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Abstract

The space $L^{2}(0,1)$ has a natural Riemannian structure on the basis of which we introduce
an $L^{2}(0,1)$-infinite dimensional torus T. We consider the group $\mathcal{G}$ of bijections $G:[0,1]arrow$
$[0,1]$ which preserve Lebesgue measure. We also consider a $c1t\iota s_{\iota}s$ of Hamiltonians defined
on the cotangent bundle of $T$ , invariant under the action of $\mathcal{G}$ . We establish existence of a
viscosity solution for a cell problem on $T$ , that are invariant under the action of $\mathcal{G}$ . We apply
this to the study of one-dimensional nonlinear Vlasov system with periodic potential. (This
is ajoint work with A. Tudorascu [12] $)$ .

1 A Weak KAM theorem on a Hilbert space

Existence of solution of the so-called cell problem in the Hamilton-Jacobi theory remains an
unsolved problem in Hilbert spaces such as $L^{2}(0,1)$ . Motivated by applications in kinetic theory,
we consider a special class of Hamiltonian for which we are able to solve the cell problem. Let
us fix a -periodic function $W\in C^{2}(R):W(z+1)=W(z)$ for all $z\in R$ . We consider the
Hamiltonian and the Lagrangian $H,$ $L:L^{2}(0,1)\cross L^{2}(0,1)arrow R$ are given by

$H(M, N)= \frac{1}{2}\Vert N\Vert_{\nu_{(}}^{2}+\frac{1}{2}\mathcal{W}(M)$ , $L(M, N)= \frac{1}{2}||N||_{\nu_{(}}^{2}-\frac{1}{2}\mathcal{W}(M)$ . (1)

Here, $\nu_{0}$ is the restriction of $\mathcal{L}^{1}$ to $(0,1)$ where $\mathcal{L}^{1}$ , the one-dimensonal Lebesgue measure. We
have set

$\mathcal{W}(M):=\int_{(0,1)^{2}}W(Mz-My)dzdy$ . (2)

We assume that
$W(z)=W(-z)\leq W(O)=0$ . (3)

The requirement that $W$ is symmetric is not restrictive since we may substitute $W$ by its
symmetric part in (2) without altering the definition of $\mathcal{W}$ . The fact that $W(O)=0$ is not
restrictive either since we may siibstitute $W$ by $W-W(O)$ without affecting the analysis below.
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Only the fact that $W$ attains its maximum at $0$ is a restriction which we have imposed to be
able to draw some explicit conclusions.

In this talk we start with a problem which at a first glance looks purely abstract. It is the
following cell problem: fix $c\in R$ . Find $\mathcal{U}(\cdot;c)$ : $L^{2}(0,1)arrow R$ viscosity solution of

$H(M, \nabla_{L^{2}}\mathcal{U}(M;c)+c)=\frac{c^{2}}{2}$ (4)

such that $\mathcal{U}(\cdot;c)$ is Lipschitz and periodic in the sense that

$\mathcal{U}(M+Z;c)=\mathcal{U}(M;c)$

for all $Z\in L_{Z}^{2}(0,1)$ . Here, $L_{Z}^{2}(0,1)$ is the set of $M\in L^{2}(0,1)$ whose ranges are contained in $\mathbb{Z}$ .
We define the $L_{Z}^{2}(0,1)$-torus by

$T:=L^{2}(0,1)/L_{Z}(0,1)$ . (5)

We also impose that $\mathcal{U}(\cdot;c)$ be rearrangement invariant in the sense that

$\mathcal{U}(M_{1};c)=\mathcal{U}(M_{2};c)$

whenever $M_{1},$ $M_{2}\in L^{2}(0,1)$ have the same distribution. What we mean is that

$\nu_{0}[M_{1}^{-1}(B)]=\nu_{0}[M_{2}^{-1}(B)]$

for every interval $B\subset R$ . We recall that in measure theory, if $E$ and $F$ are two topological
spaces and $\nu$ is a Borel measure on $E,$ $M_{\#}\nu$ is the measure on $F$ called the push-forward to $\nu$

by $M$ and defined by
$M_{\#}\nu(A)=\nu(M^{-1}(A))$

for all Borel sets $A\subset F$ . So, $M_{1},$ $M_{2}\in L^{2}(0,1)$ have the same distribution means that $M_{1\#}\nu_{0}=$

