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1 Introduction
In the present paper we review existence results for 3-D thermoviscoelastic systems of the
fourth and second order. We point on recent author’s results based on the theory of linear
IBVP’s in Sobolev spaces $W_{p}^{21}ir_{1}(\Omega^{T}),$ $p,p_{0}\in(1, \infty)$ with a mixed space-time norm.

Such theory–referred to as maximal regularity–is the subject of recent theoretical
studies; for most significant we refer to Denk-Hieber-Pr\"uss [9], Hieber-Pr\"uss [14], Krylov
[15] and the references therein.

As remarked in [9] the development of the maximal regularity theory- apart from the
theroretical interest itself–was mainly motivated by the applications to free boundary
problems and other nonlinear parabolic problems arising in various physical processes.
In fact, the studies of nonlinear problems often ask for optimal spacetime estimates for
the corresponding linearized equations, see e.g. Escher-Pr\"uss-Simonett [11] for the study
of the Stefan problem and Solonnikov [31], Maremonti-Solonnikov [16] for the study of
Stokes problems.

In the present paper we discuss the application of the theory of Sobolev spaces with a
mixed norm to two systems arising in materials science: the fourth order thermoviscoelas-
tic system of viscosity-capillarity type and the classical second order thermoviscoelastic
system. The first one describes structural phase transitions in solids, for example in shape
memory materials. The second one describes heat conductive Kelvin-Voigt type materials,
for example new generation of viscoelastic materials based on silicon gel.

We review briefly the known results for such systems and present recent author’s
results on the existence of large time regular solutions in Sobolev spaces with a mixed
norm. Our idea behind using the framework of Sobolev spaces with a mixed norm is
related to the optimal exploitation of the energy estimates in deriving further regularity
estimates. In fact, in deriving a priori estimates for a solution of a system of balance
laws it is common to begin with estimates arising from the conservation of a total energy.
Such estimates provide $L_{\infty}$-time regularity for the conserved quantities. Thus, to take
advantage of such time regularity in deriving further estimates it is desirable to work in
Sobolev spaces with mixed norms, $W_{P,Pt)}^{2,1}(\Omega^{T})$ , where space exponent $p$ is determined by
the energy structure and time exponent $p_{0}$ may be arbitrarily large.

Thermoviscoelastic system of viscosity-capillarity type

$u_{tt}+2<Q^{2}u-\nu Qu_{t}=\nabla\cdot F_{e}(\epsilon, \theta)+b$ in $\Omega^{T}=\Omega\cross(0, T)$ ,
$c_{v}\theta\theta_{t}-k\triangle\theta=\theta F_{\theta\epsilon}(\epsilon, \theta)\cdot\epsilon_{t}+\nu(A\epsilon_{t})\cdot\epsilon_{t}+g$ in $\Omega^{T}$ ,

(1.1)
$u=Qu=0$, $n\cdot\nabla\theta=0$ on $S^{T}=S\cross(0, T)$ ,
$u|_{t=0}=\tau\iota 0,$ $u_{t}|_{t=0}=u_{1}$ , $\theta|_{t=0}=\theta_{0}$ in $\Omega$ .

Here $\Omega\subset \mathbb{R}^{3}$ is a bounded domain with a smooth boundary $S,$ $u=(u_{i})$ denotes the
displacement, $u_{t}=((u_{t})_{i})$ –the velocity, $\epsilon=\epsilon(u)=\frac{1}{2}(\nabla u+(\nabla u)^{T})$ –the linearized
strain, $\epsilon_{t}=\epsilon(u_{t})=\frac{1}{2}(\nabla u_{t}+(\nabla u_{t})^{T})$ –the strain rate, $\theta>0$ –the absolute temperature,
and $F(\epsilon, \theta)$ –the elastic energy.

In accord with the well-known shape memory models due to Falk [12] in one-dimensional
case and Falk-Konopka[13] in three-dimensional case, the elastic energy is expressed in
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the form

(1.2) $F(\epsilon, \theta)=\theta F_{1}(\epsilon)+F_{2}\langle\epsilon)$

where the first term is in charge of temperature induced changes in the qualitative be
haviour of $F$ from the convex at high temperature into a multiwell below some critical
value. For example, in one-dimensional Falk model the elastic energy is given by

$F(\epsilon, \theta)=\alpha_{1}(\theta-\theta_{c})\epsilon^{2}-\alpha_{2}\epsilon^{4}+\alpha_{3}\epsilon^{6}$

where $\alpha_{i}>0,$ $i=1,2,3$ , are constant material parameters and $\theta_{c}>0$ is a critical
temperature.
The three-dimensional alk-Konopka model, which we take as a prototype example, has
the structure (1.2) with $F_{1}(\epsilon)$ and $F_{2}(\epsilon)$ being appropriately constructed polynomials in
strain components $\epsilon_{ij}$ . Like in 1-D case, $F_{2}(\epsilon)$ is there of the sixth order but otherwise
the temperature dependent part $F_{1}(\epsilon)$ is of the fourth order.

The opertor $Q$ , with domain $D(Q)=H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ , stands for the second order
linear elasticity map given by

(1.3) $Qu=\nabla\cdot(A\epsilon(u))=\mu\triangle u+(\lambda+\mu)\nabla(\nabla\cdot u)$

where
$A=(A_{ijkl})_{i,j,k,t=1,2,3}$ with $A_{ijkl}=\lambda\delta_{ij}\delta_{kl}+\mu(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})$

is the standard elasticity tensor with the Lam\’e constants $\lambda,$
$\mu$ satisfying

(1.4) $\mu>0$ and $3\lambda+2\mu>0$ .

