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ABSTRACT. The purpose of this article is to give a summary of the
seminar lecture with title Variation formulas for principal func-
tions and harmonic spans by the author in the conference held at
RIMS, Kyoto, Japan, December 2009. The former half of this ar-
ticle is in Hamano $[$4$]$ and the latter half is in the manuscript $[$6 $]$

which is a joint work with Maitani and Yamaguchi.

1. INTRODUCTION

Let $B=\{|t|<\rho\}$ and let $\tilde{\mathcal{R}}$ be an unramified (two-dimensional)
Riemann domain sheeted over $B\cross \mathbb{C}_{z}$ . We write $\tilde{\mathcal{R}}=\bigcup_{t\in B}(t,\tilde{R}(t))$ ,

where $\tilde{R}(t)$ is a fiber over each $t\in B$ , i.e., $\tilde{R}(t)=\{z:(t, z)\in\tilde{\mathcal{R}}\}$ , so
that each $\tilde{R}(t)$ consists of unramified Riemann surfaces sheeted over $\mathbb{C}_{z}$ .

Consider a subdomain $\mathcal{R}$ in $\tilde{\mathcal{R}}$ such that, if we put $\mathcal{R}=\bigcup_{t\in B}(t, R(t)))$ ,
where $R(t)$ is a fiber of $\mathcal{R}$ over $t\in B$ , then

(1) $\tilde{R}(t)\Supset R(t)\neq\emptyset,$ $t\in B$ ;
(2) the boundary $\partial \mathcal{R}=\bigcup_{t\in B}(t, \partial R(t))$ of $\mathcal{R}$ in $\tilde{\mathcal{R}}$ is $C^{\omega}$ smooth in

$\tilde{\mathcal{R}}$ ;
(3) each $R(t),$ $t\in B$ is a connected Riemann surface of genus $g\geq 0$ ,

where $g$ is independent of $t\in B$ ;
(4) each $\partial R(t),$ $t\in B$ in $\tilde{R}(t)$ consists of a finite number of $C^{\omega}$

smooth contours $C_{j}(t),j=0,1,$ $\ldots,$
$\nu$ , where $\nu$ is independent

of $t\in B$ . We give the orientation of $C_{j}(t)$ such that $\partial R(t)=$

$C_{0}(t)+C_{1}(t)+\cdots+C_{\nu}(t)$ .

We usually regard two-dimensional Riemann domain $\mathcal{R}$ over $B\cross \mathbb{C}_{z}$

as a $C^{\omega}$ smooth variation of Riemann surface $R(t)$ over $\mathbb{C}_{z}$ with $C^{\omega}$

smooth boundary $\partial R(t)$ with complex parameter $t\in B$ :

$\mathcal{R}:t\in Barrow R(t)$ .

Variation formula of the Green function for $(R(t), 0)$ We as-
sume that $\mathcal{R}$ contains $B\cross\{0\}$ , precisely, there exists at least one
constant section $O$ of $\mathcal{R}$ over $B\cross\{0\}$ . We consider the Green function
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$g(t, z)$ with pole at $z=0$ and the Robin constant $\lambda(t)$ for $(R(t), 0)$ , so
that

$g(t, z)= \log\frac{1}{|z|}+\lambda(t)+h(t, z)$ .

Here $h(t, z)$ is harmonic for $z$ in a neighborhood of $z=0$ in $R(t)$ such
that

$h(t, 0)=0$ for $t\in B$ .

Let $\varphi(t, z)$ be a defining function of $\partial \mathcal{R}$ in $B\cross \mathbb{C}_{z}$ . For $(t, z)\in\partial \mathcal{R}$ , we
consider the following quantities:

$k_{1}(t, z)= \frac{\partial\varphi}{\partial t}/|\frac{\partial\varphi}{\partial z}|$ ,

$k_{2}(t, z)=( \frac{\partial^{2}\varphi}{\partial t\partial\overline{t}}|\frac{\partial\varphi}{\partial z}|^{2}-2{\rm Re}\{\frac{\partial^{2}\varphi}{\partial\overline{t}\partial z}\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial\overline{z}}\}+|\frac{\partial\varphi}{\partial t}|^{2}\frac{\partial^{2}\varphi}{\partial z\partial\overline{z}}I,$ $| \frac{\partial\varphi}{\partial z}|^{3}$

We note that they do not depend on the choice of defining functions
$\varphi(t, z)$ of $\partial \mathcal{R}$ . We denote by $ds_{z}$ the arc length element of $\partial R(t)$ at
$z$ . The function $k_{2}(t, z)$ on $\partial \mathcal{R}$ is due to Maitani-Yamaguchi in [8]
which is based on [7], which is called the Levi curvature for $\partial \mathcal{R}$ . Then
the following variation formulas for the Robin constans are shown in
Hadamard [3], Maitani-Yamaguchi [8].