$M_{2\#}\nu_{0}$ .
The set of Lispchitz fiinctions $U$ : $L^{2}(0,1)arrow R$ that are rearrangement invariant has been

completely characterized in [12] as those satisfying $U(M\circ G)=U(M)$ for all $M\in L^{2}(0,1)$ and
all $G\in \mathcal{G}$ . Here, $\mathcal{G}$ be the set of bijections $G$ : $[0,1]arrow[0,1]$ such that $G,$ $G^{-1}$ are Borel and
preserve $\mathcal{L}^{1}$ .

In some sense our problem consists in proving existence of viscosity solution of (4) on $T\mathcal{G}$ .
This is an extension of the finite dimensional weak KAM theory [9] [15] [16] [17] to a Hilbert
space.

It is shown [12] that $T\mathcal{G}$ is a compact set for the strong topology inherited from $L^{2}(0,1)$ .
Hence, standard methods of Hamilton-Jacobi theory can be applied to find a solution $\mathcal{U}(\cdot;c)$ of
(4) on $T\mathcal{G}$ . Indeed, for each $\epsilon>0$ one considers the umique solution [5] of

$\epsilon V_{\epsilon}+H(M, \nabla_{L^{2}}\mathcal{V}_{\epsilon}(M;c)+c)=0$. (6)

Since $H$ satisfies the invariance properties

$H(M\circ G, N\circ G)=H(M, N)=H(M+Z, N)$
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for all $M,$ $N\in L^{2}(0,1),$ $G\in \mathcal{G}$ and $Z\in L_{Z}^{2}(0,1)$ , uniqueness of solution in (6) ensures that

$V_{\epsilon}(M+Z;c)=V_{\epsilon}(M;c)=V_{\epsilon}(M\circ G)$ . (7)

In fact the invariance property of $V_{\epsilon}$ can also be established as a simple consequence of the
representation formula:

$V_{\epsilon}(M)$ $:= \inf_{\sigma}\{\mathcal{A}_{\epsilon}(\sigma) : \sigma\in AC_{loc}^{2}(0, \infty;L^{2}(0,1)), \sigma_{0}=M\}$ . (8)

Here,

$L_{c}(M, N)=L(M, N)-c \int_{0}^{1}N(z)dz$, and $\mathcal{A}_{\epsilon}(\sigma)=\int_{0}^{\infty}e^{-\epsilon t}L_{c}(\sigma_{t}, -\dot{\sigma}_{t})dt$ .

Remark 1.1. We have the semigroup property: for each $T>0$

$V_{e}(M)= \inf_{M}\{e^{-cT}V_{e}(M^{*})+W_{T}(M, M^{*})$ : $M\in L^{2}(0,1)\}$ ,

where,

$W_{T}(M, M^{*}):= \inf_{\sigma}\{\int_{0}^{T}L_{c}(\sigma_{t}, -\dot{\sigma}_{t})dt$ : $\sigma_{0}=M,\sigma_{T}=M^{*},\sigma\in AC^{2}(0, T;L^{2}(0,1))\}$ . (9)

Exploiting (1.1), one proves that $V_{\epsilon}$ is Lipschitz, with a Lipschitz constant boumded by
$\kappa_{c}$ , independent of $\epsilon\in(0,1)$ . Hence, it attains its minimum on the compact set $T\mathcal{G}$ . Set
$U_{\epsilon}$ $:=V_{\epsilon}- \min V_{\epsilon}$ . Then $\{U_{\epsilon}\}_{\epsilon\in(0,1)}\subset C(T\mathcal{G})$ is equicontinuous. Since $T/\mathcal{G}$ is a compact set, $11p$

to a subsequence, $\{U_{\epsilon}\}_{\epsilon\in(0,1)}$ uniformly to a fimction $\mathcal{U}(\cdot;c)$ of (4) on $T\prime \mathcal{G}$ . Also, $\{\epsilon V_{\epsilon}\}_{\epsilon\in(01)})$ is
boumded umiforly bounded. Since the Lipschitz constant of $\epsilon V_{\epsilon}$ is bounded by $\epsilon\kappa_{c}$ and $\{\epsilon V_{\epsilon}\}_{\epsilon\in(0,1)}$