This ensures that the operator $Q$ is strongly elliptic and satisfies the inequality

(1.5) $c\Vert u\Vert_{H^{2}(\Omega)}\leq\Vert Qu\Vert_{L_{2}(\Omega)}$ for $u\in D(Q)$

with a positive constant $c$ .
Moreover, conditions (1.4) ensure the coercivity and boundedness of tensor $A$ ;

(1.6) $a_{*}|\epsilon|^{2}\leq(A\epsilon)\cdot\epsilon\leq a^{*}|\epsilon|^{2}$

with $a_{*}= \min\{3\lambda+2\mu, 2\mu\},$ $a^{*}= \max\{3\lambda+2\mu, 2\mu\}$ .
Above and hereafter the summation convention over the repeated indices is used,

vectors and tensors are denoted by bold letters, and the dot denotes the inner product of
tensors, e.g.

$\epsilon\cdot\tilde{\epsilon}=\epsilon_{ij}\tilde{\epsilon}_{ij}$ .
Moreover, the following notation is used

$F_{e}=( \frac{\partial F}{\partial\epsilon_{ij}})_{i_{i}j=1,2,3}$ , $A\epsilon=(A_{ijkl}\epsilon_{kl})_{i,j=1,2,3}$ ,

$\nabla\cdot F_{\epsilon}=(\frac{\partial}{\partial x_{j}}\frac{\partial F}{\partial\epsilon_{ij}})_{i=1,2,3}$
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Equations $(1.1)_{1}$ and $(1.1)_{2}$ represent balance laws of linear momentum and energy
with mass density assumed to be constant, normalized to unity, $\rho=1$ :

$u_{tt}-\nabla\cdot S=b$ ,(1.7)
$e_{t}+\nabla\cdot q-S\cdot\epsilon_{t}=g$ ,

with the following gradient-type constitutive relations for the internal energy $e$ , the stress
tensor $s$ and the energy flux $q$ (accounting for the interfacial effects):

$e= \frac{1}{2}c_{\vee v}\theta^{2}+F_{2}(\epsilon)+\frac{\chi}{2}|Qu|^{2}$ ,
(1.8)

$s=F_{\epsilon}(\epsilon, \theta)-tA\epsilon(Qu)+\nu A\epsilon_{t}$ ,
$q=q_{0}-x\epsilon_{t}(AQu)$ , $q_{0}=-k\nabla\theta$ .

The internal energy includes in addition to the usual volumetric terms the strain gradient
term $\frac{J}{2}|Qu|^{2}$ with the coefficient $t>0$ representing interfacial effects.
The corresponding interfacial terms in the formulas for $S$ and $q$ represent the hyperstress,
$-xA\epsilon(Qu)$ , and the nonequilibrium phase interface flux, $-x\epsilon_{t}(AQu);q_{0}$ is the standard
heat flux according to the linear Fourier law.

The coefficients $\nu$ and $k$ are positive constants denoting the viscosity and heat con-
ductivity, respectively; $b$ and $g$ stand for external body forces and heat sources.

The function $c_{v}\theta$ with a positive constant $c_{Y}$ corresponds to a temperature dependent
specific heat.

For more details on the model (1.1) we refer to [19], [27], [21], [22], [23], [39] where
problem (1.1) with constant specific heat $c_{w}>0$ was considered and to [40], [24] where
the modified energy equation $(1.1)_{2}$ was assumed.

We remark that the model (1.1) with temperature dependent specific heat is consistent
not only with the first two laws of thermodynamics but also with the third law, namely
the Nernst-Planck principle. In view of that the model is particularly justified at the
range of very low temperatures. We mention also that the modified energy equation
(1.1) was introduced with the purpose to avoid mathematical obstacles observed in the
case of constant specific heat, for a detailed discussion we refer to [39], [24].

In order to apply the regularity results for second order parabolic systems (see Section
2 $)$ we shall assume that coefficients $\chi$ and $\nu$ satisf.y so called viscosity-capillarity relation
(1.9) $0<2\sqrt{Jt}\leq\nu$ .

Let us recall (see [27]) that under such condition elasticity system $(1.1)_{1}$ with boundary
and initial conditions $(1.1)_{3},$ $(1.1)_{4}$ admits the decomposition into the following two second
order parabolic systems

$w_{t}-\beta Qw=\nabla\cdot(\theta F_{1,\epsilon}(\epsilon)+F_{2}(\epsilon))$ in $\Omega^{T}$ ,
(1.10) $w=0$ on $S^{T}$ ,

$w|_{t=0}=w_{0}\equiv u_{1}-\alpha Qu_{0}$ in $\Omega$ ,

$u_{t}-\alpha Qu=w$ in $\Omega^{T}$ ,
(1.11) $u=0$ on $S^{T}$ ,

$u|_{t=0}=u_{0}$ in $\Omega$ ,
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where $\alpha,$
$\beta$ are numbers satisfying

$\alpha+\beta=\nu$, $\alpha\beta=x$ .

Due to condition (1.9) these numbers are real and positive.

Thermoviscoelastic system of Kelvin-Voigt type

$u_{tt}-\nu Qu_{t}=\nabla\cdot F_{\epsilon}(\epsilon, \theta)+b$ in $\Omega^{T}$ ,
$c_{v}\theta\theta_{t}-k\Delta\theta=\theta F_{\theta e}(\epsilon, \theta)\cdot\epsilon_{t}+\nu(A\epsilon_{t})\cdot\epsilon_{t}+g$ in $\Omega^{T}$ ,(1.12)
$u=0,$ $n\cdot\nabla\theta=0$ on $S^{T}$ ,
$u|_{t=0}=u_{0}$ , $u_{t}|_{t=0}=u_{1}$ , $\theta|_{t=0}=\theta_{0}$ in $\Omega$

where $\Omega\subset \mathbb{R}^{3}$ is a bounded domain with a smooth boundary $S$ , and the quantities
$u,$ $\epsilon,$

$\theta,$ $F(\epsilon, \theta),$ $b,$ $g$ have the some meaning as in system (1.1).
The fourth order tensor

(1.13) $A\equiv A_{1}=((A_{1})_{ijkt})$ with $(A_{1})_{ijkl}=\lambda_{1}\delta_{ij}\delta_{kl}+\mu_{1}(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})$,

and constants $\lambda_{1},$
$\mu_{1}$ satisfying condition (1.4), refers to the viscosity tensor. As in (1.3),

the second order opeator $Q$ is defined by

$Qu=\nabla\cdot(A\epsilon(u))=\mu_{1}\triangle u+(\lambda_{1}+\mu_{1})\nabla(\nabla\cdot u)$ .