Fact. It holds for $t\in B$ that

$\frac{\partial\lambda(t)}{\partial t}=-\frac{1}{\pi}\int_{\partial R(t)}k_{1}(t, z)|\frac{\partial g(t,z)}{\partial z}|^{2}ds_{z}$ ,

$\frac{\partial^{2}\lambda(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial g(t,z)}{\partial z}|^{2}ds_{z}-\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}g(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$.

2. VARIATION FORMULA OF $L_{1}$ -PRINCIPAL FUNCTION FOR
$(R(t),$ $0,$ $C_{0}(t))$

This and the next sections are quoted from S. Hamano [4]. Under
the same conditions for the unramified domain $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ in $\tilde{\mathcal{R}}$

over $B\cross \mathbb{C}_{z}$ and $\partial R(t)=\sum_{j=0}^{\nu}C_{j}(t)$ , we assume that the total space
$\mathcal{R}$ contains $B\cross\{0\}$ . For each $t\in B$ , we conventionally write $0$ for the
point $O\cap R(t)$ .

Let $t\in B$ be fixed. In the theory of one complex variable, it is known
that there exists a unique real-valued function $u(t, z)$ on $R(t)\backslash \{0\}$

satisfying the following four conditions:
(1) $u(t, z)$ is harmonic on $R(t)\backslash \{0\}$ and is continuous on $\overline{R(t)}$ ;
(2) $u(t, z)- \log\frac{1}{|z|}$ is harmonic at $z=0$ ;
(3) $u(t, z)=0$ on $C_{0}(t)$ ;
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(4) for each $i=1,$ $\ldots,$
$\nu$ , we have

(i) $u(t, z)=a_{i}(t)$ : constant on $C_{i}(t)$ ;

(ii) $\int_{C.(t)}*du(t, z)=0$ .

We note that $u(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic
function on $V(t)$ such that $\partial R(t)\Subset V(t)\Subset\tilde{R}(t)$ . By (2), we find a
neighborhood $U_{0}(t)$ of $z=0$ such that

$u(t, z)= \log\frac{1}{|z|}+\gamma(t)+h(t, z)$ on $U_{0}(t)$ ,

where $\gamma(t)$ is the constant term and $h(t, z)$ is harmonic for $z$ on $U_{0}(t)$

such that

$h(t, 0)=0$, $t\in B$ .
The function $u(t, z)$ is called the $L_{1}$ -principal function on $R(t)$ with

logarithmic pole at $0$ with respect to $C_{0}(t)$ , and $\gamma(t)$ is called the $L_{1^{-}}$

constant on $R(t)$ with logarithmic pole at $0$ with respect to $C_{0}(t)$ (cf:
[1] $)$ . In this article, we simply call $u(t, z)$ the $L_{1}$-principal function for
$(R(t), 0, C_{0}(t))$ , and $\gamma(t)$ the $L_{1}$-constant for $(R(t), 0, C_{0}(t))$ . We note
that $u(t, z)>0$ in $R(t)\backslash \{0\}$ and $a_{i}(t)>0(i=1, \ldots, \nu)$ .

Then we have the following variation formula for the $L_{1}$-constant
$\gamma(t)$ for $(R(t), 0, C_{0}(t))$ .

Lemma 1. It holds for $t\in B$ that

$\frac{\partial\gamma(t)}{\partial t}=-\frac{1}{\pi}\int_{\partial R(t)}k_{1}(t, z)|\frac{\partial u(t,z)}{\partial z}|^{2}ds_{z}$,

$\frac{\partial^{2}\gamma(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial u(t,z)}{\partial z}|^{2}ds_{z}-\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}u(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$ .

This variation formula is formally the same as that for the Robin
constant $\lambda(t)$ in section 1. The essential difference of the proofs for
$\gamma(t)$ and $\lambda(t)$ comes from the fact that $u(t, z)$ is not a defining function
of $\partial \mathcal{R}$ contrary to the case of the Green function $g(t, z)$ .

