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1 Introduction

This note is based on a joint work with Prof. Naoki Tanaka (Shizuoka University).
We consider the initial-boundary value problem for the complex Ginzburg-Landau

equation:

(CGL) $\{\begin{array}{l}\frac{\partial u}{\partial t}-(\lambda+i\mu)\Delta u+(\kappa+i\nu)|u|^{q-2}u-\gamma u=0, (x, t)\in\Omega\cross(0, \infty),u(x, t)=0, (x, t)\in\partial\Omega\cross(O, \infty),u(x, 0)=u_{0}(x), x\in\partial\Omega.\end{array}$

Here $\Omega$ is a general domain in $\mathbb{R}^{N}(N\geq 1)$ with smooth boundary $\partial\Omega,$ $\lambda>0,$ $\kappa>0$ ,
$\mu,$ $\nu,$ $\gamma\in \mathbb{R}$ , and $i=\sqrt{-1}$ . The complex Ginzburg-Landau equation with $q=4$ was
derived to describe the destabilization of plane shear flow and the instability problem in
nonlinear chemical kinetics. The general case $(q\geq 2)$ has been studied as a model for
turbulent dynamics. For details we refer to [1].

Our aim in this note is to show the time global well-posedness for (CGL) in If $(\Omega)$ .

The weak or strong global well-posedness for (CGL) has been studied by many authors.
We refer to [2, 3, 4, 6, 7, 8, 9, 10, 11] and references therein. Among them, Ginibre-
Velo [4] established the global well-posedness for (CGL) in $L^{P}(\mathbb{R}^{N})$ and locally uniform
$I\nearrow(\mathbb{R}^{N})$ spaces under the assumptions that $p\geq 2$ ,

$|\mu|’\lambda<2\sqrt{p-1}’|p-2|$ , (1.1)

$2\leq q\leq 2+2p/N$ . (1.2)

It should be remarked that Yokota and Okazawa [11] studied (CGL) for $u_{0}\in L^{2}(\Omega)\cap$

$If(\Omega)$ . They proved the unique existence of strong solution to (CGL) and the continuous
dependence on its initial data in $L^{2}(\Omega)$ under the assumptions that $p\geq 2$ ,

$|\mu|’\lambda\leq 2\sqrt{p-1}’|p-2|$ ,

$2\leq q<2+2p/N$ .

Our main result is an extension of one of the results of [4].
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Main Theorem. Assume $p\in(1, \infty),$ (1) and (2). Then for each $u_{0}\in L^{p}(\Omega)$ there
exists a unique solution $u(\cdot;u_{0})$ to (CGL) in the class

$C([0, \infty);L^{p}(\Omega))\cap C^{1}((0, \infty);L^{p}(\Omega))\cap C((0, \infty);W^{2,p}(\Omega)\cap W_{0}^{1,p}(\Omega))$ .

Moreover, the following continuous dependence of solutions on their initial data holds:
for each $\tau>0$ and $r>0$ there exists $M(\tau, r)>0$ such that

$\Vert u(t;u_{0})-u(t;\hat{u}_{0})\Vert_{Lp}\leq M(\tau, r)\Vert u_{0}-\hat{u}_{0}\Vert_{L^{p}}$

for $t\in[0, \tau]$ and $u_{0},\hat{u}_{0}\in L^{P}(\Omega)$ with 1 $u_{0}\Vert_{L^{p}}\leq r$ and $\Vert\hat{u}_{0}\Vert_{Lp}\leq r$ .

Our approach to (CGL) is quite different from that of [4]. First we rewrite (CGL) as
an abstract semilinear Cauchy problem

$u’(t)=Au(t)+Bu(t)$ $(t>0)$ , $u(O)=u_{0}$

in a Banach space $X=L^{P}(\Omega)$ . Then we apply a characterization theorem for semigroups
of locally Lipschitz operators associated with the above Cauchy problem obtained by [7]
to prove our main theorem.

2 Characterization theorem for semigroups of locally Lip-
schitz operators

In this section we introduce semigroups of locally Lipschitz operators and recall the
characterization theorem for them.

