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1 Intoduction.
S. Hamano [5] established the variation formulas of the second order for $L_{1^{-}}$

principal functions $p(t, z)$ on the moving Riemann surface $R(t)$ with complex
parameter $t$ in $B=\{|t|<1\}$ . We showed in [9] the corresponding for-
mulas for $L_{0}$-principal functions $q(t, z)$ . Combining two formulas, we give a
several complex variable’s property of the harmonic span for Riemann sur-
face introduced in Nakai-Sario [13]. This property implies the following: Let
$\pi$ : $\mathcal{R}arrow B$ be a two-dimensional holomorphic family over $B$ such that $\mathcal{R}$ is a
Stein manifold and each fiber $R(t)=\pi^{-1}(t),$ $t\in B$ is irreducible, non-singular
in $\mathcal{R}$ and hyperbolic as Riemann surface. Let $\xi$ : $t\in Barrow\xi(t)\in R(t)$ and
$\eta$ : $t\in Barrow\eta(t)\in R(t)$ be holomorphic sections and let $\Gamma(t)$ be a continuous
curve connecting $\xi(t)$ and $\eta(t)$ on $R(t)$ such that $\Gamma$ $:= \bigcup_{t\in B}(t, \Gamma(t))(\subset \mathcal{R})$ is
homeomorphic to the product set $B\cross\Gamma(O)$ . On each $R(t),$ $t\in B$ we consider
the Poincar\’e metric $ds(t, z)^{2}$ and draw the geodesic curve $\gamma(t)$ connecting
$\xi(t)$ and $\eta(t)$ which is homotopic to $\Gamma(t)$ on $R(t)$ . Then log cosh $l(t)$ , where
$l(t)= \int_{\gamma(t)}ds(t, z)$ , is subharmonic on $B$ . This note continues on [8] in this
volume of Report of RIMS of Kyoto Univ.

2 Variation formulas for $L_{1}$-and $L_{0}$-constants.
Let $R$ be a bordered Riemann surface with smooth boundary $\partial R=C_{1}+$

. $..+C_{\nu}$ in a larger Riemann surface $\tilde{R}$ , where $C_{j},j=1,$ $\ldots,$
$\nu$ is a $C^{\omega}$ smooth

contour in $\tilde{R}$ . Fix two distinct points $a,$ $b$ with local coordinates $|z|<\rho$ and
$|z-\xi|<\rho$ where $a(b)$ corresponds to $0(\xi)$ . Among all harmonic functions
$u$ on $R\backslash \{0, \xi\}$ with logarithmic singularity $\log\frac{1}{|z|}$ at $0$ and $\log|z-\xi|$ at
$\xi$ normalized $\lim_{zarrow 0}(u(z)-\log\frac{1}{|z|})=0$, we uniquely have two special ones
$p$ and $q$ with the following boundary conditions: for each $C_{j},$ $p$ satisfies
$p(z)=$ const. $c_{j}$ and $\int_{C_{j}}*dp(z)=0$ , and $q$ does $\frac{\partial q(z)}{\partial n_{z}}=0$ on $C_{j}$ . Then $p$

and $q$ are called the $L_{1^{-}}$ and $L_{0}$ -principal function for $(R, 0, \xi)$ . The constant
terms $\alpha$ $:= \lim_{zarrow\xi}(p(z)-\log|z-\xi|)$ and $\beta$ $:= \lim_{zarrow\xi}(q(z)-\log|z-\xi|)$ are
called the $L_{1^{-}}$ and $L_{0}$ -constant for $(R, 0, \xi)$ (cf: [1] and [13]).
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Let $B=\{|t|<\rho\}$ and let $\tilde{\mathcal{R}}$ be a two-dimensional unramified domain
sheeted over $B\cross \mathbb{C}_{z}$ . $1Ve$ write $\overline{\mathcal{R}}=\bigcup_{t\in B}(t,\overline{R}(t))$ , where $\tilde{R}(t)$ is a fiber of
$\tilde{\mathcal{R}}$ over $t\in B$ , i.e., $\tilde{R}(t)=\{z:(t, z)\in\tilde{\mathcal{R}}\}$ , so that $\tilde{R}(t)$ is an unramified
Riemann surface sheeted over $\mathbb{C}_{z}$ . Consider a subdomain $\mathcal{R}$ in $\tilde{\mathcal{R}}$ such that,

if we put $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ , where $R(t)$ is a fiber of $\mathcal{R}$ over $t\in B$ , then

(1) $\tilde{R}(t)\Supset R(t)\neq\emptyset,$ $t\in B$ such that $R(t)$ is a connected surface of genus
$g\geq 0$ such that $\partial R(t)$ in $\tilde{R}(t)$ consists of a finite number of $C^{\omega}$ smooth
contours $C_{1}(t),$

$\ldots,$
$C_{\nu}(t)$ in $\tilde{R}(t)$ .

(2) the boundary $\partial \mathcal{R}=\bigcup_{t\in B}(t, \partial R(t))$ of $\mathcal{R}$ in $\tilde{\mathcal{R}}$ is $C^{\omega}$ smooth.

Note that $g$ and $\nu$ are independent of $t\in B$ . We regard the two-dimensional
domain $\mathcal{R}$ over $B\cross \mathbb{C}_{z}$ as a $C^{\omega}$ smooth variation with parameter $t\in B$ of
Riemann surfaces $R(t)$ over $\mathbb{C}_{z}$ with $C^{\omega}$ smooth boundary $\partial R(t)$ ,

$\mathcal{R}:t\in Barrow R(t)$ .