Theorem 2. Under the same conditions in Lemma 1, if $\mathcal{R}$ is pseu-
doconvex over $B\cross \mathbb{C}_{z\prime}$ then $\gamma(t)$ is a $C^{\omega}$ superharmonic function on
$B$ .

Remark 1. For Lemma 1, we assumed that $\mathcal{R}$ is unramified over $B\cross \mathbb{C}_{z}$ .
However, even if each $R(t),$ $t\in B$ has a finite number of branch points
$\zeta_{k}(t)(k=1, \ldots, m)$ for $t\in B$ such that $\zeta_{k}(t)$ is a holomorphic function
on $B$ with $\zeta_{k}(t)\neq\zeta_{l}(t)(k\neq l),$ $t\in B$ , then Lemma 1 and hence
Theorem 2 hold. For, this case can be reduced to Lemma 1 by the
standard method by use of Y. Nishimura’s theorem [10].
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In the special case when $R(t)$ is a planar Riemann surface, the $L_{1^{-}}$

principal function $u(t, z)$ induces a circular slit mapping $f(t. z)$ . That
is, if we choose a branch $u^{*}(t, z)$ of harmonic conjugate function of
$u(t, z)$ on $R(t),$ $t\in B$ such that

$f(t, z)=e^{\gamma(t)-(u(t,z)+xu^{r}(t,z))}$

is of the form

$w=f(t, z)=z+ \sum_{j=2}^{\infty}b_{j}(t)z^{j}$ on $U_{0}(t)$ ,

then $f(t, z)$ conformally maps $R(t)$ onto a circular slit domain $\{|w|<$

$e^{\gamma(t)} \}\backslash (\bigcup_{i=1}^{\nu}\ell_{i})$ , where $\ell_{i}\{t)=f(t, C_{i}(t))$ (an arc of the circle $\{|w|=$

$e^{\gamma(t)-a_{1}(t)})$ . If $\mathcal{R}$ is pseudoconvex over $B\cross \mathbb{C}_{z}$ , then $e^{\gamma(t)}$ is logarithmic
superharmonic on $B$ , so that the total space $\bigcup_{t\in B}\{|w|<e^{\gamma(t)}\}$ is a
Hartogs pseudoconvex domain in $B\cross \mathbb{C}_{w}$ .

Remark 2. In the theory of one complex variable, the circular slit map-
ping and the radial slit mapping have good correspondence. But the
same result for the corresponding radius of the radial slit mapping does
not hold. In fact, we have the following counterexamples (i) and (ii)
of pseudoconvex domains $\mathcal{R}$ in $B\cross \mathbb{C}_{z}$ such that the radii of radial
slit mappings are not logarithmic superharmonic or not logarithmic
subharmonic on $B$ :

(i) The radius of radial slit mapping is not logarithmic superharmonic
on $B$ : Let

$\mathcal{R}=\{|t|<\frac{1}{2}\}\cross\{|z|<1\}\backslash \{(t, z):|z-\frac{1}{2}|\leq|t|<\frac{1}{2}\}$ ,

$B= \{|t|<\frac{1}{2}\}$ , $R(t)= \{|z|<1\}\backslash \{|z-\frac{1}{2}|\leq|t|\}$ ,

so that $\partial R(t)=C_{0}(t)+C_{1}(t)$ where $C_{0}(t)=\{|z|=1\}$ and $C_{1}(t)=$

$\{|z-12|=|t|\}$ .
(ii) The radius of radial slit mapping is not logarithmic subharmonic

on $B$ : Let

$\mathcal{R}=\bigcup_{t\in B}\{|z|<r(t)\}\backslash B\cross(C_{1}\cup C_{2})$
,

where $C_{1}=[ \frac{1}{2}, \frac{2}{3}],$ $C_{2}=[ \frac{i}{2}, \frac{2i}{3}]$ in $\mathbb{C}_{z},$ $r(t)>1$ and $\log r(t)$ is superhar-
monic on $B$ . Thus $\partial R(t)=C_{0}(t)+C_{1}(t)+C_{2}(t)$ where $C_{0}(t)=\{|z|=$

$r(t)\},$ $C_{i}(t)=C_{i},$ $i=1,2$ .

