative and relatively simple
and explicit construction for the exponentially attractor has been suggested. Note also that the
construction of [7] gives an exponential attractor which is automatically Holder continuous with
respect to the reasonable perturbations of the semigroup considered and this somehow resolves
the non-umiqueness problem. We refer the reader to the recent survey [16] for the detailed
informations on the exponential attractors theory.
We tum back to our equation (1.1). In [21], we proved the following two Theorems.

Theorem 3.3 ([21]). Let the assumptions of Theorem 2.2 hold and let, in addition, the bound-
$an/S=\partial \mathcal{K}$ be smooth enough (at leas $t,$ $C^{2,1}$ ). Then, the solution semigroup $S(t)$ associated
nrith the obstacle problem (1.1) possesses an exponential attractor. As a consequence,, the global
auractor has finite fractd dimension.
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Theorem 3.4 ([21]). Let the assumptions of Theorem 2.2 hold and let the set $\mathcal{K}$ be an n-
dimensional simplex (1.3). Then, the solution semigroup $S(t)$ associated with the obstacle
problem (1.1) possesses an exponential attmctor. As a consequence, the global attmctor $\mathcal{A}$ has
finite fractd dimension.

The proofS of both results are based on an argument that combines a proper choice
of an approximation scheme and the maximum principle similar to the one devised to prove
Proposition 2.3. In particular, let us note that the non trivial part (and also the main novelty
of paper [21] $)$ consists in showing the validity of estimate (1.7) which, at the moment, we are
able to prove only for the two different kind of convex sets introduced in Theorem 3.3 and 3.4.
Proving the existence of an exponential attractor in the cikse of a general closed and bounded
convex set is still an open an interesting problem.

3.1 Some generalizations

We now discuss the applications of our method to more general problems. We start with the
obvious observation that all the above results remain valid if we replace the term $\lambda u$ in the
left-hand side of equation (1.1) by any sufficiently regular interaction function $g(u,x)$ . Namely,
consider the problem

$\partial_{t}u-\Delta_{x}u+\partial I_{K}(u)+g(x,u)\ni 0$, (3.6)

where $g\in C(\Omega, C^{1}(\mathbb{R}^{n},\mathbb{R}^{n}))$ is an arbitrary interaction function. Then, the following result
holds.

Theorem 3.5. Let $\mathcal{K}$ be a convex bounded set of $\mathbb{R}^{n}$ containing zero with a smooth boundary
(or let $K$ be an n-dimensional simplex (1.3)) and let $g\in C(\Omega, C^{1}(\mathbb{R}^{n}, \mathbb{R}^{n}))$ be an $arbitmn/(not$
necessarily a $gmdient’$) non-line,ar intemction function. Then, the solution semigroup $S(t)$

associated with equation (3.6) possesses an exponential attractor $\mathcal{M}$ in the sense of Definition
S.2. Moreover, the fractal dimension of the globd attractor is finite.

Indeed, since $\mathcal{K}$ is bounded, the solution $u$ is also automatically bounded in $L^{\infty}$ (and
the same will be true for the solutions $u_{\epsilon}$ of any $reix\backslash ;onable$ approximate problel if $\epsilon>0$ is
small enough no matter how the regular interaction function $g$ looks like). So, the term $g(u,x)$
can be treated as a perturbation and the proof of Theorem 3.5 repeats word by word the given
proof for the particular case $g(x, u)$ $:=-\lambda u$ . The fumction $g(x, u)$ may even depend explicitly
on the gradient $\nabla_{x}u:g=g(x,u, \nabla_{x}u)$ . However, in that $cat;e$ we already need to impose
some restrictions on the growth of $g$ with respect to $\nabla_{x}u$ (since the obstacle potential controls
only the $L^{\infty}$-norm of a solution and the control of its $W^{1,\infty}$-norm should be then additionally
obtained). In particular, if $g$ does not grow with respect to $\nabla_{x}u$ , i.e.,

$|g(x,u, \nabla_{x}u)|\leq Q(|u|)$

for some monotone function $Q$ independent of $x$ and $\nabla_{x}u$ , the proof of Theorem 3.5 still repeats
word by word the case of $g(u)=-\lambda u$ . However, our conjecture here is that the result remains
true under the standard sub-quadratic growth restriction

$|g(x,u, \nabla_{x}u)|\leq Q(|u|)(1+|\nabla_{x}u|^{q})$

with $q<2$ . As we have already pointed out, our method of estimating the Lagrange multipliers
is strongly $b_{i}sed$ on the maximum principle for the leading linear part of equation (1.1). For
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this reason, we are unable in general to extend it to the case of non-scalar diffusion matrix.
However, we point out that for some particular convexes the estimate (1.7) can be verified also
for diffusion matrices (say diagonal). This is the case of the convex

$\mathcal{K}:=[0, L]^{\tau\iota}$ , $L>0$ .

In this case, estimate (1.7) can be easily verified just multiplying the equation for the kth
component of (1.1) (actually of its approximation) by sgn $(u_{k}^{1}-u_{k}^{2})$ even in the cnse of diagonal
diffusion matrix

$\partial_{t}u-a\Delta_{x}u+\partial I_{K}(u)-\lambda u\ni O$ , (3.7)

with $a=$ diag $(a_{1}, \cdots, a_{k})$ , $ai>0$ for $i=1,$ $\cdots,$ $n$ .
One more generalization can be obtained replacing the Laplacian $\Delta_{x}u$ in equations (1.1)

by the quasi-linear second order differential operator

$A(u)$ $:=div(a(|u|^{2})\nabla_{x}u)$ , $u=(u_{1}, \cdots , u_{r\iota})$ , $|u|^{2}$ $:=u_{1}^{2}+\cdots+u_{||}^{2}$

with some natural assumptions on the scalar diffusion function $a$ . Then, it is not difficult to
verify that the proofs of (1.7) given above remain true and the $a\backslash \backslash \backslash ociated$ solution semigroup
possesses an exponential attractor $\iota mder$ the ass$\iota miptionb$ of Theorem 3.5.
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