Let $\mathcal{R}$ have two holomorphic sections over $B:\Xi_{0}:z=0$ and $\Xi_{\xi}$ : $z=\xi(t)$

such that $\Xi_{0}\cap\Xi_{\xi}=\emptyset$ . Each $R(t),$ $t\in B$ carries the $L_{1^{-}}(L_{0^{-}})$ principal function
$p(t, z)(q(t, z))$ for $(R(t), 0, \xi(t))$ . Precisely, both functions are harmonic on
$R(t)\backslash \{0, \xi(t)\}$ with poles $\log\frac{1}{|z|}$ at $z=0$ and $\log|z-\xi(t)|$ at $z=\xi(t)$ , and

continuous on $\overline{R(t)}$ such that $p(t, z)$ satisfies

(1) $\lim_{zarrow 0}(p(t, z)-\log\frac{1}{|z|})=0$ ; (2) $p(t, z)=$ const $c_{j}(t)$ on $C_{j}(t)$

and $\int_{C_{j}(t)}*dp(t, z)=0,$ $j=1,$ $\ldots,$
$\nu$ ,

while $q(t, z)$ satisfies

(1) $\lim_{zarrow 0}(q(t, z)-\log\frac{1}{|z|})=0$ ; (2) $\frac{\partial q(t,z)}{\partial n_{z}}=0$ on $\partial R(t)$ .

We write $\alpha(t)(\beta(t))$ for the $L_{1^{-}}(L_{0^{-}})$ constant for $(R(t), 0, \xi(t))$ :

$\alpha(t)=\lim_{zarrow\xi(t)}(p(t, z)-\log|z-\xi(t)|)$ , $\beta(t)=\lim_{zarrow\xi(t)}(q(t, z)-\log|z-\xi(t)|)$ .

Then we have the following variation formulas of the second order for
$\alpha(t)$ and $\beta(t)$ :

Lemma 2.1. (see Lemma 3.1 in [5] and Lemma 2.2 in [9]) It holds for $t\in B$

that

$\frac{\partial^{2}\alpha(t)}{\partial t\partial\overline{t}}=\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial p(t,z)}{\partial z}|^{2}ds_{z}+\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}p(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$,

132



and that, if each $R(t),$ $t\in B$ is $a$ planar Riemann surface, then

$\frac{\partial^{2}\beta(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial q(t,z)}{\partial z}|^{2}ds_{z}-\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}q(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$

Here

$k_{2}(t, z)=( \frac{\partial^{2}\varphi}{\partial t\partial\overline{t}}|\frac{\partial\varphi}{\partial z}|^{2}-2{\rm Re}\{\frac{\partial^{2}\varphi}{\partial\overline{t}\partial z}\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial\overline{z}}\}+|\frac{\partial\varphi}{\partial t}|^{2}\frac{\partial^{2}\varphi}{\partial z\partial\overline{z}})/|\frac{\partial\varphi}{\partial z}|^{3}$

on $\partial \mathcal{R}$ , where $\varphi(t, z)$ is a defining function of $\partial \mathcal{R}$ and $ds_{z}$ is the arc length
element on $\partial R(t)$ at $z$ .

Theorem 2.1. Under the same situation in Lemma 2.1 assume that $\mathcal{R}$ is
pseudoconvex in $\tilde{\mathcal{R}}$ . Then the $L_{1}$ -constant $\alpha(t)$ is a $C^{\omega}$ subharmonic function
on $B$ , while the $L_{0}$ -constant $\beta(t)$ is a $C^{\omega}$ superharmonic function on $B$ .

The superharmonicity of $\beta(t)$ in the theorem does not hold without the
assumption that each $R(t),$ $t\in Bi\dot{s}$ planar, in general.

3 Harmonic span for Riemann surface.
In this section $R$ is always a domain in the plane $\mathbb{C}_{z}$ of one complex variable
$z$ bounded by a finite number of smooth contours $C_{j},j=1,$ $\ldots,$

$\nu$ such that
$R\ni O$ . Fix a point $\xi\in R,$ $\xi\neq 0$ . M. SchifTer [15] introduced, so called, the
analytic span $a(R)=a(R, 0, \xi)$ for $(R, 0, \xi)$ using the vertical and horizontal
mappings $w=f(z)$ with $f(0)=\infty$ and $f(\xi)=0$ on $R$ . By use of the $L_{1^{-}}$

$(L_{0^{-}})$principal function $p(z)(q(z))$ , and $L_{1^{-}}(L_{0^{-}})$ constant $\alpha(\beta)$ for $(R, 0, \xi)$ ,
Nakai-Sario [13] introduced the harmonic span for $(R, 0, \xi)$ :

$s(R)=s(R, 0, \xi):=\frac{1}{2}(\alpha-\beta)$ .

Two spans belong to different categories, for example, $a(R)$ is not invariant
under the conformal mappings $w=T(z)$ from $R$ onto $T(R)$ , while $s(R)$

is invariant, i.e., $s(R, 0, \xi)=s(T(R), T(O), T(\xi))$ . Thus, $s(R, a, b)$ defines a
real-valued function on $R\cross R$ with $s(R, a, a)=0$ .

We consider the set $S(R)$ of all univalent functions $w=f(z)$ on $R$ such
that

$f(z)- \frac{1}{z}$ is holomorphic near $z=0$ ,
$f(z)=c_{1}(z-\xi)+c_{2}(z-\xi)^{2}+\ldots$ near $z=\xi$ ,

and we write $c(f)=c_{1}(\neq 0)$ . We draw a Jordan curve $l$ in $R$ from $\xi$ to $0$ .
Let $f\in S(R)$ . Then the image $f(l)$ in $\mathbb{P}_{w}$ is a simple curve from $0$ to $\infty$ ,
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so that each branch $W=\log f(z)$ on $R\backslash l$ is single-valued. We consider the
Euclidean arca $E_{\log}(f)\geq 0$ of the complemant of $\log f(R\backslash l)$ in $\mathbb{C}_{W}$ , which
is independent of the choice of branches. We put

$E(R)= \sup\{E_{\log}(f):f\in S(R)\}$ .