We consider a semilinear Cauchy problem

$u’(t)=Au(t)+Bu(t)$ $(t>0)$ , $u(O)=u_{0}\in D$ (SP; $u_{0}$ )

in a Banach space $(X, \Vert\cdot\Vert)$ . Here $A$ is the infinitesimal generator of an analytic $(C_{0})$

semigroup $\{T(t)|t\geq 0\}$ on $X$ satisfying the condition below:

(A) There exist constants $M\geq 1$ and $\omega_{A}<0$ such that $\Vert T(t)\Vert\leq Me^{\omega t}A$ for $t\geq 0$ .

Let $\alpha\in(0,1)$ and let $Y$ be the Banach space $D((-A)^{\alpha})$ equipped with the norm
$\Vert x\Vert_{Y}=$ I $(-A)^{\alpha}x\Vert_{X}$ for $x\in D((-A)^{\alpha})$ . Let $D$ be a subset of $X$ and let $\varphi$ be a proper
lower semicontinuous functional from $X$ into $[0, \infty]$ such that $D(\varphi)=D$ and for each
$r>0,$ $C_{r}$ $:=D_{r}\cap Y$ is dense in $D_{r}$ , where $D_{r}=\{x\in X;\varphi(x)\leq r\}$ for $r>0$ . Let
$C=D\cap Y$ . The operator $B$ from $C$ into $X$ is assumed to satisfy the following conditions:

(Bl) For each $r>0$ the operator $B$ is continuous from $C_{r}$ into $X$ .

(B2) For each $r>0$ there exists $M_{B}(r)>0$ such that

$\Vert Bx\Vert_{X}\leq M_{B}(r)(1+\Vert x\Vert_{Y})$ for $x\in C_{r}$ . (2.1)
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Now we give the definition of semigroups of locally Lipschitz operators.

Definition 2.1. A one-parameter family $\{S(t);t\geq 0\}$ of locally Lipsch.itz operators
from $D$ into itself is called a semigroup of locally Lipschitz operators on $D$ with respect
to the functional $\varphi$ if the following three conditions are satisfied:

(Sl) $S(O)x=x$ for $x\in D$ , and $S(t+s)x=S(t)S(s)x$ for $s,$ $t\geq 0$ and $x\in D$ .

(S2) For each $x\in D,$ $S(\cdot)x:[0, \infty)arrow X$ is continuous.

(S3) For each $\tau\geq 0$ and $r\geq 0$ there exists $M(\tau, r)>0$ such that

$\Vert S(t)x-S(t)y\Vert\leq M(\tau, r)\Vert x-y\Vert$ for $x,$ $y\in D_{r}$ and $t\in[0, \tau]$ .

The characterization theorem is stated as follows:

Theorem 2.2. ([7, Proposition 2.4 and Theorem 3.5]) Let $a_{0}\geq 0$ . The following two
statements (i) and (ii) are equivalent:

(i) There exists a semigroup $\{S(t);t\geq 0\}$ of locally Lipschitz operators on $D$ with
respect to $\varphi$ such that for $x\in D,$ $S(t)x\in C$ for $t>0,$ $BS(t)x\in C((O, \infty);X)\cap$

$L_{loc}^{1}(0, \infty;X)$ and $S(t)x$ satisfies the integral equation

$S(t)x=T(t)x+ \int_{0}^{t}T(t - s)$BS(s)xds $fort\geq 0$ ,

and the growth condition

$\varphi(S(t)x)\leq e^{aot}\varphi(x)$ for $x\in D$ and $t\geq 0$ .

