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Abstract

We study the optimal execution problem in the market model in consideration of
market impact as a regular stochastic control problem. We focus on mathematical
formulation and characterization as the viscosity solution of the corresponding non-
linear partial differential equation (so-called HJB.) First we introduce the outline of
the theory of an optimal portfolio management problem and liquidity problems which
are both important in mathematical finance. Then we formulate our optimal execu-
tion problem as the discrete-time model and describe the value function with respect
to a trader’s optimization problem. By shortening the intervals of execution times,
we derive the value function of the continuous-time model and then we study some
properties of them. We show that the properties of the continuous-time value function
vary by the strength of market impact. Moreover we introduce some examples of this
model, which tell us that the forms of the optimal execution strategies entirely change
according to the amount of the security holdings.

1 Introduction
The optimal portfolio management problem in mathematical finance has been developed in
[25], [26] and in other papers. They considered the problem such that how does a trader
(or an investor) manage his’her portfolio of financial assets in the market to make his’her
future wealth large. Such a problem is often considered as some stochastic control problem
in continuous-time model. This is because the theory of stochastic calculus and stochastic
differential equations (SDE) are suitable for describing fluctuations of prices of financial
assets. Although a trader in the real market cannot trade continuously, considering the
continuous-time market model is important to get some findings of theoretically appropriate
trading policies and essence of portfolio selection problem. Discrete-time model is closer to
the settings in the real market, and there are many trivial and noisy things which make
the problem confused. So we consider the derivation of the continuous-time model from
the discrete-time model by limit transition, and in some cases the derived model makes the
situations clear.

The most significant and basic result of [25] and [26] is that in standard continuous-time
market model the optimal trading strategy is to fix the portfolio ratio equal to some constant
proportion (so-called the Merton proportion) under some ideal conditions. Later we review
the outline of them. These classical financial theories assumed that the assets in the market
are perfectly liquid. But in the real market we face various liquidity risks. One of liquidity
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problems is market impact (MI), that is the effect of the investment behavior of traders on
security prices. Such problems are often discussed in the framework of the optimal execution
problems, where a trader has a certain amount of security holdings (shares of a security held)
and tries to execute until the time horizon.

Recently there have been various studies made about the optimization problem with MI,
but the standard framework has not been fixed yet. In this paper, we try to construct the
framework of such a model. We formulate the optimal execution problem in discrete-time
model first, and then derive the continuous-time model by taking the limit. By doing so, we
may see the essence of liquidity problems, especially MI.

This paper is organized by an introduction of standard optimal portfolio management
problem and the summary of $[18]-[21]$ and [15]. Section 2 is an overview of an optimal invest-
ment problem and the Merton problem. The Merton problem is the basic of optimization
problems in mathematical finance, but more realistic problems like liquidity problems are
abstracted. Section 3 refers to recent studies of liquidity problems and introduce the map-
ping of this paper. In Section 4 we introduce our model. We formulate mathematically a
trader’s optimization problem in discrete-time model, and give some assumptions to derive
the continuous-time model. In Section 5 we give our main results. We show that value func-
tions in discrete-time model converge to the one in continuous-time model. Then we study
some properties of the continuous-time value function : continuity, semi-group property and
the characterization as the viscosity solution of Hamilton-Jacobi-Bellman equation (HJB.)
Moreover we have the uniqueness result of the viscosity solution of HJB when MI is strong
(in some meanings to be discussed later.) In Section 6 we also consider the case that a trader
needs to sell up entire shares of the security. We show that such a sell-out condition does
not influence the form of continuous-time value function in our model. Section 7 treats the
model of MI with noise as an extension. In Section 8 we treat some examples of our model.
We conclude this paper in Section 9. Almost all proofs are omitted, but you can refer to
[18] and [15]. As the exception, Section 10 refers rough proofs of some results related with
viscosity solutions.

2 Outline of Optimal Investment Problems
In this section we go back to the classical theory of an optimal investment problem, which
is important and fundamental in mathematical finance. As I mentioned first, such a theory
was basically constructed in [25] and [26] and the model considered in them is called “Merton
theory” or “Merton problem.”