For the $L_{1}$-and $L_{0}$-principal function $p(z)$ and $q(z)$ for $(R, 0, \xi)$ , we choose
their harmonic conjugates $p^{*}(z)$ and $q^{*}(z)$ on $R$ such that $P(z)=e^{p(z)+ip^{*}(z)}$

and $Q(z)=e^{q(z)+iq(z)}$ on $R$ are of the form

$P(z)- \frac{1}{z}$ and $Q(z)- \frac{1}{z}$ are holomorphic near $z=0$

$P(z)=e^{\alpha+i\theta_{1}}(z- \xi)+\sum_{n=2}^{\infty}a_{n}(z-\xi)^{n}$ near $z=\xi$ ,

$Q(z)=e^{\beta+i\theta_{0}}(z- \xi)+\sum_{n=2}^{\infty}b_{n}(z-\xi)^{n}$ near $z=\xi$ ,

where $\theta_{1},$ $\theta_{0}$ are constants. Then $w=P(z)$ and $w=Q(z)$ are a circular slit
mapping and a radial slit mapping on $R$ , i.e., their images are

$\Re_{1}$ $:= \mathbb{P}_{w}\backslash \bigcup_{j=1}^{\nu}P(C_{j})=\mathbb{P}_{w}\backslash \bigcup_{j=1}^{\nu}$ arc $\{A_{j}^{(1)}, A_{j}^{(2)}\}$ ,

$\Re_{0}$ $:= \mathbb{P}_{w}\backslash \bigcup_{j=1}Q(C_{j})=\mathbb{P}_{w}\backslash \bigcup_{j=1}^{\nu}$ segment $\{B_{j}^{(1)}, B_{j}^{(2)}\}$ .

Here

arc $\{A_{j}^{(1)}, A_{j}^{(2)}\}$ $=\{r_{j}e^{i\theta} : \theta_{j}^{(1)}\leq\theta\leq\theta_{j}^{(2)}\}$ ,
(3.1)

segment $\{B_{j}^{(1)}, B_{j}^{(2)}\}$ $=\{re^{i\theta_{j}} : 0<r_{j}^{(1)}\leq r\leq r_{j}^{(2)}<\infty\}$ ,

where $0<\theta_{j}^{(2)}-\theta_{j}^{(1)}<2\pi$ and $r_{j},$
$\theta_{j}^{(k)},$

$\theta_{j},$ $r_{j}^{(k)}(k=1,2)$ are constants. For
future use we take points $a_{j}^{(k)},$ $b_{j}^{(k)}\in C_{j}(k=1,2)$ such that

$P(a_{j}^{(k)})=A_{j}^{(k)}$ and $Q(b_{j}^{(k)})=B_{j}^{(k)}$ . (3.2)

Then $P(z)$ and $Q(z)$ belong to $S(R)$ such that $E_{\log}(P)=E_{\log}(Q)=0$ and
$|c(P)|=e^{\alpha},$ $|c(Q)|=e^{\beta}$ .

Proposition 3.1. (see $13B$ , Chap. III in [1]) The circular slit mapping $P(z)$

maximizes $2\pi log|c(f)|+E_{\log}(f)$ and the radial slit mapping $Q(z)$ minimizes
$2\pi log|c(f)|-E_{\log}(f)$ among $S(R)$ .

We have the following lemma which is necessary for our study of variation
of Riemann surfaces (see Theorem 4.1).
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Lemma 3.1.

1. $\sqrt{(PQ)(z)}$ consists of two branches $H(z)and-H(z)$ on $R$ such that
$H(z)\in S(R)$ and $each-(\log H)(C_{j}),$ $j=1,$ $\ldots,$

$\nu$ is a $C^{\omega}$ convex curve
which bounds a bounded domain in $\mathbb{C}_{W}$ .

2. The function $H(z)$ maximizes $E_{\log}(f)$ among $S(R)$ such that

$E(R)=E_{\log}(H)=\pi s(R)$ .

3. Let $R$ be a simply connectd domain and let $d(O, \xi)$ denote the geodesic
distance between $0$ and $\xi$ with respect to the Poincar\’e metric on $R$ .
Then we have

$s(R)=2$ log cosh $d(O, \xi)$ .

The corresponding results for the analytic span to 1. and 2. in Lemma
3.1 are well-known (see M. Schiffer [15] and $12A,$ $12F$ in Chap. III in [1]).
Those proofs have some gaps to prove 1. and 2. for the harmonic span in the
lemma. We get over them by using the Schottky double Riemann surface $\hat{R}$

of the domain $R$ . This idea itself will be needed for the proof of 3. in Lemma
5.2 concerning the variation of Riemann surfaces. So, we here give the sketch
of the proofs. Due to H. Grunsky [3] we consider the following function

$W=F(z)$ $:= \frac{d\log Q}{d\log P}$ for $z\in R\cup\partial R$ , (3.3)

which is a single-valued holomorphic function on $R$ such that $\Re F=0$ on $\partial R$ ,
since $\log P(C_{j})$ is a vertical segment and $\log Q(C_{j})$ is a horizontal segment. It
follows from Schwarz reflexion principle that $F$ is meromorphically extended
to the Schottoky double compact Riemann surface $\hat{R}=R\cup\partial R\cup R^{*}$ of $R$

such that $F(z^{*})=-\overline{F(z)}$ , where $z^{*}\in R^{*}$ is the reflexion point of $z\in R$ . Fix
$C_{j},j=1,$