is equicontinuous on $T\prime \mathcal{G}$ we conclude that it converges imiformly to a constant $q$ . It is easy
to check that $\{\epsilon V_{\epsilon}(0)\}_{\epsilon\in(0,1)}$ converges to $c^{2}\prime 2$ to conclude that $q=c^{2}\prime 2$ . By the invariance
property (7) we conclude that $\{\epsilon V_{\epsilon}\}_{\epsilon\in(0,1)}$ converges umiformly to $c^{2}2$ on $L^{2}(0,1)$ . We exploit
the semigroup property (1.1) to obtain

$\mathcal{U}(\sigma_{0};c)\leq\int_{0}^{T}L_{c}(\sigma_{t}, -\dot{\sigma}_{t})dt+\mathcal{U}(\sigma_{T};c)+\frac{1}{2}c^{2}T$ (10)

for all $T>0$ and all $\sigma\in H^{1}(0, T;L^{2}(0,1))$ .
Next, we make a delicate statement and refer the reader to [12] for a detailed proof: for each

$M\in L^{2}(0,1)$ monotone nondecreasing there exists a soecalled calibrated curve ’ originating
at $M$, associated to $\mathcal{U}(\cdot;c)$ in the sense that $\sigma^{c}\in H^{2}(0, \infty;L^{2}(0,1)),$ $\sigma_{0}^{c}=M$ and whenever
$T>0$ ,

$\mathcal{U}(M;c)=\int_{0}^{T}L_{c}(\sigma_{t}^{c}, -\dot{\sigma}_{\ell}^{c})dt+\mathcal{U}(\sigma_{T}^{c};c)+\frac{1}{2}c^{2}$ $T$. (11)

By (11) and (10), for each $T>0,$ $\sigma^{c}$ is a minimizer of

$\sigmaarrow \mathcal{A}_{T}(\sigma):=\int_{0}^{T}L_{c}(\sigma_{t}, -\dot{\sigma}_{t})dt$
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over the set of path $\sigma\in H^{1}(0,$ $T;L^{2}(0,1)$ such that $\mathcal{U}(\sigma_{0})=\mathcal{U}(\sigma_{0}^{c})$ and $\mathcal{U}(\sigma_{T})=\mathcal{U}(\sigma_{T}^{c})$ . In
particular, $\sigma^{c}$ is a minimizer of $\mathcal{A}\tau$ over the set of path $\sigma\in H^{1}(0,$ $T;L^{2}(0,1)$ such that $\sigma_{0}=\sigma_{0}^{c}$

and $\sigma_{T}=\sigma_{T}^{c}$ . Thus, $\sigma^{c}$ satisfies the Euler-Lagrange equation

$\ddot{\sigma}_{t}^{c}z=-\int_{I}W’(\sigma_{t}^{c}z-\sigma_{t}^{c}y)dy$ . (12)

Remark 1.2. Assuming that $M$ is monotone nondecreasing is essential for obtaining a calibrated
curve orzginating at M. The detail of the argument can be found in [12].

For each $t\geq 0$ we define a probability measure $f_{t}:=(\sigma_{t}\cross\dot{\sigma}_{t})_{\#}\nu_{0}$ on $R^{2}$ and a probability
measure $\rho_{t}$ $:=(\sigma_{t})_{\#}\nu_{0}$ on $R$ . What we mean is

$\rho_{t}(A)=\nu_{0}(\{z\in[0,1]|\sigma_{t^{Z}}\in A\})$ , $f_{t}(B)=\nu_{0}(\{z\in[0,1]|(\sigma_{t}z,\dot{\sigma}_{t}z)\in B\})$ (13)

for $A\subset R$ and $B\subset R^{2}$ Borel sets. If we denote the first projection of $R^{2}$ onto $R$ by $\pi_{1}(x, v)=x$

then $\pi_{1\#}f_{t}=\rho_{t}$ . We say that $\rho_{t}$ is the first marginal of $f_{t}$ .
Thanks to (12) $f$ satisfies the Vlasov system