3. VARIATION FORMULA OF $L_{1}$ -PRINCIPAL FUNCTION FOR
$(R(t),$ $0,$ $\xi(t))$

Under the same conditions for the unramified domain $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$

in $\tilde{\mathcal{R}}$ over $B\cross \mathbb{C}_{z}$ and $\partial R(t)=\sum_{j=0}^{\nu}C_{j}(t)$ , we assume that there exist
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two holomorphic sections:

$\Xi_{0}:z=0$ and $\Xi_{1}:z=\xi(t)$

of $\mathcal{R}$ over $B$ such that $\Xi_{0}\cap\Xi_{1}=\emptyset$ . Let $t\in B$ be fixed. In the theory of
one complex variable, there exists a unique real-valued function $p(t, z)$

on $R(t)\backslash \{0, \xi(t)\}$ satisfying the following four conditions:
(1) $p(t, z)$ is harmonic on $R(t)\backslash \{0, \xi(t)\}$ and continuous on $\overline{R(t)}$ ;
(2) $p(t, z)-\log 1/z|$ is harmonic at $z=0$ and

$\lim_{zarrow 0}(p(t, z)-\log\frac{1}{|z|})=0:$,

(3) $p(t, z)-\log|z-\xi(t)|$ is harmonic at $z=\xi(t)$ ;
(4) for each $j=0,1,$ $\ldots,$

$\nu$ , we have

(i) $p(t, z)=a_{j}(t)$ : constant on $C_{j}(t)$ ;

$( ii)\int_{C_{j}(t)}*dp(t, z)=0$ .

We note that $p(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic
function on $V(t)$ such that $\partial R(t)\subset V(t)\Subset\tilde{R}(t),$ $-$ oo $<p(t, z)<+\infty$ ,
and-oo $<a_{j}(t)<+\infty$ .

By (2), we find a neighborhood $U_{0}(t)$ of $z=0$ such that

$p(t, z)= \log\frac{1}{|z|}+h_{0}(t, z)$ on $U_{0}(t)$ ,

where $h_{0}(t, z)$ is harmonic for $z$ on $U_{0}(t)$ and

$h_{0}(t, 0)=0$ , $t\in B$ .

By (3), we find a neighborhood $U_{\xi}(t)$ of $z=\xi(t)$ such that
$p(t, z)=\log|z-\xi(t)|+\alpha(t)+h_{\xi}(t, z)$ on $U_{\xi}(t)$ ,

where $\alpha(t)$ is a real constant and $h_{\xi}(t, z)$ is harmonic for $z$ on $U_{\xi}(t)$ and
$h_{\xi}(t, \xi(t))=0$ , $t\in B$ .

In this article, we simply call $p(t, z)$ the $L_{1}$ -principal function for
$(R(t), 0, \xi(t))$ , and $\alpha(t)$ the $L_{1}$ -constant for $(R(t), 0, \xi(t))$ .

Under these situations, we have

Lemma 3. It holds for $t\in B$ that

$\frac{\partial\alpha(t)}{\partial t}=\frac{1}{\pi}\int_{\partial R(t)}k_{1}(t, z)|\frac{\partial p(t,z)}{\partial z}|^{2}ds_{z}+2\frac{\partial h_{\xi}}{\partial z}|_{(t,\xi(t))}\cdot\xi’(t)$ ,

$\frac{\partial^{2}\alpha(t)}{\partial t\partial\overline{t}}=\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial p(t,z)}{\partial z}|^{2}ds_{z}+\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}p(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$
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If $\mathcal{R}$ is pseudoconvex in $\tilde{\mathcal{R}}$ , then $k_{2}(t, z)\geq 0$ on $\partial \mathcal{R}$ (Levi condition),
and the converse is also true. We then apply Lemma 1 to obtain the
following

Theorem 4. Under the same conditions in Lemma 3, if $\mathcal{R}$ is pseu-
doconvex over $B\cross \mathbb{C}_{zr}$ then $\alpha(t)$ is a $C^{\omega}$ subharmonic function on $B$ .
This is also true under the same condition for $\mathcal{R}$ as in Remark 1.