The real market consists of many financial assets, but to make the point simple the model
which we consider in this paper is assumed to consist of only 2 assets : the one is a risk-free
asset (namely cash) and the other one is a risky asset (namely a security.) The price of cash
is always equal to 1, which means that a risk-free rate is equal to zero. The price of a security
fluctuates stochastically. To describe uncertainty, we prepare a (complete) stochastic basis
(a filtered probability space which satisfies usual conditions, see [16]) $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{0\leq t\leq T}, P)$

for $T>0$ and fix it.
We consider a single trader (or investor) who has an initial endowment $w_{0}\geq 0$ as cash

at $t=0$ (initial time.) His$/her$ purpose is to enlarge the wealth at the time horizon $t=T$
by repeating buying and selling the security. But he$/she$ does not know the future price of
the security, so he$/she$ cannot maximize the value of terminal wealth itself.
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As a tool for measuring the (happiness” of uncertain future wealth, we often use the
expected utility of a trader. This is defined as the function of the form $E[u(W_{T})]$ , where
$W_{T}=W_{T}(\omega)$ is a trader’s wealth at the time horizon $T$ , which is given as an $\mathcal{F}_{T}$-measurable
random variable, and $u:\mathbb{R}arrow \mathbb{R}$ is a deterministic function. By mathematical reason, we
need some moment condition such that $E[|u(W_{T})|]<\infty$ .

Let $x_{t}$ (respectively, $\varphi_{t}$ ) be an amount of cash holdings (respectively, security holdings) of
a trader at time $t$ . Moreover let $S_{t}$ be a price of the security at time $t$ . Since we do not know
the price $S_{t}$ until time $t$ , the stochastic process $(S_{t})_{t}$ should be assumed to be $(\mathcal{F}_{t})_{t}$-adapted.
If we do not consider the liquidity problem, that is, a trader can buy and sell the security
of any volume and at any time, then a trader’s wealth. $W_{t}$ at time $t$ is given by the sum of
cash holdings and the value of the security held i.e. $W_{t}=x_{t}+\varphi_{t}S_{t}$ . A trader’s problem
is to select an appropriate trading strategy $(x_{t}, \varphi_{t})_{0\leq t\leq T}$ with given initial values $(x_{0}, \varphi_{0})$ to
maximize $E[u(W_{T})]$ .

The fluctuation of the process of the security price is often represented by the stochastic
process of Ito-type. Usually a security price should take positive value at any time, we often
consider the (real valued) log-price process $(X_{t})_{t}$ first and then define $S_{t}=\exp(X_{t})$ . We
assume that $(X_{t})_{t}$ is a solution of the following SDE

$dX_{t}=\mu_{t}dt+\sigma_{t}dB_{t}$ , $X_{0}=\log s_{0}$ ,

where $(\mu_{t})_{t}$ and $(\sigma_{t})_{t}$ are $(\mathcal{F}_{t})_{t}$-progressively measurable process such that

$\int_{0}^{T}(|\mu_{t}|+|\sigma_{t}|^{2})dt<\infty$ a.s.

and $(B_{t})_{t}$ is an $(\mathcal{F}_{t})_{t}$-Brownian motion. Here $s_{0}>0$ is the initial price of the security. Then
Ito’s formula implies that $(S_{t})_{t}$ satisfies the following SDE

$dS_{t}=S_{t}(\tilde{\mu}_{t}dt+\sigma_{t}dB_{t})$ ,

where $\tilde{\mu}_{t}=\mu_{t}+\frac{1}{2}\sigma_{t}^{2}$ .
Now we give the meaningful class of a trader’s trading strategies. An $(\mathcal{F}_{t})_{t}$ -progressively

measurable stochastic process $(x_{t}, \varphi_{t})_{t}$ is called an admissible strategy if and only if both

$\int_{0}^{T}(|\varphi_{t}S_{t}\tilde{\mu}_{t}|+|\varphi_{t}S_{t}\sigma_{t}|^{2})dt<\infty$ a.s. (2.1)

and

$dW_{t}=\varphi_{t}dS_{t}$ (2.2)

hold (we recall that $W_{t}=x_{t}+\varphi_{t}S_{t}.$ ) The equality (2.2) is called the “self-financing condi-
tion.” This means that a trader’s wealth does not change other than investing a security.