The elastic energy in system (1.12) has the form

(1.14) $F( \epsilon, \theta)=F_{1}(\epsilon)+\theta F_{2}(\epsilon)\equiv\frac{1}{2}\epsilon\cdot(A_{2}\epsilon)-\theta\epsilon\cdot(A_{2}\alpha)$

where $A_{2}=((A_{2})_{ijkl})$ is the fourth order elasticity tensor, defined like $A_{1}$ , with Lam\’e
constants $\lambda_{2},$

$\mu_{2}$ satisfying (1.4). The second order symmetric tensor $\alpha=(\alpha_{ij})$ with
constant $\alpha_{ij}$ represents thermal expansion.

After inserting (1.14) system (1.12) takes on the form

$u_{t}-\nu Qu_{t}=\nabla\cdot(A_{2}(\epsilon-\theta\alpha))+b$ in $\Omega^{T}$ ,
$c_{v},\theta\theta_{t}-k\Delta\theta=-\theta(A_{2}\alpha)\cdot\epsilon_{t}+\nu(A_{1}\epsilon_{t})\cdot\epsilon_{t}+g$ in $\Omega^{T}$ ,(1.15)
$u=0$ , $n\cdot\nabla\theta=0$ on $S^{T}$ ,
$u|_{t=0}=u_{0}$ , $u_{t}|_{t=0}=u_{1}$ , $\theta|_{t=0}=\theta_{0}$ in $\Omega$ .

Equation $(1.15)_{1}$ represents linear momentum balance $(1.7)_{1}$ with the stress tensor
given by the linear thermoviscoelastic law of Kelvin-Voigt type (see [10], Chap. 5.4)

$S=F_{\epsilon}(\epsilon, \theta)+\nu A\epsilon_{t}\equiv A_{2}(\epsilon-\theta\alpha)+\nu A\epsilon_{t}$.

Equation $(1.15)_{2}$ represents energy balance $(1.7)_{2}$ with the internal energy

$e= \frac{1}{2}c_{v},\theta^{2}+\frac{1}{2}\epsilon\cdot(A_{2}\epsilon)$,
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the linear Fourier law for the heat flux

$q=q_{0}=-k\nabla\theta$

where $k>0$ is a constant heat conductivity, and with $temperatur\triangleright dependent$ specific
heat $c_{v}\theta$ .

Both thermoviscoelastic systems (1.1) and (1.15) comply with the second law of ther-
modynamics in the form of the classical Clausius-Duhem inequality

$\eta_{t}+\nabla\cdot\frac{q_{0}}{\theta}\geq 0$

where $\eta$ is the entropy given by

$\eta=c_{v}\theta-F_{1}(\epsilon)$ in system (1.1),
$\eta=c_{v}\theta+(A_{2}\alpha)\cdot\epsilon$ in system (1.15),

and $q_{0}=-k\nabla\theta$ is the Fourier heat flux.
The paper is organized as follows. In Section 2 we present some basic results on

Besov spaces and Sobolev spaces with a mixed norm. Besides, we record two lemmas on
solvability of linear parabolic IBVP’s in Sobolev spaces with a mixed norm which play
a key role in the proofs of the presented existence results for systems (1.1) and (1.15).
In Section 3 and 4 we recall from [24], [25] recent author’s results on the solvability of
systems (1.1) and (1.15) in Sobolev spaces with a mixed norm. We review briefly other
known results as well.

2 Parabolic problems in Sobolev spaces with a mixed
norm

By Sobolev space with a mixed norm $W_{p,p_{(}}^{k,k\prime 2}(\Omega^{T},$ $\Omega\subset \mathbb{R}^{n},$ $k,$ $k\prime 2\in N\cup\{0\}\equiv N_{0}$ ,
$p,p_{0}\in[1, \infty]$ , we denote a completion of $C^{\infty}(\Omega^{T})$-functions under the finite norm

(2.1) $\Vert u\Vert_{W_{p,p_{I}}^{k,k/2}(\Omega^{T})}=(\int_{0}^{T}(\sum_{|\alpha|+2a\leq k}\int_{\Omega}|D_{x}^{\alpha}\partial_{t}^{a}u|^{p}dx)^{p_{\{)}’ p}dt)^{1p_{()}}$ ,

where $\alpha=(\alpha_{1}, \ldots, \alpha_{n})$ is a multiindex, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n},$ $\alpha_{i}\geq 0,$ $i=1,$ $\ldots,$
$n$ ,

$D_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}}\ldots\partial_{x_{\mathfrak{n}}}^{\alpha_{n}}$ .
If $p=p_{0}$ , then the notation