$\ldots,$
$\nu$ . Since each branch $\log P(z)(\log Q(z))$ (where $\Re\log P(z)=$

$p(z)$ and $\Re\log Q(z)=q(z))$ is single-valued in a tubular neighborhood $V_{j}$ of
$C_{j}$ , we fix one of them:

$\log P(z)=u_{1}(z)+iv_{1}(z)$ , $\log Q(z)=u_{0}(z)+iv_{0}(z)$ , $z\in V_{j}$ ,

so that $u_{1}(z)(v_{0}(z))=$ const. $c_{1}(c_{0})$ on $C_{j}$ . We put $C_{j}$ $:= \frac{1}{2}(\log P(z)+$

$\log Q(z))|_{z\in C_{j}}$ , namely

$C_{j}:w= \frac{1}{2}(c_{1}+v_{0}(z))+\frac{i}{2}(c_{0}+u_{1}(z))$ , $z\in C_{j}$ .

Recalling notation (3.2), we can show:
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i $)$ $\{a_{j}^{(k)}, b_{j}^{(k)}\}_{k=1,2}$ are 4 distinct points on $C_{j}$ ;

ii) the zeros of $F$ are $\{b_{j}^{(k)}\}_{j=1,\ldots,\nu,k=1,2}$ of order one, and the poles are
$\{a_{j}^{(k)}\}_{j=1,\ldots,\nu;k=1,2}$ of order one;

iii) the closed curve $C_{j}$ is simple and non-singular in $\mathbb{C}_{w}$ ;

iv) $\Re F(z)>0$ on $R$ and ${\rm Im} F’(z)<0$ on $C_{j}$ ;

v $)$ at any $w\in C_{j}$ , the curvature $\frac{1}{\rho_{j}(w)}$ of $C_{j}$ is negative, precisely,

$\frac{1}{\rho_{j}(x)}=\frac{v_{1}’(x)^{2}}{(v_{1}’(x)^{2}+u_{0}(x)^{2})^{3\prime 2}}\cdot{\rm Im} F’(x)$ .

Then the properties $i$ ) $\sim v)$ of $W=F(z)$ implies assertion 1. The proof
of 2. is standard under 1. Since the harmonic span is invariant under the
conformal mappings, asserton 3. follows Examples in section 5 in [8].

4 Variation formulas of harmonic spans for
moving Riemann surfaces.

We return to the variation of Riemann surfaces. In this section we let
$\mathcal{R}$ : $t\in Barrow R(t)$ satisfy the conditions in the beginning of section 2.
For a fixed $t\in B$ , let $p(t, z)(q(t, z));\alpha(t)(\beta(t))$ and $s(t)$ denote the $L_{1^{-}}$

$(L_{0^{-}})$principal function; the $L_{1^{-}}(L_{0^{-}})$ constant and the harmonic span for
$(R(t), 0, \xi(t))$ . Then, Lemmas 2.1 and 3.1 implies the following

Lemma 4.1. Assume that $R(t),$ $t\in B$ is planar. Then it holds that

$\frac{\partial^{2}s(t)}{\partial t\partial\overline{t}}=\frac{1}{2\pi}\int_{\partial R(t)}k_{2}(t, z)(|\frac{\partial p(t,z)}{\partial z}|^{2}+|\frac{\partial q(t,z)}{\partial z}|^{2})ds_{z}$

$+ \frac{2}{\pi}\int\int_{R(t)}(|\frac{\partial^{2}p(t,z)}{\partial\overline{t}\partial z}|^{2}+|\frac{\partial^{2}q(t,z)}{\partial\overline{t}\partial z}|^{2})dxdy$ .

Theorem 4.1. Assume that $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ is pseudoconvex over $B\cross \mathbb{C}_{z}$

such that each fiber $R(t),$ $t\in B$ is planar. Then we have

1. The harmonic span $s(t)$ for $(R(t), 0, \xi(t))$ is $C^{\omega}subham\iota onic$ on $B$ .

2. If $s(t)$ is hamonic on $B$ , then the variation $\mathcal{R}$ : $t\in Barrow R(t)$ is
equivalent to the trivial varzation; $t\in Barrow R(O)$ , i. e., the total space

$\mathcal{R}$ is biholomorphic to the product $B\cross R(O)$ (by a fiber preseving trans-
formation).
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In fact, assertion 1. is clear now. To prove 2. we first consider the cirular
slit mapping $w=P(t, z)$ for $(R(t), 0, \xi(t))$ . Under the condition of 2., we
see from Lemma 4.1 that $P(t, z)$ is holomorphic for $(t, z)$ on $\mathcal{R}$ . We put
$\mathcal{D}$ $:= \bigcup_{t\in B}(t, D(t))(\subset B\cross \mathbb{C}_{w})$ where $D(t)=P(t, R(t))(\subset \mathbb{P}_{w})$ . Then $\partial D(t)$

consists of circular slit arc $\{A_{j}^{(1)}(t), A_{j}^{(2)}(t)\},$ $j=1,$ $\ldots,$
$\nu$ , and $\mathcal{R}\approx \mathcal{D}$ . Since

$\mathcal{D}$ is pseudoconvex, it follows from Kanten Satz in [2] that each edge point
$A_{j}^{(k)}(t),j=1,$

$\ldots,$ $\nu;k=1,2$ is holomorphic for $t\in B$ .
We secondly consider the holomorphic map $(t, w)\in \mathcal{D}arrow(t,\tilde{w})=$

$(t, L(t, w))$ where $L(t, w)=w\prime A_{1}^{(1)}(t)$ , and put $\tilde{D}=\bigcup_{t\in B}(t,\tilde{D}(t))$ where
$\tilde{D}(t)=L(t, D(t))$ , so that $\mathcal{R}\approx\tilde{\mathcal{D}}$. Each $\tilde{D}(t),$ $t\in B$ is circular slit domain
$\mathbb{P}_{\overline{w}}\backslash \tilde{C}_{j}(t)$ such that the first circular slit $\tilde{C}_{1}(t)=:\tilde{C}_{1}$ is indepedent of $t\in B$ .