When the market is fully liquid, it is convenient to consider a weight (proportion) process
of investing a security as a trading strategy instead of $(x_{t}, \varphi_{t})_{t}$ . Their relation is described
as

$\pi_{t}=\frac{\varphi_{t}S_{t}}{x_{t}+\varphi_{t}S_{t}}=1-\frac{x_{t}}{W_{t}}$ .
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Then (2.2) is rewritten as

$\frac{dW_{t}}{W_{t}}=\pi_{t}\frac{dS_{t}}{S_{t}}$ .

As a substitute of (2.1), we assume the following condition

$\int_{0}^{T}(|\pi_{t}\tilde{\mu}_{t}|+|\pi_{t}\sigma_{t}|^{2})dt<\infty a.s$ .

We denote $W_{t}^{\pi}$ when we shall emphasize that the wealth process is given by the strategy
$(\pi_{t})_{t}$ . A trading strategy which satisfies the condition above is called an admissible strategy.
Here we also assume that an admissible strategy satisfies $\pi_{t}\in[0,1]$ for all $t$ , which means
that a trader does not short a security and borrow money.

Our problem is to find an optimal strategy $(\pi_{t}^{*})_{t}$ such that

$V(x_{0}, \varphi 0;u)=E[u(W_{T}^{\pi^{*}})]=\sup_{(\pi_{t})_{t}:admissible}E[u(W_{T}^{\pi})]$ .

Here we notice that if $x_{0}+\varphi_{0}s_{0}=\tilde{x}_{0}+\tilde{\varphi}_{0}s_{0}$ , it follows that

$V(x_{0}, \varphi_{0};u)=V(\tilde{x}_{0},\tilde{\varphi}_{0};u)$ ,

thus we can replace our problem with $\hat{V}(w;u)=V(x_{0}, \varphi_{0};u)$ with $w=x_{0}+\varphi_{0}s_{0}$ . The
solution of such a problem is given under wide assumptions by many papers (see [17].)
Typically, when $\tilde{\mu}_{t}\equiv\mu$ and $\sigma_{t}\equiv\sigma$ are positive constants which satisfy $\mu<\sigma^{2}$ and the
utility function is given by $u(w)=\log w$ ($\log$ utility,) we have the following theorem (we call
the optimization problem under these settings the Merton problem.)

Theorem 1. $\hat{V}(w;u)=\log w+\frac{l^{\iota^{2}T}}{2\sigma^{2}}$ holds and an optimal strategy is given by $\pi_{t}^{*}\equiv\frac{\mu}{\sigma^{2}}$ .

This theorem implies that an optimal strategy in this case is to keep the portfolio ratio
equal to the constant $\frac{\mu}{\sigma^{2}}$ , which is called a Merton proportion. This is one of the most
fundamental results in mathematical finance and dynamic portfolio management problem.

To prove Theorem 1, there are roughly divided into two approaches: “a PDE approach”
and “a martingale approach.”

Roughly saying, a martingale approach is the method to solve the problem by changing
the probability measure to let the wealth process a martingale and by using the martingale
representation theorem (Theorem 2.7.2 in [27].) For details of a martingale approach, see
[9], [10], [11] and [17]. A martingale approach is useful to solve the optimization problem
for various forms of utility functions without the assumption that a security price follows a
Markov process, but we need some idea to apply for liquidity problems (for an example of
applying a martingale approach to the problem of transaction costs, see [6]. $)$

In this paper we mainly use a PDE approach. In this approach, we generalize the
function $\hat{V}(w;u)$ to a “value function” $V_{t}(w;u)$ which is the function defined as the same as
$\hat{V}(w;u)$ replacing $[0, T]$ with $[0, t]$ . This definition differs a little from the one in the standard
arguments, especially the direction of a time scale is opposite, but this makes no essential
problem. Then we characterize the value function as a solution of a certain partial differential
equation (PDE.) Such a PDE is often called the Hamilton-Jacobi-Bellman equation (HJB.)
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By solving HJB, we can derive the explicit form of the value function and deduce an optimal
strategy. But HJB often has a non-linear form and usually it is difficult to see the smoothness
of the value function, so applying the classical theory of PDE is a little hard. To consider
such a (second order) non-linear PDE, the theory of viscosity solutions was established.
This theory is congenial to our optimization problem and also be applicable for liquidity
problems. In this section we only introduce the outline of how to apply the PDE approach
to the Merton problem intuitively.