$\{\begin{array}{l}\partial_{t}f_{t}+v\partial_{x}f_{t}=\partial_{x}P_{t}\partial_{v}f_{t}\rho_{t}(x)=\pi_{1\#}f_{t}P_{t}(x)=\int_{R}V(x-\overline{x})d\rho_{t}(x).\end{array}$ (14)

The first equation in (14) has to be understood in the sense of distribution. Note that (14) is
an infinite dimensional Hamiltonian system on the Wasserstein space [1] [10]. The Hamiltonian
is given by

$\mathcal{H}(f):=\int_{R^{2}}[\frac{v^{2}}{2}+\frac{1}{2}\int_{R^{2}}W(x-y)df(y,w)]df(x, v)$ .

There is a Hamiltonian vector field $X_{\mathcal{H}}[10]$ such that (14) is equivalent to $\dot{f}=X_{\mathcal{H}}(f)$ .
We can now state the main theorem of this talk.

Theorem 1.3. Let $c\in R.$ Then for each $M\in L^{2}(0,1)$ monotone nondecrpasing there exists
$N\in L^{2}(0,1)$ such that for $\overline{f}:=(M\cross N)_{\#}\nu_{0}(14)$ admits a solution $f$ satisfying $f_{0}=\overline{f}_{\dagger}$

$\lim_{tarrow\infty}\int_{R^{2}}|v+c|^{2}df_{t}(x, v)=0$ , $S11t>0pt\int_{R^{2}}|\frac{x}{t}+c|^{2}df_{t}(x, v)<\infty$ .

Proof: We use (11) and the fact that $\mathcal{W}\leq 0$ to obtain that for each $T>0$ ,

$2 \mathcal{U}(M;c)-2\mathcal{U}(\sigma_{T}^{c}; c)=\int_{0}^{T}[\int_{R^{2}}|v+c|^{2}df_{t}(x,v)-\mathcal{W}(\sigma_{t})]dt\geq\int_{0}^{T}\int_{R^{2}}|v+c|^{2}df_{t}(x, v)dt(15)$

Set
$u(t)$ $:= \int_{R^{2}}|v+c|^{2}df_{t}(x, v)$ .

As a Lipschitz function on $T\prime \mathcal{G},$ $\mathcal{U}$ is continuous there. Since $T\prime \mathcal{G}$ is a compact set, we obtain
that $\mathcal{U}$ is bounded and so, by (15), $u\in L^{1}(0, \infty)$ . But,

$u’(t)= \int_{0}^{1}\ddot{\sigma}_{t}^{c}(z)(\dot{\sigma}_{t}^{c}(z)+c)dz$
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We use (12) and the fact that $W$‘ is bounded to conclude that

$\sup_{t>0}||\ddot{\sigma}_{t}^{c}||_{L^{\infty}(0,1)}<\infty$. (16)

Conservation of the Hamiltonian $H$ along the path $\sigma^{c}$ yields

$||\dot{\sigma}_{t}^{c}||_{L^{2}(0,1)}^{2}+\mathcal{W}(\sigma_{t}^{c})=||N||_{L^{2}(0,1)}^{2}+\mathcal{W}(M)$ .

Since $\mathcal{W}$ is bounded, we conclude that

$\overline{e}:=\sup_{t>0}||\dot{\sigma}_{t}^{c}||_{L^{2}(0,1)}<\infty$ . (17)

We use (16) and (17) to conclude that $u’\in L^{\infty}(R)$ . This, together with the fact that $u\in$

$L^{1}(0, \infty)$ yields $\lim_{tarrow\infty}u(t)=0$ , which is the first assertion of the theorem.
Next,

$|| \sigma_{t}^{c}-\sigma_{0}^{c}+ct||_{L^{2}(0,1)}=\Vert\int_{0}^{t}(\dot{\sigma}_{s}^{c}+c)ds\Vert_{L^{2}(0,1)}\leq\int_{0}^{t}||\dot{\sigma}_{s}^{c}+c||_{L^{2}(0,1)}ds\leq\sqrt{t}\sqrt{\int_{0}^{t}||\sigma_{s}^{c}+c||_{L^{2}(0,1)}^{2}ds}$

and so,

$||\sigma_{t}^{c}-\sigma_{0}^{c}+ct||_{L^{2}(0,1)}\leq\sqrt{t}\sqrt{\int_{0}^{t}u(s)ds}\leq\sqrt{t}||u||_{L^{1}(0,\infty)}^{1\prime 2}$