We thirdly consider the function $W=F(t, z)$ defined in (3.3):

$F(t, z)= \frac{d_{z}\log Q(t,z)}{d_{z}\log P(t,z)}=\frac{\partial q(t,z)}{\partial z}\frac{\partial p(t,z)}{\partial z}$ for $z\in R(t)\cup\partial R(t)$ .

Then $F(t, z)$ is holomorphic for $(t, z)$ in $\mathcal{R}$ such that $F(t, 0)=1$ and $\Re F(t, z)=$

$0$ on each $C_{j}(t),j=1,$ $\ldots,$
$\nu$ . We put $C_{j}(t)=F(t, C_{j}(t))$ . Then we see from

i $)$ $\sim iv)$ that $C_{j}(t)$ rounds just twice on the imaginary axis in $\mathbb{P}_{W}$ , so that
$W(t)=F(t, D(t))$ is a ramified Riemann surface over $\Re W>0$ without
relative boundary, and, if we put $\mathcal{W}=\bigcup_{t\in B}(t, W(t))$ , then $\mathcal{R}\approx \mathcal{W}$ .

We finally consider the following bi-holomorphic mapping

$(t,\tilde{w})\in\tilde{\mathcal{D}}arrow(t, W)=(t, G(t,\tilde{w}))\in \mathcal{W}$ ,

where $\tilde{G}(t,\tilde{w})$ $:=F(t, P^{-1}(t, L^{-1}(t,\tilde{w})))$ . Thus, $\tilde{\mathcal{D}}\approx \mathcal{W}$ . Since $\Re G(t,\tilde{w})=0$

on the first circular arc $\tilde{C}_{1}$ , it follows that $G(t,\tilde{w})$ does not depend on $t\in B$ ,
so that $\mathcal{W}$ is equal to the product $B\cross W(O)$ , and hence $\mathcal{R}$ is biholomorphic
to the product $B\cross R(O)$ , which proves assertion 2.

Corollary 4.1. Under the same conditions as in Theorem 4.1, we denote by
$s(t, z, \zeta)$ the harmonic span for $(R(t), z, \zeta)$ for each $t\in B$ . Then $s(t, z, \zeta)$ is
a $C^{\omega}$ plurisubharmonic function on $\bigcup_{t\in B}(t, R(t)\cross R(t))$ such that $s(t, z, \zeta)>$

$0(=0)$ for $z\neq\zeta(z=\zeta)$ and $s(t, z, \zeta)arrow\infty$ as $(t, z, \zeta)arrow(t_{0}, z_{0}, \zeta_{0})$ where
$(z_{0}, \zeta_{0})\in\partial(R(t_{0})\cross R(t_{0}))$ with $z_{0}\neq\zeta_{0}$ .

Variation formulas for analytic (M. Schiffer’s) spans $a(t, z, \zeta)$ for moving
Riemann surfaces $\mathcal{R}$ : $t\in Barrow R(t)$ is studied in [7].

5 Approximation condition.

For any Riemann surface $R$ we can define the $L_{1^{-}}(L_{0^{-}})$principal function
$p(z)(q(z))$ and the harmonic span $s$ for $(R, a, b)$ by the standard approxima-
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tion argument (see Chap. III in [1]). Using the idea in the 3rd case in the
above proof we gcncralize 2. in Corollary 4.1 as Lennna 5.2.

Let $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ be a two-dimensional Stein manifold such that
each fiber $R(t)$ is irreducible and non-singular in $\mathcal{R}$ . Due to Oka-Grauert, $\mathcal{R}$

admits a $C^{\omega}$ strictly plurisubharmonic exhaustion function $\psi(t, z)$ . Then we
can find an increasing sequence $a_{n},$ $n=1,2,$ $\ldots$ which tends to $\infty$ such that,
if we put $\mathcal{R}_{n}$ $:= \{\psi(t, z)<a_{n}\}=\bigcup_{t\in B}(t, R_{n}(t))$ where $R_{n}(t)=\{z\in R(t)$ :
$\psi(t, z)<a_{n}\}$ which consists of a finite number of connected components
$\{R_{n}’(t), \ldots, R_{n}^{(q)}(t)\}$ ( $q$ may depends on $t$ ), then

i $)$ $\partial \mathcal{R}_{n}$ is a $C^{\omega}$ smooth rea13-dimensional surface in $\mathcal{R}$ (which does not
always induce $C^{\omega}$ smoothness of each $\partial R_{n}(t),$ $t\in B)$ ;

ii) for an arbitrarily fixed $B_{0}\Subset B$ there exists a finite number of $C^{\omega}$

smooth arcs $\ell_{k},$ $k=1,$ $\ldots,$ $\mu$ in $B_{0}$ which may have a finite number of
intersection points $\{t_{1},$

$\ldots,$
$t_{\tau}\}$ such that

a$)$ for any fixed $t^{*} \in[\bigcup_{k=1}^{\mu}\ell_{k}]\backslash \{t_{j}\}_{j=}^{\tau}$ , we find a small disk $B^{*}\Subset B_{0}$

centereed at $t^{*}$ such that the arc $\ell_{k}$ passing through $t^{*}$ divides $B^{*}$

into two connected parts $B$ ’ and $B’$ such that $\partial R_{n}(t),$ $t\in B’\cup B’$’

consists of a finite number of $C^{\omega}$ smooth closed curves in $R(t)$ ;

b $)$ any $\partial R_{n}(t),$ $t\in\ell_{k}\cap B^{*}$ is not $C^{\omega}$ smooth in $R(t)$ but it is $C^{\omega}$

smooth except one corner point at which two closed curves transver-
sally itersect (see figures (FI), (FII) below);

c $)$ any $\partial R_{n}(t_{j}),j=1,$
$\ldots,$

$\tau$ is not $C^{\omega}$ smooth in $R(t)$ but it is
$C^{\omega}$ smooth except two corner points at which two closed curves
transversally itersect.