(ii) The following three conditions are satisfied:
(ii-l) There exist $\tau>0$ and a family $\{V_{r}(\cdot,$

$\cdot,$ $\cdot);r>0\}$ of nonnegative functionals
on $[0, \tau]\cross X\cross X$ such that

(Vl) for each $r>0$ and $x,$ $y\in D_{r},$ $V_{r}(\cdot, x, y)$ : $[0, \tau]arrow[0,$ $\infty)$ is continuous,

(V2) for each $r>0$ there exists $L(r)>0$ such that

$|V_{r}(t, x, y)-V_{r}(t,\hat{x},\hat{y})|\leq L(r)(\Vert x-\hat{x}\Vert x+||y-\hat{y}\Vert_{X})$

for $(t, x, y),$ $(t,\hat{x},\hat{y})\in[0, \tau]\cross X\cross X$ ,

(V3) for each $r>0$ there exist $M(r)\geq m(r)>0$ such that

$m(r)\Vert x-y\Vert x\leq V_{r}(t, x, y)\leq M(r)\Vert x-y\Vert x$

for $(t, x, y)\in[0, \tau]\cross D_{r}\cross D_{r}$ .
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(ii-2) For each $r>0$ there exist $R\geq r$ and $\omega\geq 0$ such that

$\lim_{h\downarrow}\inf_{0}(V_{R}(t+h, J(h)x, J(h)y)-V_{R}(t, x, y))/h\leq\omega V_{R}(t, x, y)$

for $(t, x, y)\in[0, \tau)\cross C_{r}\cross C_{r}$ , where

$J(t)w=T(t)w+ \int_{0}^{t}T(s)Bwds$ . for $w\in C$ and $t\geq 0$ .

(ii-3) There exists $b_{0}\in(0,1)$ such that to each $x\in C$ and $\epsilon>0$ there correspond
$\delta\in(0, \epsilon],$ $x_{\delta}\in C$ and $z\delta\in Y$ satisfying

$x_{\delta}=J(\delta)x+z_{\delta}$ , $\Vert z_{\delta}\Vert_{X}\leq\epsilon\delta$ , $\Vert z_{\delta}\Vert_{Y}\leq\epsilon\delta^{b_{0}}$ ,

$(\varphi(x\delta)-\varphi(x))/\delta\leq a_{0}\varphi(x)+\epsilon$ .

Moreover, for each $x\in D,$ $S(t)x$ is continuously differentiable on $(0, \infty)$ in $X,$ $AS(t)x$

is continuous on $(0, \infty)$ in $X$ , and $S(t)x$ satisfies $(SE;x)$ for $t>0$ , if the operator $B$

satisfies that for each $\rho>0$ there exists $L_{B}(\rho)>0$ such that

$\Vert Bu-Bv\Vert_{X}\leq L_{B}(\rho)\Vert u-v\Vert_{Y}$ for $u,$ $v\in C$ and $\Vert u\Vert_{Y}\leq\rho,$ $\Vert v\Vert_{Y}\leq\rho$ . (2.2)

3 Outline of the Proof of Main Theorem
In order to prove our main theorem, we first rewrite (CGL) as an abstract Cauchy

problem (SP $;u_{0}$ ) in $X=U(\Omega)$ and then apply the characterization theorem. In what
follows $K$ stands for various constants.

Let $X=L^{P}(\Omega)$ and $\Vert u\Vert_{X}=\Vert u\Vert_{L^{p}}$ for $u\in X$ . Then, the operator $A$ defined by

$Au=(\lambda+i\mu)(\triangle u-u)$ for $u\in D(A)=W^{2,p}(\Omega)\cap W_{0}^{1,p}(\Omega)$

is the generator of an analytic $(C_{0})$ semigroup $\{T(z)\}$ on $X$ such that $T(z)$ is analytic in
the sector $|\arg z|<\omega_{p}$ and $\Vert T(t)\Vert_{X}\leq e^{-\lambda t}$ for $t\geq 0$ , where $\omega_{p}=\tan^{-1}(2\sqrt{p-1}’|p-2|)$ .