Application of Theorem 4 As an application of Theorem 4, we
show that the following fact. Let $B$ be a simply connected domain
in $\mathbb{C}_{t}$ . Let $\pi$ : $Sarrow B$ be a holomorphic family of compact Riemann
surfaces $S(t)=\pi^{-1}(t)$ over $B$ such that each fiber $S(t)$ is of genus $\geq 2$

and non-singular in $S$ . For a fixed $t\in B$ , we consider the Schottky
covering $\tilde{S}(t)$ of each $S(t)$ (cf: Sec. 101 in p.266 in Ford [2], and $19F$

in p.241 in Ahlfors-Sario [1] $)$ . We denote by $\tilde{S}$ the total space of the
variation: $t\in Barrow\tilde{S}(t)$ , namely, $\tilde{S}=\bigcup_{t\in B}(t,\tilde{S}(t))$ . Then we have:

Theorem 5. The total space $\tilde{S}$ consisting of the Schottky covering
$\tilde{S}(t)$ of compact Riemann surfaces $S(t)$ with complex parameter $t\in B$

is holomorphically uniformized to a $univaler\iota t$
’

domain on $B\cross \mathbb{P}^{1}$ .

In [8], Maitani and Yamaguchi proved that, if $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ is
an unramified pseudoconvex domain over $B\cross \mathbb{C}_{z}$ such that each $R(t)$ ,
$t\in B$ is planar and parabolic, then $\mathcal{R}$ is holomorphically uniformizable
to a domain in $B\cross \mathbb{P}^{1}$ . Since the Schottky covering $\tilde{S}(t)$ of a compact
Riemann surface $S(t)$ of genus $g\geq 2$ is planar but not parabolic, their
theorem and method cannot be applicable to our case. In [12], Yam-
aguchi wrote a resum\’e about Theorem 5 with a rough sketch of the
proof. However his sketch had a (gap” Then I bridge the gap by es-
tablishing the variation formula for $L_{1}$ -principal function (Lemma 3),
and obtain Theorem 5.

4. VARIATION FORMULA OF $L_{0}$-PRINCIPAL FUNCTION FOR
$(R(t),$ $0,$ $\xi(t))$

This section is quoted from S. Hamano, F. Maitani and H. Yamguchi
[6]. Under the same conditions for the unramified domain $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$

in $\tilde{\mathcal{R}}$ over $B\cross \mathbb{C}_{z}$ and $\partial R(t)=\sum_{j=0}^{\nu}C_{j}(t)$ , we assume that $\mathcal{R}$ has two
holomorphic section over $B$ :

$\Xi_{0}:z=0$ and $\Xi_{1}:z=\xi(t)$

such that $\Xi_{0}\cap\Xi_{1}=\emptyset$ . Let $t\in B$ be fixed. Then it is known (cf: Sario-
Nakai [9] $)$ that $R(t)$ carries the following real-valued function $q(t, z)$ .

(1) $q(t, z)$ is harmonic on $R(t)\backslash \{0, \xi(t)\}$ and is continuous on $\overline{R(t)}$ ;
(2) $q(t, z)-$ log l $/|z|$ is harmonic at $z=0$ and

$\lim_{zarrow 0}(q(t, z)-\log 1’|z|)=0$ ;
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(3) $q(t, z)-\log|z-\xi(t)|$ is harmonic at $z=\xi(t)$ ;
(4) $\frac{\partial q(t,z)}{\partial n_{z}}=0$ on $\partial R(t)$ .

We call the function $q(t, z)$ the $L_{0}$ -principal function for $(R(t), 0, \xi(t))$ .
Note that $q(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic

function on $V(t)$ such that $\partial R(t)\Subset V(t)\Subset\tilde{R}(t)$ .
By (2) for $q(t, z)$ , we find a neighborhood $U_{0}(t)$ of $z=0$ such that

$q(t, z)= \log\frac{1}{|z|}+\mathfrak{h}_{0}(t, z)$ on $U_{0}(t)$ ,

where $\mathfrak{h}_{0}(t, z)$ is harmonic for $z$ on $U_{0}(t)$ and
$\mathfrak{h}_{0}(t, 0)=0$ , $t\in B$ .

By (3) for $q(t, z)$ , we find a neighborhood $U_{\xi}(t)$ of $z=\xi(t)$ such that
$q(t, z)=\log|z-\xi(t)|+\beta(t)+\mathfrak{h}_{\xi}(t, z)$ on $U_{\xi}(t)$ ,

where $\beta(t)$ is a constant and $\mathfrak{h}_{\xi}(t, z)$ is harmonic for $z$ on $U_{\xi}(t)$ and
$\mathfrak{h}_{\xi}(t, \xi(t))=0$ , $t\in B$ .

We call $\beta(t)$ the $L_{0}$ -constant for $(R(t), 0, \xi(t))$ .