We define the value function as

$V_{t}(w;u)=$ $\sup$ $E[u(W_{t}^{\pi})]$ , $t\in(0, T]$

$(\pi_{r})_{0\leq r\leq t}$ : admissible

and $V_{0}(w;u)=u(w)$ . As you can see, it holds that $V_{T}(w;u)=\hat{V}(w;u)$ . Then we can show
the following semi-group property (or the Bellman principle) :

$V_{t+r}(w;u)=V_{t}(w;V_{r}(\cdot;u))$ , $0\leq r,$ $t$ with $t+r\leq T$ . (2.3)

For the proof of this property, see [24], [27] or [28]. Later we will see the similar property
for our optimal execution problem by using Nishio’s method in [28].

If we show (2.3), then we can derive the corresponding HJB intuitively by the following

way. Let $\epsilon>0$ be a small number and let $(\pi_{r}^{*})_{r}$ be an optimal strategy for $V_{\epsilon}(w;V_{t}(\cdot;u))$ .
By (2.3), we have

$V_{t+\epsilon}(w;u)-V_{t}(w;u)=E[V_{t}(W_{\epsilon}^{\pi}.;u)-V_{t}(w;u)]$ .

If we assume that the value function is smooth with respect to $t$ and $w$ , then we can apply
Ito’s formula and we get for any admissible strategy $(\pi_{r})_{r}$

$V_{t}(W_{\epsilon}^{\pi};u)-V_{t}(w;u)= \int_{0}^{\epsilon}\frac{\partial}{\partial w}V_{t}(W_{r}^{\pi};u)dW_{r}^{\pi}+\int_{0}^{\epsilon}\frac{1}{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(W_{r}^{\pi};u)d\langle W^{\pi}\}_{r}$

$=$ $\int_{0}^{\epsilon}\{\mu\pi_{r}W_{r}^{\pi}\frac{\partial}{\partial w}V_{t}(W_{r}^{\pi};u)+\frac{\sigma^{2}}{2}(\pi_{r}W_{r}^{\pi})^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(W_{r}^{\pi};u)\}dr+\int_{0}^{\epsilon}\sigma W_{r}^{\pi}\frac{\partial}{\partial w}V_{t}(W_{r}^{\pi};u)dB_{r}$,

(2.4)

thus

$E[V_{t}(W_{\epsilon}^{\pi^{*}};u)-V_{t}(w;u)]\geq\int_{0}^{\epsilon}E[\mu\pi_{r}W_{r}^{\pi}\frac{\partial}{\partial w}V_{t}(W_{r}^{\pi};u)+\frac{\sigma^{2}}{2}(\pi_{r}W_{r}^{\pi})^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(W_{r}^{\pi};u)]dr$

under suitable moment conditions which make the last term in the right-hand side of (2.4)
a martingale. Dividing by $\epsilon$ and letting $\epsilonarrow 0$ , we get

$\frac{\partial}{\partial t}V_{t}(w;u)\geq\mu\pi_{0}w\frac{\partial}{\partial w}V_{t}(w;u)+\frac{\sigma^{2}}{2}\pi_{0}^{2}w^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(w;u)$ .