$W_{p}^{k,k\prime 2}(\Omega^{T})=W_{p,p0}^{k,k\prime 2}(\Omega^{T})$

is used.
By Besov space $B_{p,\mu)}^{\lambda}(\Omega),$ $\Omega\subset \mathbb{R}^{n},$ $\lambda\in \mathbb{R}_{+},$ $p,$ $p_{0}\in[1, \infty]$ , we denote a set of functions

with the finite norm

(2.2) $\Vert u\Vert_{B_{p,p_{()}}^{\lambda}(\Omega)}=\Vert u\Vert_{L_{p}(\Omega)}+(\sum_{i=1_{R}}^{n}\int_{+}\frac{\Vert\triangle_{i}^{m}(h,\Omega)\theta_{x_{i}}u\Vert_{L_{p}(\Omega)}^{\mu_{1}}}{h^{1+(\lambda-l)p0}}dh)^{1\prime\mu)}$ ,
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where $m>\lambda-l>0,$ $m,$ $l\in N_{0}$ and $\triangle_{i}^{k}(h, \Omega)u(x)$ is a finite difference of function $u(x)$

of the order $k$ with respect to $x_{i}$ :

$\Delta^{1}(h, \Omega)u\equiv\Delta_{i}(h, \Omega)u=u(x_{1}, \ldots,x_{i-1},x_{i}+h,x_{i+1}, \ldots,x_{n})-u(x_{1}, \ldots,x_{n})$,

and $\triangle_{i}(h, \Omega)u=0$ for $x+h\not\in\Omega$ ,

$\Delta_{i}^{k}(h, \Omega)u=\Delta_{i}(h, \Omega)\Delta_{i}^{k-1}(h, \Omega)u$, $k\in N$ .

We recall from [6] the trace and the inverse trace theorems for Sobolev spaces with a
mixed norm.

Lemma. 1 Let $u\in W_{p,p_{t}}^{k,k’ 2}(\Omega\cross \mathbb{R}_{+})$ . Then $u(x, t_{0})=u(x,t)|_{t=0}\in B_{pp0}^{k-2\prime p_{0}}(\Omega)$ and

(2.3) $\Vert u(\cdot, t_{0})\Vert_{B_{p,p_{t)}}^{k-2/p_{(}}(\Omega)}\leq c\Vert u\Vert_{W_{p.p_{()}}^{k,k’ 2}(\Omega x\mathbb{R}+)}$ .

Moreover, for a given $v\in B_{p,\mu)}^{k-2\prime p_{\{)}}(\Omega)$ , there $e$ vists a function $\tilde{v}\in W_{p,p0}^{k,k\prime 2}(\Omega\cross \mathbb{R}_{+})$ such
that $\tilde{v}(x, t)|_{t=0}=v(x)$ and

(2.4) $\Vert\tilde{v}\Vert_{W_{p,p_{\{)}}^{k.k/2}()}\Omega\cross R+\leq c\Vert v\Vert_{B_{p,p_{\{\}}}^{k-2/p_{I)}}(\Omega)}$.

If $l>1/p$ then every function from $B_{p,p_{(}}^{l}(\Omega)$ has a trace on the boundary $S$ belonging
to $B_{p,p_{t}}^{l-1\prime p}(S)$ and

$\Vert u\Vert_{B_{p,\rho_{(!^{p}(s)}}^{l-1}}\leq c\Vert u\Vert_{B_{p,p_{(\}}}^{\iota}(\Omega)}$ .

We use theorems of imbeddings between Besov spaces and Besov and Sobolev spaces
from [2], [18].

Let us consider the parabolic non-diagonal problem

$u_{t}-Qu=f$ in $\Omega^{T}=\Omega\cross(0, T)$ ,
(2.5) $u=0$ on $S^{T}=S\cross(0, T)$ ,

$u|_{t=0}=u_{0}$ in $\Omega$ ,

where $\Omega\subset \mathbb{R}^{3},$ $S=\partial\Omega$ and

(2.6) $Qu=\mu\triangle u+\nu\nabla(\nabla\cdot u)$

with positive constants $\mu,$ $\nu$ .
We recall now a lemma which plays a key role in the existence proofs for systems (1.1)

and (1.15). This lemma generalizes the result by Krylov [15] from the single parabolic
equation to the parabolic system (2.5).

Lemma. 2 (see $[9J_{f}[15J,$ $[24J)$

(i) Assume that $f\in L_{p,p0}(\Omega^{T})_{f}u_{0}\in B_{p,p_{()}}^{2-2\prime p_{I)}}(\Omega)_{f}p,p_{0}\in(1, \infty)_{f}S\in C^{2}$ . If $2-2/p_{0}-1\prime p>$

$0$ the compatibility condition $u_{0}|_{S}=0$ is assumed. Then there exists a unique solution to
problem (2.5) such that $u\in W_{p,po}^{2,1}(\Omega^{T})$ and

(2.7) $\Vert u\Vert_{W_{p,p_{1)}}^{2,1}(\Omega^{T})}\leq c(\Vert f\Vert_{L_{\rho,\rho_{(}}(\Omega^{T})}+\Vert u_{0}\Vert_{B_{p_{1}p_{\{\}}}^{2-2/p}{}^{t}(\Omega)})$
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$withtheconstantcfmmtheCalderon\sim,Z\iota/gmunde.stimte_{1p_{I)}}depe.ndenton\Omega,T,S,p,p_{0}(ii)Assumethatf=\nabla\cdot g+b,g,b\in L_{pp0}(\Omega^{T})_{f}u0\in B_{p,x)}^{2\frac{a}{l},2}(\Omega)Assumethecompatibility$

condition
$uo|_{S}=0$ if $1-2\prime p_{0}-1p>0$ .