We shall give the variational formulas for $L_{0}$-constant $\beta(t)$ . In order
to proves the formula for $\beta(t)$ , we have to add a new idea to the proof
for $\alpha(t)$ . In fact, the formulas for $\alpha(t)$ do not concern to the genus of
$R(t)$ but the variation formula of the second order for $\beta(t)$ does concern
to the genus of $R(t)$ . It seems to be curious that of the first order does
not concern to the genus as below. In case when $R(t)$ is of positive
genus $g\geq 1$ , we take $\{A_{l}(t), B_{l}(t)\}_{1\leq l\leq g}$ be usual $A,$ $B$ cycles on $R(t)$

with intersection number condition: for $k,$ $l=1,$ $\ldots,$ $g$ ,
$A_{k}(t)\cross B_{l}(t)=\delta_{k,l}$ , $A_{k}(t)\cross A_{l}(t)=0$ , $B_{k}(t)\cross B_{l}(t)=0$ .

Here $\delta_{k,l}$ is Kronecker’s delta; $A_{k}(t)\cross B_{l}(t)$ means that $A_{k}(t)$ crosses
$B_{l}(t)$ from the left-side to the right-side of the direction $B_{l}(t)$ ; and
each $A_{k}(t)(B_{k}(t)),$ $k=1,$ $\ldots,$ $g$ varies continuously with parameter
$t\in B$ such that $A_{k}(t),$ $B_{k}(t)$ do not pass through $\{0, \xi(t)\}$ . On each
$R(t),$ $t\in B$ we denote by $*dq(t, z)$ the conjugate differential of $dq(t, z)$ .

Then we have

Lemma 6. It holds for $t\in B$ that

$\frac{\partial\beta(t)}{\partial t}=-\frac{1}{\pi}\int_{\partial R(t)}k_{1}(t, z)|\frac{\partial q(t,z)}{\partial z}|^{2}ds_{z}+2\frac{\partial \mathfrak{h}_{\xi}}{\partial z}|_{(t_{2}\xi(t))}\cdot\xi’(t)$,

$\frac{\partial^{2}\beta(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial q(t,z)}{\partial z}|^{2}ds_{z}-\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}q(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$

$- \frac{2}{\pi}\Im\sum_{k=1}^{g}(\frac{\partial}{\partial t}\int_{A_{k}(t)}*dq(t, z))\cdot(\frac{\partial}{\partial\overline{t}}\int_{B_{k}(t)}*dq(t, z))$ .
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Lemma 3 implied that if $\mathcal{R}$ is pseudoconvex in $\tilde{\mathcal{R}}$ , then $L_{1}$ -constant
$\alpha(t)$ for $(R(t), 0, \xi(t))$ is a $C^{\omega}$ subharmonic function on $B$ . On the other
hand, Lemma 6 implied the following:

Theorem 7. Under the same conditions in Lemma 6, if $\mathcal{R}$ is pseudo-
convex in $\tilde{\mathcal{R}}$ and each $R(t),$ $t\in B$ is planar, then the $L_{0}$ -constant $\beta(t)$

for $(R(t), 0, \xi(t))$ is a $C^{\omega}$ superharmonic function on $B$ .

The contrast between the subaharmincity of $\alpha(t)$ and the superhar-
monicity of $\beta(t)$ are unified with the notion of the harmonic span $s(t)$

for $(R(t), 0, \xi(t))$ due to M. Schiffer [11].

Variations formula for the harmonic spans. We recall some
notions studied in the theory of one complex variable. Let $R$ be a
domain in $\mathbb{C}_{z}$ bounded by a finite number of closed curves $C_{j},$ $j=$
$0,1,$ $\ldots,$

$\nu$ . For simplicity we assume $0\in R$ . For a point $\xi\neq 0$ , we
consider the $L_{1}$-and $L_{0}$-function $p(z)$ and $q(z)$ for $(R, 0, \xi)$ and the $L_{1^{-}}$

and $L_{0}$-constant $\alpha$ and $\beta$ for $(R, 0, \xi)$ . In the function theory of one
complex variable, it is known (cf: [1] and [9])

$s(R)= \frac{\pi}{2}(\alpha-\beta)$

as the harmonic span $s(R)$ for $(R, 0, \xi)$ .
We return to the variation of Riemann surfaces. Let $\mathcal{R}$ : $t\in Barrow$