Since $(\pi_{r})_{r}$ is arbitrary, we obtain

$\frac{\partial}{\partial t}V_{t}(w;u)\geq\sup_{\theta\in[0,1]}\{\mu\theta w\frac{\partial}{\partial w}V_{t}(w;u)+\frac{\sigma^{2}}{2}\theta^{2}w^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(w;u)\}$ . (2.5)
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On the other hand, if we take $(\pi_{r})_{r}$ equal to $(\pi_{r}^{*})_{r}$ in (2.4), the same calculation gives us

$\frac{\partial}{\partial t}V_{t}(w;u)$ $= \mu\pi_{0}^{*}w\frac{\partial}{\partial w}V_{t}(w;u)+\frac{\sigma^{2}}{2}(\pi_{0}^{*})^{2}w^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(w;u)$

$\leq$ $\sup_{\theta\in[0,1]}\{\mu\theta w\frac{\partial}{\partial w}V_{t}(w;u)+\frac{\sigma^{2}}{2}\theta^{2}w^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(w;u)\}$ . (2.6)

By (2.5) and (2.6), we get the following HJB

$\frac{\partial}{\partial t}V_{t}(w;u)-\sup_{\theta\in[0,1]}\{\mu\theta w\frac{\partial}{\partial w}V_{t}(w;u)+\frac{\sigma^{2}}{2}\theta^{2}w^{2}\frac{\partial^{2}}{\partial w^{2}}V_{t}(w;u)\}=0$ . (2.7)

Of course the above discussion is not strict. In many cases it is hard to prove the differ-
entiability of the value function. The existence of an optimal strategy is not guaranteed.
Moreover HJB has the form of non-linear PDE and sometimes we suffer from handling. So
we consider viscosity solutions of HJB instead of classical solutions.

A viscosity solution is one of weak solutions of differential equations and is suitable
for considering non-linear PDE. As the end of this section, we introduce the definition of
viscosity solutions of HJB (2.7).

Definition 1. The continuous function $v$ : $(0, T]\cross(0, \infty)arrow \mathbb{R}$ is called a viscosity
subsolution (respectively, supersolution) of (2.7) if there is a smooth function $\hat{v}\in C^{1,2}((0, T]\cross$

$(0, \infty))$ such that $v-\hat{v}$ has a local maximum (respectively, minimum) at $(\overline{t},\overline{w})f$ then it holds
that

$\frac{\partial}{\partial t}\hat{v}(\overline{t},\overline{w})-\sup_{\theta\in[0,1]}\{\mu\theta\overline{w}\frac{\partial}{\partial w}\hat{v}(\overline{t},\overline{w})+\frac{\sigma^{2}}{2}\theta^{2}\overline{w}^{2}\frac{\partial^{2}}{\partial w^{2}}\hat{v}(\overline{t}_{7}\overline{w})\}\leq 0$ (respectively, $\geq 0$).

Moreover $v$ is called a viscosity solution if $v$ is both viscosity subsolution and supersolution.

It is easy to see that a classical solution is a viscosity solution. So the definition of
viscosity solutions gives an extension of the one of classical solutions. Moreover, in fact
we can prove the uniqueness of viscosity solutions of (2.7). Thus, if we find a classical or
viscosity solution $v(t, w)$ of (2.7) with $v(O, w)=u(w)$ , then it is equal to the value function
$V_{t}(w;u)$ . We can check easily that $\hat{V}_{t}(w;u)=\log w+\frac{\mu^{2}}{2\sigma^{2}}t$ is a classical solution of (2.7)
when $u(w)=\log w$ and this gives the explicit form of the value function.

For more details of viscosity solution theory, see [5], [23] and [27].

3 Liquidity Problems and Market Impact
The Merton problem is based on the ideal market where there is no liquidity problem. So a
trader can buy or sell a security at his/her will when the market is favorite. To follow the
Merton’s optimal strategy (that is to keep the portfolio ratio equals to $\frac{\mu}{\sigma^{2}},$ ) he she needs
to trade continuously. But the continuous trading is unrealistic. In the real market any
trading generates transaction costs. Moreover a trader may not complete the transaction
satisfactorily (uncertainty of trading time.) Considering such realistic problems, the Merton’s
optimal strategy is no longer optimal.
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Another important liquidity problem and our main interest of this paper is market impact
(MI.) MI makes a problem when we consider especially the optimal execution problem rather
than investment problem. If a trader face a situation where he$/she$ must sell (execute) the
shares of a security, then MI may bring the serious shrink of proceeds of execution. So it is
important to consider the optimal execution problem with MI.