In what follows we assume that $q>2$ . By (1.1) we can choose $\tilde{p}$ such that $p<\tilde{p}<$

$p+q-2$ ,

$|\mu|’\lambda<2\sqrt{\tilde{p}-1}’|\tilde{p}-2|$ , (3.1)
$\tilde{\theta}$ $:=(N/2)(1p-1(\tilde{p}(q-1)))<1$ . (3.2)

Let $\beta=(N2)(1\prime p-1\tilde{p})$ and $\theta=(1\tilde{p}-1p+2N)^{-1}(1’\tilde{p}-1/(p(q-1)))$ . Then it is
easily seen that $\beta,$ $\theta,$ $\beta+(q-1)\theta(1-\beta)\in(0,1)$ . The Gagliardo-Nirenberg inequality
implies that $D(A)\subset L^{\tilde{P}}(\Omega)\cap L^{p(q-1)}(\Omega)\cap L^{\overline{p}(q-1)}(\Omega)$ . Choose $\alpha\in(0,1)$ satisfying

$\tilde{\theta}<\alpha<1$ and $\beta+(q-1)\theta(1-\beta)<\alpha<1$ . (3.3)
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Let $D=L^{P}(\zeta\})\cap L^{\tilde{p}}(\Omega)$ . We define a lower semicontinuous functional $\varphi$ : $Xarrow$ [ $0$ , oo]

by $\varphi(u)=\Vert u\Vert_{L^{p}}^{p}+\Vert u\Vert_{L^{\overline{\rho}}}^{\tilde{p}}$ if $u\in D$ and $\varphi(u)=\infty$ otherwise. Let $Y=D((-A)^{\alpha})$ . We

introduce a nonlinear operator $B$ defined by

$Bu=-(\kappa+i\nu)|u|^{q-2}u+(\lambda+i\mu+\gamma)u$ for $u\in D(B)=C(=D\cap Y)$ . (3.4)

Then (CGL) is rewritten as a semilinear Cauchy problem $(SP;u_{0})$ . The operators $A$ and
$B$ have the properties below.

Lemma 3.1. For $s\in\{p,\tilde{p}\}$ , the following are valid.

(i) The operator A generates an analytic semigroup $\{T(t);t\geq 0\}$ on $X$ such that

$\Vert T(t)v\Vert_{L^{s}}\leq e^{-\lambda t}\Vert v\Vert_{L^{s}}$ for $v\in D,$ $t\geq 0$ .

(ii) The Banach space $Y$ is continuously embedded in $D\cap L^{\rho(q-1)}(\Omega)\cap L^{\tilde{p}(q-1)}(\Omega)$ .

(iii) For each $r>0$ there exists $M_{B}(r)>0$ such that

$\Vert Bv\Vert_{L^{s}}\leq M_{B}(r)(1+\Vert v\Vert_{Y})$ for $v\in C_{r}$ .

(iv) For each $\rho>0$ there exists $L_{B}(\rho)>0$ such that

$\Vert Bv-B\hat{v}\Vert_{L^{s}}\leq L_{B}(\rho)\Vert v-\hat{v}\Vert_{Y}$ for $v,\hat{v}\in C$ with $\Vert v\Vert_{Y}\leq\rho,$ $\Vert\hat{v}\Vert_{Y}\leq\rho$ .

(v) The domain of $A$ is continuously embedded in $L^{s+q-2}(\Omega)$ and it holds that

${\rm Re}\langle Av+Bv,$ $|v|^{s-2}v\rangle+\kappa\Vert v\Vert_{L^{s+q-2}}^{s+q-2}-\gamma\Vert v\Vert_{L^{s}}^{s}\leq 0$

for $v\in D(A)\cap W^{2,\overline{p}}(\Omega)\cap W_{0}^{1,\tilde{p}}(\Omega)$ , where $\langle w,$ $z)= \int_{\Omega}w(x)\overline{z(x)}dx$ .

(vi) There exist constants $a>0$ and $b>0$ such that

${\rm Re}\langle Au+Bu-(A\hat{u}+B\hat{u}),$ $|u-\hat{u}|^{p-2}(u-\hat{u})\rangle$

$\leq(a+b(\Vert u\Vert_{LP+q-2}^{p+q-2}+\Vert\hat{u}\Vert_{L^{p+q-2}}^{p+q-2}))\Vert u-\hat{u}\Vert_{L^{p}}^{p}$ for $u,\hat{u}\in D(A)$ .