We further assume that each fiber $R(t),$ $t\in B$ is planar as Riemann
surface, whose connectivity may be $\infty$ . Let $\xi,$

$\eta$ be two holomorphic sections
of $\mathcal{R}$ over $B$ . Fix a disk $B_{0}\Subset B$ centered at $0$ . If we take $N\gg 1$ , then
each $\xi(t),$ $\eta(t),$ $t\in B_{0}$ are contained in a connected component of $R(t)$ , say,
$R_{n}(t)$ , for $n\geq N$ . Thus $R_{n}’(t)\Subset R_{n+1}’(t)$ and $\lim_{narrow\infty}R_{n}’(t)=R(t)$ . We put
$\mathcal{R}_{n}’=\bigcup_{t\in B_{O}}(t, R_{n}’(t))$ . On each $R_{n}’(t),$ $t\in B_{0}$ we have the $L_{1^{-}}(L_{0^{-}})$ principal
function $p_{n}(t, z)(q_{n}(t, z));L_{1^{-}}(L_{0^{-}})$constant $\alpha_{n}(t)(\beta_{n}(t))$ and the harmonic
span $s_{n}(t)$ for $(R_{n}’(t), \xi(t), \eta(t))$ . We use the same notations for $i$ ), $ii)$ for $\mathcal{R}_{n}$

and put
$B_{0}^{(1)}=B_{0} \backslash [\bigcup_{k=1}^{\mu}\ell_{k}]$ and $B_{0}^{(2)}=B_{0}\backslash \{t_{j}\}_{j}^{\tau}$ ,

where $\ell_{k},$ $\mu,$ $t_{j},$ $\tau$ depend on $n$ . As studied in section 2, $p_{n}(t, z)$ and $q_{n}(t, z)$

are of class $C^{\omega}$ for $(t, z)$ in $\mathcal{R}_{n}|_{B_{O}^{(1)}}$ , and $s_{n}(t)$ is $C^{\omega}$ subharmonic on $B_{0}^{(1)}$ .
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$B^{*}$

(FI)
$arrow$

$R_{n}(t’),$ $t’\in B’$

(FII)

$R_{m}(t’),$ $t’\in B’$

$R_{n}(t),$ $t\in\ell_{k}$ $R_{n}(t’’),$ $t”\in B$”

By use of the normal family arguement for the univalent functions we
easily see that $p_{n}(t, z)$ and $q_{n}(t, z)$ are continuous for $(t, z)$ in $\mathcal{R}_{n}’$ , and hence
$s_{n}(t)$ is continuous on $B_{0}$ . Improving the proof of Lemma 4.1 in [10] for the
variation of the Robin constants, S. Hamano [6] proves the following usuful

Lemma 5.1. Under the above conditions and notations, if the connectivity
of $R_{n}(t)$ does not depend on $t\in B_{0}$ (see the shadowed figures in $(FI)$), then

$p_{n}(t, z),$ $q_{n}(t, z)$ are of class $C^{1}$ for $(t, z)$ in $\mathcal{R}’|_{B_{0}^{(2)}}$ and $s_{n}(t)$ is of class $C^{1}$ on
$B_{0}^{(2)}$ . Thus, $s_{n}(t)$ is $C^{1}$ subharminic on $B_{0}^{(2)}$ and $\iota s$ continuous subharmonic
on $B_{0}$ . The converse is also true, i. e., if the connectivity for $R_{n}(t)$ does depend
on $t\in B_{0}$ $($see the shadowed figures in $(FII))_{y}$ then neither $p_{n}(t, z)$ nor $q_{n}(t, z)$

is of class $C^{1}$ on $B_{0}$ , and $s_{n}(t)$ is not subharmonic on $B_{0}$ .

This lemma combined Theorem 4.1 implies the following approximation

Lemma 5.2. Let $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ be a two-dimensional Stein manifold
such that each fiber $R(t),$ $t\in B$ is irreducible, non-singular in $\mathcal{R}$ and planar,
and let $\xi,$

$\eta$ be holomorphic sections of $\mathcal{R}$ over B. Assume that there exists
a sequence of domains $\mathcal{R}_{n}=\bigcup_{t\in B}(t, R_{n}(t))$ of $\mathcal{R}$ such that

(i) $\xi,$ $\eta\subset \mathcal{R}_{1};\mathcal{R}_{n}\subset \mathcal{R}_{n+1}$ and $\mathcal{R}_{n}arrow \mathcal{R}(narrow\infty)$ ;
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(ii) each $\mathcal{R}_{n},$ $n=1,2\ldots$ . is pseudoconvex in $\mathcal{R},\cdot$

(iii) the connectivity of the connected component $R_{n}’(t)$ of $R_{n}(t)$ which con-
tains $\xi(t)$ and $\eta(t)$ is finite and does not depend on $t\in B$ (but may
depend on $n$).