$R(t)$ satisfy the conditions in the beginning of Sections 3 and 4. For a
fixed $t\in B$ , we denote by $p(t, z)(q(t, z))$ the $L_{1^{-}}(L_{0^{-}})$ principal func-
tion, by $\alpha(t)(\beta(t))$ the $L_{1^{-}}(L_{0^{-}})$ constant and by $s(t)$ the harmonic span
for $(R(t), 0, \xi(t))$ . Then combining Lemmas 3 and 6, we immediately
have the following:

Lemma 8. Assume that $R(t),$ $t\in B$ is planar. Then it holds that

$\frac{\partial^{2}s(t)}{\partial t\partial\overline{t}}=\frac{1}{2}\int_{\partial R(t)}k_{2}(t, z)(|\frac{\partial p(t,z)}{\partial z}|2 +| \frac{\partial q(t,z)}{\partial z}|^{2})ds_{z}$

$+2 \int\int_{R(t)}(|\frac{\partial^{2}p(t,z)}{\partial\tilde{t}\partial z}|2 +| \frac{\partial^{2}q(t_{2}z)}{\partial\overline{t}\partial z}|^{2})dxdy$

Lemma 8 implied the following:

Theorem 9. Under the same conditions in Lemma 6, if $\mathcal{R}$ is pseudo-
convex in $\tilde{\mathcal{R}}$ and each $R(t),$ $t\in B$ is planar, then the harmonic span
$s(t)$ for $(R(t), 0, \xi(t))$ is a $C^{\omega}$ subharmonic function on $B$ .

5. EXAMPLES

We begin with a simple example of our general result shown in this
article. Let $B=\{|t|<\rho\}$ be a disk in $\mathbb{C}_{t}$ . For each $t\in B$ , let $R(t)$ be
a disk $\{|z|<r(t)\}$ in $\mathbb{C}_{z}$ , where $\log r(t)$ is a superharmonic function
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on $B$ . If we set the Hartogs domain of disks $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ , then
$\mathcal{R}$ is a pseudoconvex domain in $B\cross \mathbb{C}_{z}$ . Assume that there exists a
holomorphic section $\xi$ : $t\in Barrow\xi(t)(\neq 0)\in R(t)$ .

[Example of Theorem 4.] We consider the following function:

$f(t, z)=- \frac{1}{\xi(t)}\cdot\frac{r(t)^{2}(z-\xi(t))}{z(r(t)^{2}-\overline{\xi}(t)z)}$ on $R(t)$ .

Then $f$ is a circular slit mapping on $R(t)$ with zero at $z=\xi(t)$ and
pole at $z=0$ . The $L_{1}$ -constant $\alpha(t)$ on $B$ is written into

$\alpha(t)=\log|\frac{\partial f}{\partial z}(t, \xi(t))|$ $=$ $\log|-\frac{1}{\xi(t)^{2}}\cdot\frac{r(t)^{2}}{r(t)^{2}-|\xi(t)|^{2}}|$ .

Since $\xi(t)$ is holomorphic on $B$ and since $\log r(t)$ is superharmonic on
$B,$ $\log\frac{|\xi(t)|}{r(t)}$ is subharmonic on $B$ , so is the second term in the right-hand
side. Hence, $\alpha(t)$ is a subharmonic function on $B$ .

[Example of Theorem 7.] We put $\theta(t)=\arg\xi(t)$ . Then

$F(t, z)= \frac{1}{2}(\frac{z}{r(t)e^{i\theta(t)}}+\frac{r(t)e^{i\theta(t)}}{z})-\frac{1}{2}(\frac{|\xi(t)|}{r(t)}+\frac{r(t)}{|\xi(t)|})$

is the radial slit mapping on $R(t)$ with zero at $z=\xi(t)$ and pole at
$z=0$ . The $L_{0}$-constant $\beta(t)$ is written into

$\beta(t)=\log|\frac{\partial Q}{\partial z}(t, \xi(t))|=-2\log|\xi(t)|+\log[1-(\frac{|\xi(t)|}{r(t)}I^{2}]$ ,

which certainly is superharmonic on $B$ .

[Example of Theorem 9.] We also see that the harmonic span
$s(t)= \frac{\pi}{2}(\alpha(t)-\beta(t))$ for $(R(t), 0, \xi(t))$ is

$s(t)= \log\frac{1}{1-(\frac{|\xi(t)|}{r(t)})^{2}}$
,

which is subharmonic on $B$ .
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