Then there $ex\dot{k}sb9$ a unique solution to (2.5) such that $u\in W_{p,\mu)}^{1,1\prime 2}(\Omega^{T})$ and

(2.8) $\Vert u\Vert_{W_{p,\eta)}^{1,1/2}}(\Omega^{T})\leq c(\Vert g\Vert_{L_{p,p_{0}}(\Omega^{T})}+\Vert b\Vert_{t_{\rho,p_{(}},(\Omega^{T})}+\Vert u_{0}\Vert_{B_{p.p_{1)}}^{2-2\prime p_{0}}(\Omega)})$

with the constant $c$ from the Calderon-Zygmund estimate.

In the existence proofs we need also the following regularity result which is a special
case of a more general result in [9], Theorem 2.3.

Lemma. 3 (see $[9J)$ Let us consider the problem

$\theta_{t}-\rho\Delta\theta=g$ in $\Omega^{T}$ ,

(2.9) $n\cdot\nabla\theta=0$ $on$ $S^{T}$ ,
$\theta|_{t=0}=\theta_{0}$ in $\Omega$ ,

where $\rho(x, t)$ is a $continuo\iota\iota s$ function on $\Omega^{T}$ such that $\inf_{\Omega}\rho>0$ . Assume that $g\in$

$L_{p,po}(\Omega^{T}),$ $\theta_{0}\in B_{p,p_{t1}}^{2-2’ p_{(}}(\Omega),$ $p,p_{0}\in(1, \infty),$ $S\in C^{2}$ and the corresponding compatibility
conditions are satisfied. Then there exists a unique solution to problem (2.9) such that
$\theta\in W_{p,p_{\{)}}^{2,1}(\Omega^{T})$ and

(2.10) I $\theta\Vert_{W_{p,p_{t}}^{2,1}(\Omega^{T})}\leq c(\Vert g\Vert_{L_{p.p_{(\}}}(\Omega^{T})}+\Vert\theta_{0}\Vert_{B_{p,\eta)}^{2-2/p(}(\Omega)})$

with constant $c$ dependent on $\Omega,$ $T,$ $S,$ $\inf_{\Omega^{T}}\rho$ and $\Vert\rho\Vert_{C(\Omega^{T})}$ .

3 Existence results for thermoviscoelastic system of
viscosity-capillarity type

Thermoviscoelastic system (1.1) represents a a.D extension of the well-known one-dimen-
sional Falk model [12] for martensitic phase transitions in solids. There exists an extensive
literature on mathematical analysis of various variants of 1-D Falk model, see e.g. [5], [1],
[35], [32], [33], [34] and the references therein.

Thermoviscoelastic system (1.1) has been firstly introduced and studied in [26], [27].
Its thermodynamic derivation has been given in [19]. In the setting addmitting various
forms of the specific heat system $(1.1)_{1,2}$ reads as follows

$u_{tt}+l^{l}tQ^{2}u-\nu Qu_{t}=\nabla\cdot F_{\epsilon}(\epsilon, \theta)+b$ in $\Omega^{T}$ ,
(3.1)

$c_{\vee 0}(\epsilon, \theta)\theta_{t}-k\Delta\theta=\theta F_{\theta e}(\epsilon, \theta)\cdot\epsilon_{t}+\nu(A\epsilon_{t})\cdot\epsilon_{t}+g$ in $\Omega^{T}$ ,

where the function

(3.2) $c_{0}(\epsilon, \theta)=c_{*}(\theta)-\theta F_{\theta\theta}(\epsilon, \theta)$
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represents the specific heat. It consists of two parts: the caloric specific heat

(3.3) $c_{*}(\theta)=-\theta F_{*_{2}\theta\theta}(\theta)$

where $F_{*}$ is the caloric energy, and the specific heat due to elastic effects, $-\theta F_{\theta\theta}(\epsilon, \theta)$ .
Two typical examples of $F_{*}$ are

(3.4) $F_{*}( \theta)=-c_{\triangleleft 1}\theta\log\frac{\theta}{\theta_{1}}+c_{v}\theta+\tilde{c}$

and

(3.5) $F_{*}( \theta)=-\frac{1}{2}c_{v}\theta^{2}$ ,

where $c_{v},$ $\theta_{1}.,\tilde{c}$ are positive physical constants.
The form (3.4) is associated with constant caloric heat

(3.6) $c_{*}(\theta)=c_{v}$

whereas (3.5), with temperature-dependent one

(3.7) $c_{*}(\theta)=c_{v}\theta$ .

In case of constant caloric heat (3.6), system (3.1) with boundary and initial conditions
(1.1) has been studied in a line of papers [26], [27], $[20]-[23],$ $[36]-[38],$ $[39]$ .

In all above mentioned references the following form of the elastic energy has been
postulated

(3.8) $F(\epsilon, \theta)=G(\theta)F_{1}(\epsilon)+F_{2}(\epsilon)$

with the function $G(\theta)$ assumed to satisfy the growth condition with an exponent strictly
less than 1, i.e.,

$G(\theta)\sim\theta^{r}$ with $r<1$ for large $\theta$ .

Moreover, the growth conditions on $F_{1}(\epsilon),$ $F_{2}(\epsilon)$ , like

$|F_{1,\epsilon}(\epsilon)|\leq C|\epsilon|^{K_{1}-1}$ , $|F_{1,\epsilon\epsilon}(\epsilon)|\leq C|\epsilon|^{K_{1}-2}$ , $|F_{1,\epsilon\epsilon\epsilon}(\epsilon)|\leq C|\epsilon|^{K_{1}-3}$,
$|F_{2,\epsilon}(\epsilon)\leq C|\epsilon|^{K_{2}-1}$ , $|F_{2,\epsilon\epsilon}(\epsilon)|\leq C|\epsilon|^{K_{2}-2}$ , $|F_{2,\epsilon\epsilon\epsilon}(\epsilon)|\leq C|\epsilon|^{K_{2}-3}$

for large $|\epsilon|$ with certain numbers of order $K_{1},$ $K_{2}$ have been assumed. Under such struc-
ture assumptions it has been proved that system (1.1) has a unique large time solution
$(u, \theta)\in W_{p}^{4,2}(\Omega^{T})\cross W_{q}^{2,1}(\Omega^{T})$ for any $5<p\leq q<\infty$ and $T>0$ .