Then we have

1. the harmonic span $s(t)$ for $(R(t), \xi(t), \eta(t))$ is subharmonic on $B$ ;

2. if $s(t)$ is hamonic on $B$ , then $\mathcal{R}$ is simultaneously uniformizable to
a univalent domain $\mathcal{D}$ in $B\cross \mathbb{P}$ by the circular slit mapping: $(t, z)\in$

$\mathcal{R}arrow(t, w)=(t, P(t, z))\in \mathcal{D}$;

3. if $s(t)$ is $ham\iota onic$ on $B$ and if each $R(t),$ $t\in B$ is confomally equiv-

alent to a domain bounded by $\nu$ contours, where $\nu$ does not depend on
$t\in B$ , then $\mathcal{R}$ is equivalent to the trivial variation.

It is known in [13] that a planar Riemann surface $R$ is of class $O_{AD}$ ,

i.e., there exists no non-constant holomorphic function with finite Dirichlet
integral, if and only if the harmonic span $s(R, a, b)$ for $(R, a, b)$ for some $a\neq b$

is equal to zero. The lemma imlpies the following fact: Under the same
conditions as in Lemma 5.2, if the set $e=$ {$t\in B:R(t)$ is of class $O_{AD}$ } is

of positive logarithmic capacity in $\mathbb{C}_{tz}$ then $e=B$ and $\mathcal{R}$ is uniformaizable
to a domain in $B\cross \mathbb{P}_{w}$ . We do not know if this fact is true or not without
condition that the connectivity of $R’(t)$ does not depend on $t\in B$ in (iii) in

Lemma 5.2.

6 Variations of lengths of Poincar\’e geodesic
curves.

We consider the following variation of general Riemann surfaces: Let $B=$

$\{|t|<\rho\}$ be a disk and $(\mathcal{R}, \pi, B)$ be a holomorphic family such that $\mathcal{R}$ is
a two-dimensional manifold; $\pi$ is a holomorphic projection from $\mathcal{R}$ onto $B$ .

The Riemann surface $R(t)=\pi^{-1}(t),$ $t\in B$ may be of genus $\infty$ and of infinite
many ideal boundary components, and the variation $\mathcal{R}$ : $t\in Barrow R(t)$

may not be topological trivial. In case $R(t)$ is hyperbolic, $R(t)$ admits the
Poincar\’e metric $ds(t, z)^{2}$ . Given a smooth curve $\gamma(t)\Subset R(t)$ we denote by
$l_{\gamma}(t)$ the Poincar\’e length of $\gamma(t)$ , i.e., $l_{\gamma}(t)= \int_{\gamma(t)}ds(t, z)$ , and define

$L_{\gamma}(t)=\log\cosh l_{\gamma}(t)$ .
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We call $L_{\gamma}(t)$ the modified Poincare length of $\gamma(t)$ on $R(t)$ . In case the
universal covering surface of $R(t)$ is conformally equvalent to $\mathbb{C}$ , we define
that the Poincar\’e length and hence the modified Poincar\’e length for any
smooth curve $\gamma(t)\Subset R(t)$ is always $0$ .

Theorem 6.1. Let $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ be a two-dimensional manifold such
that each $R(t)=\pi^{-1}(t),$ $t\in B$ is irreducible and non-singular in $\mathcal{R}$ . Assume

(i) $\mathcal{R}$ is a Stein manifold such that at least one fiber $R(t)$ is hyperbolic; $or$

(ii) each fiber $R(t),$ $t\in B$ is a compact Riemann surface of genus $g\geq 2$ .

Let $\xi,$
$\eta$ be holomorphic sections of $\mathcal{R}$ over B. For a fixed $t\in B$ let $\Gamma(t)$ be

a continuous curve starting at $\xi(t)$ and terminating at $\eta(t)$ in $R(t)$ and put
$\Gamma$ $:= \bigcup_{t\in B}(t, \Gamma(t))\subset \mathcal{R}$ . Assume that $\Gamma$ is homeomorphic to the product set
$B\cross\Gamma(O)$ by a fiber preseving mapping. For each $t\in B$ we denote by $\gamma(t)$

the Poincar\’e geodesic curve connectiong $\xi(t)$ and $\eta(t)$ which is homotopic to
$\Gamma(t)$ in $R(t)$ . Then the modified Poincare length $L_{\gamma}(t)$ is subharmonic on $B$ .

Remark 6.1. (1) If $R(t),$ $t\in B$ is simply connected, then the geodesic
curve $\gamma(t)$ connecting $\xi(t)$ and $\eta(t)$ on $R(t)$ is unique and $l_{\gamma}(t)$ is equal to
the Poincar\’e distance $d(t)$ between $\xi(t)$ and $\eta(t)$ on $R(t)$ . We call $\delta(t)=$

log cosh $d(t)$ , the modified Poincar\’e distance between $\xi(t)$ and $\eta(t)$ on $R(t)$ .
(2) Even if $\gamma$ $:= \bigcup_{t\in B}(t, \gamma(t))$ satisfies the above condition in $\mathcal{R}$ , the vari-

ation $t\in Barrow\gamma(t)\subset R(t)$ does not vary continuously in $\mathcal{R}$ with parameter
$t\in B$ , in general.

The main part of the proof of Theorem 6.1 (togehter with 3. in Lemma
3.1 and Lemma 5.2) is to prove it for the following special $\mathcal{R}$ , say $\mathcal{R}_{0}$ : Let $D$

be an unramified domain over $\mathbb{C}_{z}$ and let $\xi,$
$\eta$ be holomorphic sections of the

product space $B\cross \mathbb{C}_{z}$ over $B$ . Assume that there exists a $C^{\omega}$ smooth strictly
plurisubharmonic function $\psi(t, z)$ on $B\cross D$ such that $\lim_{(t,z)arrow B\cross\partial D}\psi(t, z)>$

$\exists m>0$ and $\hat{\mathcal{R}}_{0}:=\{\psi(t, z)<0\}$ contains $\xi,$
$\eta$ . We put $\hat{\mathcal{R}}_{0}=\bigcup_{t,z}(t,\hat{R}_{0}(t))$

where $\hat{R}_{0}(t)=\{z\in D:\psi(t, z)<0\}$ . For each $t\in B$ consider the connected
component $R_{0}(t)$ of $\hat{R}_{0}(t)$ which contains $\xi(t),$ $\eta(t)$ . Then the special $\mathcal{R}_{0}$ is
defined by $\mathcal{R}_{0}=\bigcup_{t\in B}(t, R_{0}(t))$ (see the shadowed figures in (FII)).