Let $\tau>0$ and define a family $\{V_{r}(\cdot, \cdot, \cdot);r>0\}$ of nonnegative functions on $[0, \tau]\cross$

$X\cross X$ by

$V_{r}(t, u, v)=\exp((b/\kappa p)((\Vert u\Vert_{X}\wedge r^{1\prime p})^{p}+(\Vert v\Vert_{X}\wedge r^{1\prime p})^{p}))(\Vert u-v\Vert x\wedge(2r^{1’ p}))$

for $(t, u, v)\in[0, \tau]\cross X\cross X$ , where $b$ is a positive number satisfying Lemma 3.1 (vi) and
$\xi\wedge\eta=\min(\xi, \eta)$ for $\xi,$ $\eta\in \mathbb{R}$ .

By applying Theorem 2.2, we obtain the following proposition.
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Proposition 3.2. There exists a semigroup $\{S(t);t\geq 0\}$ of locally Lipschitz operato $7^{\cdot}S$

on $D$ with respect to $\varphi$ satisfying the following:

(i) For $u_{0}\in D,$ $S(\cdot)u_{0}\in C([0, \infty);X)\cap C^{1}((0, \infty);X)\cap C((0, \infty);D(A))$ .

(ii) For $u_{0}\in D,$ $u(t)\equiv S(t)u_{0}$ gives a $C^{1}$ solution to $(SP;u_{0})$ satisfying

$\Vert u(t)\Vert^{p}+p\kappa\int_{0}^{t}e^{p\gamma(t-s)}\Vert u(s)\Vert_{Lp+q-2}^{p+q-2}ds\leq e^{p\gamma t}\Vert u_{0}\Vert^{p}$ for $t\geq 0$ . (3.5)

(iii) For $u_{0}\in D$ and $t\geq 0,$ $\Vert S(t)u_{0}\Vert\leq e^{\gamma t}\Vert u_{0}\Vert$ and $\Vert S(t)u_{0}\Vert_{L^{\tilde{\rho}}}\leq e^{\gamma t}\Vert u_{0}\Vert_{L^{\tilde{p}}}$

(iv) For $\tau>0$ and $r\geq 0$ there exists $M_{\tau,r}>0$ such that

$\Vert S(t)u_{0}-S(t)\hat{u}_{0}\Vert\leq M_{\tau_{J}r}\Vert u_{0}-\hat{u}_{0}\Vert$

for $t\in[0, \tau]$ and $u_{0},$ $\text{\^{u}}_{0}\in D$ with 1 $u_{0}\Vert\leq r$ and 1 $\hat{u}_{0}\Vert\leq r$ .

By Proposition 3.2 (iv), we observe that the family $\{S(t);t\geq 0\}$ can be uniquely
extended to a semigroup $\{\tilde{S}(t);t\geq 0\}$ of locally Lipschitz operators on $X$ . We have
only to show that for each $u_{0}\in X=L^{p}(\Omega),\tilde{S}(t)u_{0}$ gives a $C^{1}$ solution to $(SP;u_{0})$ . Let
$u_{0}\in X$ . Since $u(t)=\tilde{S}(t)u_{0}$ also satisfies the inequality (3.5), we see that $\tilde{S}(t)u_{0}\in$

$L^{p}(\Omega)\cap L^{p+q-2}(\Omega)$ for a.e. $t>0$ . This fact ensures that there exists a decreasing sequence
$\{t_{n}\}$ of positive numbers such that $\lim_{narrow\infty}t_{n}=0$ and $\tilde{S}(t_{n})u_{0}\in L^{P}(\Omega)\cap L^{\tilde{P}}(\Omega)$ for $n\geq 1$ .
Since $\tilde{S}(t)u_{0}=S(t-t_{n})\tilde{S}(t_{n})u_{0}$ for $t>t_{n},\tilde{S}(t)u_{0}$ gives a global $C^{1}$ solution. $\square$
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