The best result has been obtained in [39] where the existence of solutions was proved
under the following powers of nonlinearity

$0 \leq r<\frac{5}{6}$ , $0\leq K_{1},$ $K_{2}<6$ , $6r+K_{1}<6$

in 3-D case, and
$0\leq r<1$ , $0\leq K_{1},$ $K_{2}<\infty$

in 2-D case.
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The existence proof was based on the Leray-Schauder fixed point theorem. and the
parabolic theory in the Sobolev spaces $w_{p}^{4,2}(\Omega^{T})$ and $W_{q}^{2,1}(\Omega^{T})$ .
The key issue to solve the problem was concerned with deriving $L_{\infty}(\Omega^{T})$ -norm and the
Holder-norm estimates for temperature. This was accomplished by applying the parabolic
DeGiorgi method.

It has to be noted that the existence of solutions in case $G(\theta)=\theta$ , i.e. for the exponent
$r=1$ as in Falk-Konopka model (1.2), still remains an open problem

In order to admit the function $G(\theta)$ linear in $\theta$ the thermoviscoelastic system (1.1)
with a modified energy equation has been studied in [40] and recently in [24].

In [24] the framework of parabolic theory in Sobolev spaces with a mixed norm has been
adopted. Such approach turned out to be advantageous for deriving regularity estimates
and allowed to generalize the results in [40] by admitting stronger thermomechanical
nonlinearity and a broader class of solution spaces.

We recall here the existence result for system (1.1), proved in [24].
The following structure assumptions are postulated:

(Nl) $F(\epsilon, \theta)=\theta F_{1}(\epsilon)+F_{2}(\epsilon)$

with $F_{1},$ $F_{2}\in C^{3}$ (Sym (3, $\mathbb{R}),$
$\mathbb{R}$), where Sym $($3, $\mathbb{R})$ denotes the set of all symmetric

second order tensors in $\mathbb{R}^{3};F_{2}$ satisfies the bounds

$-c_{3}\leq F_{2}(\epsilon)\leq c_{2}(|\epsilon|^{K_{2}}+1)$

with a number $0\leq K_{2}<\infty,$ $c_{2}$ is a positive constant and $c_{3}$ a real constant;

(N2) $F_{1}(\epsilon)$ and $F_{2}(\epsilon)$ satisfy the growth conditions

$|F_{1,e}(\epsilon)|\leq c|\epsilon|^{K_{1}- 1},$ $|F_{1,e\epsilon}(\epsilon)|\leq c|\epsilon|^{K_{1}-2},$ $|F_{1,ee\epsilon}(\epsilon)|\leq c|\epsilon|^{K_{1}-3}$ ,
$|F_{2,\epsilon}(\epsilon)|\leq c|\epsilon|^{K_{2}- 1},$ $|F_{2,ee}(\epsilon)|\leq c|\epsilon|^{K_{2}- 2},$ $|F_{2,eee}(\epsilon)|\leq c|\epsilon|^{K_{2}-3}$

for large $|\epsilon|$ , where $0<K_{1}<\infty$ .
Moreover, it is assumed that $\chi$ and $\nu$ satisfy (1.9).

The existence result has been proved for the following values of exponents $K_{1}$ and $K_{2}$ :

$0\leq K_{1}<3$ , $0\leq K_{2}<6$ .

Theorem. 1 (see $[24J_{2}Thm1.1)$ Assume $(Nl),$ $(N2)$ hold with $0\leq K_{1}<3_{f}0\leq K_{2}<6$ .
Let $T>0$ and the numbers $p,p_{0},$ $q,$ $q_{0}\in(1, \infty)$ sati $sfi/$ the condition.$s$

(3.9) $\frac{3}{p}+\frac{2}{p_{0}}<1$ , $\frac{3}{q}+\frac{2}{q_{0}}<1$ , $p\leq q$ , $p_{0}\leq q_{0}$ .

Then for any
$(u0^{u_{1},\theta_{0})}\in B_{p,p_{t)}}^{4-2\prime p_{\{)}}(\Omega)\cross B_{p,\mu_{1}}^{2-2\prime p_{\{)}}(\Omega)\cross B_{q,q_{I)}}^{2-2\prime q_{()}}(\Omega)$

with $0<\underline{\theta}\leq\theta_{0}\leq\overline{\theta}_{Z}$ where $\underline{\theta},\overline{\theta}$ are positive constants, there exists a unique solution $(u, \theta)$

to $s$ystem (1. 1) satisfying

$(u, \theta)\in W_{P_{1p_{I)}}}^{4,2}(\Omega^{T})\cross W_{q,\varphi}^{2,1},(\Omega^{T})$ ,
$0<\theta_{*}\leq\theta\leq\theta^{*}<\infty$ a.e. in $\Omega^{T}$ ,
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where $\theta_{*},$ $\theta^{*}$ depend on $T,$ $\underline{\theta},\overline{\theta}$ and on

$|I(u_{0}, u_{1}, \theta_{0})\Vert_{B_{p,no}^{4-2\prime p(}(\Omega)\cross B_{p,p_{(}}^{2-2/p_{(}}(\Omega)\cross B_{q,q_{()}}^{2-2\prime q}{}^{t}(\Omega)}$.

For a direct comparison with a corresponding result in Sobolev spaces with a ho-
mogeneous norm with respect to space and time variables let us recall theorem proved
in [40].