This special case is proved by use of the following fact which is based
on Theorem III in K. Oka [14] (cf: Lemma 2 in T. Nishino [12]): For each
$t\in B$ we construct the universal covering surface $\tilde{R}_{0}(t)$ of $R_{0}(t)$ based on
the point $[\xi(t), l]$ where $l$ is a closed curve starting at $\xi(t)$ and returning to
$\xi(t)$ on $R_{0}(t)$ which is homotopic to $0$ on $R_{0}(t)$ . If we gather them to obtain
$\tilde{\mathcal{R}}_{0}:=\bigcup_{t\in B}(t,\overline{R}_{0}(t))$ , then $\tilde{\mathcal{R}}_{0}$ becomes a two-dimensional Stein manifold.

In [4] and [11] we find some results related to Theorem 6.1.
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Corollary 6.1. Let $\pi$ : $\mathcal{R}arrow S$ be a holomorphic family of compact Riemann
$su$rfaces $R(t)=\pi^{-1}(t)$ over a compact Riemann surface $S$ such that each
$R(t),$ $t\in S$ is irreducible and of genus $\geq 2$ . If $\mathcal{R}$ is not equivalent to the
trivial variation, then there exist no two holomorphic sections $\xi,$

$\eta$ of $\mathcal{R}$ over
$S$ such that we have a continuous curve $\Gamma(t)$ connecting $\xi(t)$ and $\eta(t)$ on $R(t)$

such that $\Gamma=\bigcup_{t\in B}(t, \Gamma(t))(\subset \mathcal{R})$ is homeomorphic to $B\cross\Gamma(t_{0})$ , where $t_{0}$ is
a fixed point in $S$ .

In fact, assume that there exists two distinct holomorphic sections $\xi,$
$\eta$ of

$\mathcal{R}$ over $S$ satisfying the conditions in the corollary. For $t\in S$ we consider the
Poincar\’e geodesic curve $\gamma(t)$ which is homotopic to $\Gamma(t)$ on $R(t)$ . Let $e$ be the
finite point set of $t\in S$ such that $R(t)$ is singular in $\mathcal{R}$ . We put $S’=S\backslash e$ . For
$t\in S^{t}$ , we denote by $L_{\gamma}(t)$ the Poincar\’e modified length of $\gamma(t)$ on $R(t)$ . By
(ii) in Theorem 6.1, $L_{\gamma}(t)$ is subharmonic on $S$‘. Since $S$ is compact, $L_{\gamma}(t)$

is extended to be subharmonic on $S$ , so that $L_{\gamma}(t)$ is constant for $t\in S$ ,
say $L_{\gamma}(t)\equiv a>0$ on $S$ . For each $t\in S$ we consider the universal covering
surface $\tilde{R}(t)$ of $R(t)$ based on the point $o(t)$ $:=[\xi(t), l]$ where $l$ is a closed curve
starting at $\xi(t)$ and returning to $\xi(t)$ on $R(t)$ which is homotopic $0$ , and put
$\eta_{0}(t)=[\eta(t), L(t)]\in\tilde{R}(t)$ , so that $\eta_{0}$ : $t\in Sarrow\eta_{0}(t)\in\tilde{R}(t)$ is a holomorphic
section of $\tilde{\mathcal{R}}$ over $S$ . Then the harmonic span $s(t)$ for $(\tilde{R}(t), 0(t), \eta_{0}(t))$ is
equal to $L_{\gamma}(t)$ , so that $s(t)\equiv a$ on $S$ . We apply 3. in Lemma 5.2 for the
special case $\nu=1$ and obtain $\tilde{\mathcal{R}}\approx S\cross\triangle$ where $\triangle=\{|W|<1\}$ in $\mathbb{C}_{W}$ by a
fiber preserving mapping. This implies without difficulty that $\mathcal{R}\approx S\cross R(t_{0})$ ,
where $t_{0}$ is a fixed point in $S$ . This contradicts with the assumption of the
corollary.

Remark 6.2. (1) As a particular case of Corollary 6.1 we have the follow-
ing: Let $\pi$ : $\mathcal{R}arrow S$ be a holomorphic family of compact Riemann surfaces
$R(t)=\pi$

‘ 1 $(t)$ over a compact Riemann surface $S$ such that each $R(t),$ $t\in S$ is
irreducible, non-singular in $\mathcal{R}$ and of genus $\geq 2$ . Let $\xi$ : $t\in Sarrow\xi(t)\in R(t)$

be a holomorphic section of $\mathcal{R}$ over $S$ and let $D_{\xi}(t)$ be the largest Poincare
disk of center $\xi(t)$ on $R(t)$ for each $t\in S.$ Then there exists no other holo-
morphic section $\eta$ ; $t\in Sarrow\eta(t)\in R(t)$ such that $\eta(t)\in D_{\xi}(t),$ $t\in S$ .

(2) Assertion (1) with the elementary normal family argument immedi-
ately implies the following famous theorem: Let $\pi$ : $\mathcal{R}arrow S$ be the same as
in (1). Then there exists no infinite many holomorphic sections of $\mathcal{R}$ over $S$ .
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