This, together with the fact that

$\sqrt{\int_{R^{2}}|x+ct|^{2}df_{t}(x,v)}=||\sigma_{t}^{c}+ct||_{L^{2}(0,1)}\leq||\sigma_{t}^{c}-\sigma_{0}^{c}+ct||_{L^{2}(0,1)}+||\sigma_{0}^{c}||_{L^{2}(0,1)}$,

yields the proof. QED.

Remark 1.4. In the jargon of the weak $KAM$ theory, we have proven that for each $c\in R$ and
each $M\in L^{2}(0,1)$ monotone nondecreasing, there exist $N\in L^{2}(0,1)$ and a path $tarrow f_{t}$ starting
at $(M\cross N)_{\#}\nu_{0}$ , satisfying $f=X_{?t}(f)$ and of rotation number $c$ .

We have chosen the Vlasov system as a simple model to illustrate the use of the weak
KAM theory for understanding qualitative behavior of PDEs, for several reasons. Firstly, they
provide a simple link between finite and infinite dimensional systems. Secondly, they are one
of the most frequently used kinetic models in statistical mechanics. Existence and uniqueness
of global solutions for the initial valiie problem are well understood [3] [8]. In this paper we
have searched for special solutions which allow for a connection with a more conventional way
of regarding (14) as Hamiltonian. We assume the initial data to be of the form $f_{0}=(M, N)_{\#}\nu_{0}$

where $M,$ $N\in L^{2}(X)$ so that the unique solution of (14) retains the same structure.
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2 Appendix; Basic facts

Definition 2.1. Let $V$ be a real valued proper functional defined on $L^{2}(0,1)$ with values in $R\cup$

$\{\pm\infty\}$ . Let $M_{0}\in L^{2}(0,1)$ and $\xi\in L^{2}(0,1)$ . We say that $\xi$ belongs to the (Fr\’echet) subdifferential
of $V$ at $M_{0}$ and we write $\xi\in\partial.V(M_{0})$ if

$V(M)-V(M_{0})\geq\langle\xi,$ $M-M_{0}\}+o(\Vert M-M_{0}\Vert)$

for all $M\in L^{(}0,1$ ).
We say that $\xi$ belongs to the superdifferential of $V$ at $M_{0}$ and we write $\xi\in\partial\cdot V(M_{0})if-\xi\in$

$\partial.(-V)(M_{0})$ .

Remark 2.2. As $e\varphi ecte,d$, when the sets $\partial.V(M_{0})$ and $\partial\cdot V(M_{0})$ are both nonempty, then they
coincide and consist of a single element. That element is the $L^{2}$ -gradient of $V$ at $M_{0}$ , denoted
by $\nabla_{L^{2}}V(M_{0})$ .

We can now define [5] the notion of viscosity solution for a general Hamilton-Jacobi equation
of the type

$F(M, \nabla_{L^{2}}U(M))=0$ . $(HJ)$

Definition 2.3. Let $V:L^{2}(0,1)arrow R$ be continuous.
(i) We say that $V$ is $a$ viscosity subsolution for $(HJ)$ if

$F(M, \zeta)\leq 0$ for all $M\in L^{2}(0,1)$ and all $\zeta\in\partial\cdot V(M)$ . (18)

(ii) We say that $V$ is $a$ viscosity supersolution for $(HJ)$ if
$F(M,\zeta)\geq 0$ for all $M\in L^{2}(0,1)$ and all $\zeta\in\partial.V(M)$ . (19)

(iii) We say that $V$ is $a$ viscosity solution for $(HJ)ifV$ is both a subsolution and a supersolution
for $(HJ)$ .

Remark 2.4. If $U$ is a Viscosity solution, then, in view of remark 2.2, we deduce that $(HJ)$ is
satisfied at all $M\in L^{2}(0,1)$ . where $\partial.U(M)\cap\partial\cdot U(M)\neq\emptyset$ , which are precisely the points where
$U$ is differentiable.
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