$Theorem.2(see[40J_{f}Thm1.\cdot 1)A_{9S74}me(N1)_{f}(N^{6}2)holdwit_{\text{ノ}}h0\leq K_{1}<.\frac{12}{f\tau 7},$$0\leq K_{2}<6andwithan\tau/positiveconstantsx,\nu..LetT>0andthenumber,sp,qsatis/$

(3.10) $5<p\leq q<\infty$ .

Then for any $(uu,$ $\theta_{0})\in B_{P,P}^{4-2\prime p}(\Omega)\cross B_{p,p}^{2-2\prime p}(\Omega)\cross B_{q,q}^{2-2\prime q}(\Omega)$ such that $0<\underline{\theta}\leq\theta_{0}\leq\overline{\theta}_{f}$

where $\underline{\theta},\overline{\theta}$ are positive constants, there exists a unique solution $(u, \theta)$ to system (1.1)
satisfiying

$(u, \theta)\in w_{p}^{4,2}(\Omega^{T})\cross W_{q}^{2,1}(\Omega^{T})$ ,
$0<\theta_{*}\leq\theta\leq\theta^{*}<\infty$ $a.e$ . in $\Omega^{T}$ ,

where $\theta_{*}$ and $\theta^{*}$ depend on $T,$ $\underline{\theta},\overline{\theta}$ and on

1 $(u_{0}, u_{1}, \theta_{0})\Vert_{B_{p,p}^{4-2\prime p}(\Omega)xB_{p,p}^{2-2\prime p}(\Omega)xB_{q,q}^{2-2\prime q}(\Omega)}$ .

Theorem 1 generalizes Theorem 2 in two aspects. Firstly, it allows for a higher
power of nonlinearity $F_{1}(\epsilon)$ which is in charge of the thermomechanical coupling, namely
$K_{1}<3$ in place of $K_{1}<12/7$ required in Theorem 2. Secondly, it admits a broader
class of solution space $w_{p,p_{\{)}}^{4,2}(\Omega^{T})\cross W_{q,q_{1)}}^{2,1}(\Omega^{T})$ with $p,p_{0},$ $q,$ $q_{0}$ satisfying (3.9), in place of
$W_{p,p}^{4,2}(\Omega^{T})\cross W_{q,q}^{2,1}(\Omega^{T})$ with $p,$ $q$ satisfying (3.10).

Unfortunately, either Theorem 1 or Theorem 2 do not admit the nonlinearities of the
prototype Falk-Konopka model (1.2) in which $K_{1}=4$ and $K_{2}=6$ .

It should be underlined that the result in Theorem 2 is more general from the point of
view of the assumption on the coefficientls $x,$ $\nu$ where they are required to be any positive
constants, not restricted by the condition (1.9). This is due to the maximal regularity
result for the linear fourth order parabolic system

$u_{tt}+xQ^{2}u-\nu Qu_{t}=f$ in $\Omega^{T}$ ,
(3.11) $u=Qu=0$ on $S^{T}$ ,

$u|_{t=0}=u_{0},$ $\tau\iota_{t}|_{t=0}=u_{1}$ in $\Omega$

in Sobolev space $W_{p}^{4,2}(\Omega^{T})$ , which has been proved by Yoshikawa [36] without using de-
composition (1.10), (1.11).

The proof of Theorem 1 is based on the Leray-Schauder fixed point theorem and the
decomposition of the viscoelasticity system $(1.1)_{1}$ into two second order parabolic systems
(1.10) and (1.11). Such decomposition requires assumption (1.9).

The central part of the proof consitute global a priori estimates which are derived by a
recursive improvement of energy estimates. The key role in this derivation plays Lemma 2
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on the solvability of parabolic non-diagonal system (2.5) in Sobolev space $W_{p,p_{(\}}}^{2,1}(\Omega^{T})$ with
a mixed norm.
This lemma combined with the parabolic DeGiorgi method allows to derive $L_{\infty}(\Omega^{T})-$

norm and H\"older--norm estimates for temperature. Then the regularity result stated in
Lemma 3 is aplied to get the estimate for $\theta$ in $W_{q,q_{(}}^{2,1}(\Omega^{T})$-norm.

4 Existence results for thermoviscoelastic system of
Kelvin-Voigt type

As noted in the recent paper by Roub\’i\v{c}ek $[28|$ –and $accordi\cdot ng$ to our best knowledge as
well-the existence of large-time solutions to a thermoviscoelastic system of Kelvin-Voigt
type with constant specific heat and heat conductivity is, in spite of great effort through
many decades, still open in dimensions $n\geq 2$ . In dimension $n=1$ it was established in
the pioneering papers by Slemrod [30], Dafermos [7] and Dafermos-Hsiao [8].

The local in time existence and globaluniqueness of a weak solution to 3-D thermo-
viscoelastic system with constant specific heat and heat conductivity has been proved by
Bonetti-Bonfanti [4]. Other known results on multidimensional thermoviscoelasticity deal
with a modified energy equation. Modifications involve either nonconstant specific heat or
nonconstant heat conductivity. Thermoviscoelastic system with temperature.dependent
specific heat has been addressed by Blanchard-Guib\’e [3] where the existence of large-time,
weak-renormalized solutions has been proved, and recently in [28] where the existence of
a very weak solution has been established.

We mention also that the framework of renormalized solutions has been applied in [41]
for &D thermoviscoelastic system arising in structural phase transitions.

In a more general setting allowing for large strains 3-D thermoviscoealstic sytem with
temperature-dependent specific heat has been studied by Shibata [29] under small data
assumption.

For thermoviscoelastic problems with modified heat conductivity we refer to Eck-
Jaru\v{s}ek-Krbec [10] and the references therein.

We mention also that energy equation with temperature-dependent specific heat has
been considered by Miranville-Schimperna [17] in the context of phase transition model
ba.sed on a microforce balance.

Motivated by the above mentioned results on problems with a modified energy equa-
tion and a recent result on thermoviscoelastic system (1.1) (see [24]) we have considered
thermoviscoelastic system of Kelvin-Voigt type (1.12) in the framework of Sobolev spaces
with a mixed norm.

The following existence and uniqueness result has been proved.

Theorem. 3 (see $[25J)$ Let $T>0$ and the numbers $p,p_{0},$ $q,$ $q_{0}\in(1, \infty)$ satusfy the con-
ditions

(4.1) $\frac{3}{p}+\frac{2}{p_{0}}\leq 1$ , $\frac{3}{q}+\frac{2}{q_{0}}<1$ $p\leq q$ , $p_{0}\leq q_{0}$ .
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Moreover, let

$(u_{0,1}u, \theta_{0})\in(w_{p}^{2}(\Omega)\cap H_{0}^{1}(\Omega))\cross(B_{p,p_{(\}}}^{2-2\prime_{1X)}}(\Omega)\cap H_{0}^{1}(\Omega))$

(4.2) $\cross(B_{q_{2}q_{1)}}^{2-2’ q_{O}}(\Omega)\cap H^{1}(\Omega))=:\mathcal{U}$ ,
$(b,g)\in L_{p,p_{(\}}}(\Omega^{T})\cross(L_{1}(0,T;L_{\infty}(\Omega))\cap L_{q,qo}(\Omega^{T}))=:\mathcal{V}$

and
$0<\underline{\theta}\leq\theta_{0}\leq\overline{\theta}$ $a.e$ . in $\Omega$ ,

$g\geq 0$ $a.e$ . in $\Omega^{T}$ ,

where $\underline{\theta},\overline{\theta}$ are positive constants.
Then there exists a unique solution $(u, \theta)$ to system (1.15) such that

(4.3) $(u_{t}, \theta)\in W_{p_{1}p_{(}}^{2,1}(\Omega^{T})\cross W_{q,q_{0}}^{2,1}(\Omega^{T})$,

satisfying

11 $u_{t}\Vert_{W_{p,p_{(}}^{2,1}(\Omega^{T})}+\Vert\theta\Vert_{W_{q,q_{\langle)}}^{2,1}(\Omega^{T})}\leq c$ ,
(4.4)

$0<\theta_{*}\leq\theta\leq\theta^{*}$ $a.e$ . in $\Omega^{T}$ ,

with constants $c,$ $\theta_{*},$ $\theta^{*}$ depending on

$\Vert(u_{0}, u_{1}, \theta_{0})\Vert_{\mathcal{U}}=\Vert u_{0}\Vert_{W_{p}^{2}(\Omega)}+\Vert u_{1}\Vert_{B_{p.p_{(}}^{2-2/p_{1)}}(\Omega)}+\Vert\theta_{0}\Vert_{B_{q,q_{1)}}^{2-2/q_{I\}}}(\Omega)}$,

$|I(b,g)$ I $v=\Vert b\Vert_{L_{p,p(}(\Omega)}+\Vert g\Vert_{L_{q,q_{\{)}}(\Omega)}$ ,

and exponentially on $T$ .

The novelty of the above result concerns the regularity of 3-D large-time solution
corresponding to appropriately smooth but arbitrary in size initial data.

The proof is based on the successive approximation method. More precisely, we con-
struct successive approximations $(u_{t}^{n}, \theta^{n}),$ $n\in N\cup\{0\}$ , by solving the following linear
thermoviscoelastic system:

$u_{tt}^{n+1}-\nabla\cdot(A_{1}\epsilon(u_{t}^{n+1}))=\nabla\cdot[A_{2}\epsilon(u^{n})-(A_{2}\alpha)\theta^{n}]+b$ in $\Omega^{T}$ ,
$c_{\vee v}\theta_{0}\theta_{t}^{n+1}-k\triangle\theta^{n+1}=c_{v},(\theta_{0}-\theta^{n})\theta_{t}^{n+1}$

$-\theta^{n}(A_{2}\alpha)\cdot\epsilon(u_{t}^{n})+\nu(A_{1}\epsilon(u_{t}^{n}))\cdot\epsilon(u_{t}^{n})+g$ in $\Omega^{T}$ ,
$u^{n+1}=0,$ $n\cdot\nabla\theta^{n+1}=0$ on $S^{T}$ ,
$u^{n+1}|_{t=0}=u_{0}$ , $u_{t}^{n+1}|_{t=0}=u_{1}$ , $\theta^{n+1}|_{t=0}=\theta_{0}$ in $\Omega$

where $u^{n},$ $\theta^{n}$ are treated as given.
Moreover, the approximation $(u^{0}, \theta^{0})$ is constructed by an extension of the initial data in
such a way that

$u^{0}|_{t=0}=u0$ , $u_{t}^{0}|_{t=0}=u_{1},$ $\theta^{0}|_{t=0}=\theta_{0}$ in $\Omega$

and
$u^{0}=0$ , $n\cdot\nabla\theta^{0}=0$ on $S^{T}$ .
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We prove that the sequence $(u^{n}, \theta^{n})$ is uniformly bounded and convergent on a suffi-
ciently small time interval. This way we prove the existence of a local solution to system
(1.15).

To prove the existence of a solution on the interval $[0,T]$ we repeat the procedure
step by step in time. To accomplish this we need global a priori estimates. Like in the
proof of Theorem 1 (by the Leray-Schauder fixed point theorem) global.a priori estimates
constitute the central part of the proof. They are derived by a recursive improvement of
energy estimates. Again the basic tool for getting such regularity estimates are the results
on parabolic problems in Sobolev space with a mixed norm, presented in Section 2.
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