[2] and [4] studied the optimal execution problem in the discrete-time market model with
MI, and computed the optimal execution strategy explicitly in the linear MI model. [12], [30],
and [31] studied the optimization problem with MI in continuous-time model as the singular
/impulse control. [8] studied such problems in the framework for mean-variance analyses.
[29] treated the infinite time horizon. case. Also studied was the optimal execution problem
in limit order book market ([1]). [22] studied the optimal execution problem with temporary
market impact and bid-ask spread cost as an impulse control problem and characterized
the value function as a constrained viscosity solution for the corresponding quasi-variational
inequality.

As mentioned above, there have been various approaches to consider an optimal execution
problem and the effect of MI. The purpose of this paper is to construct the framework of such
a problem as a standard model. To construct a model, discrete-time model is significant to
describe the realistic phenomenon exactly, but sometimes it is hard to get the clean model by
complex noises. On the other hand continuous-time model often makes problems clear, but
the abrupt construction of continuous-time model may overlook the essence of the problems.
So first we consider the discrete-time model of an optimal execution problem with MI and
then derive the continuous-time model as their limit.

We consider the case when MI function is convex with respect to the execution volume
of a trader, whereas some empirical studies tell us that MI function is concave ([3] etc.)
But [7] pointed out that (much of this variation comes about because these studies actually
measure different things. Some of them measure the market impact of a single trade made
in an order book, some measure the aggregate impact of sequential trades in an order book,
some of them measure block trades, and many of them measure a mixture of all three.”
They asserted that these are analyzed separately. The MI function which we define in the
next section is the one of a single trade, not the aggregate one. Moreover it is important to
consider the case when MI is convex, and it is interesting that we can observe the very effect
of MI which affects the trader’s execution policy.

4 The Model
In this section we present the details of the model. Let $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{0\leq t\leq T}, P)$ be a stochastic
basis and let $(B_{t})_{0\leq t\leq T}$ be a standard one-dimensional $(\mathcal{F}_{t})_{t}$ -Brownian motion. Here $T>0$
means the time horizon. For brevity we assume $T=1$ .

Recall that we only consider the market which consists of one risk-free asset (namely
cash) and one risky asset (namely a security.) The price of cash is always equal to 1, and
the price of a security fluctuates according to a certain stochastic flow, and is influenced by
sales of a trader.

First we consider the discrete-time model with time interval $1/n$ . We consider a single
trader who has an endowment $\Phi_{0}>0$ shares of a security. This trader executes the shares
$\Phi_{0}$ over a time interval $[0,1]$ , but his$/her$ sales affect the prices of a security. We assume
that the trader executes only at time $0,1/n,$ $\ldots,$ $(n-1)/n$ .
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Now we describe the effect of the trader’s execution. For $l=0,$ $\ldots,$
$n$ , we denote by $S_{l}^{n}$ the

price of the security at time $l/n$ and $X_{l}^{n}=\log S_{l}^{n}$ . Let $s_{0}>0$ be an initial price $(i.e. S_{0}^{n}=s_{0})$

and $X_{0}^{n}=\log s_{0}$ . If the trader sells the amount $\psi_{l}^{n}$ at time $l/n$ , the log-price changes to
$X_{l}^{n}-g_{n}(\psi_{l}^{n})$ , where $g_{n}$ : $[0, \infty)arrow[0_{i}\infty)$ is a non-decreasing and continuously differentiable
function which satisfies $g_{n}(0)=0$ , and he$/she$ gets the amount of cash $\psi_{l}^{n}S_{l}^{n}\exp(-g_{n}(\psi_{l}^{n}))$

as proceeds of the execution.
After the trading at time $l/n,$ $X_{l+1}^{n}$ and $S_{l+1}^{n}$ are given by

$X_{l+1}^{n}=Y( \frac{l+1}{n};\frac{l}{n}iX_{l}^{n}-g_{n}(\psi_{l}^{n}))$ , $S_{l+1}^{n}=\exp(X_{l+1}^{n})$ , (4.1)

where $Y(t;r, x)$ is the solution of the following SDE

$\{\begin{array}{l}dY(t;r, x)=\sigma(Y(t;r, x))dB_{t}+b(Y(t;r, x))dt, t\geq r,Y(r;r, x)=x\end{array}$ (4.2)

and $b,$ $\sigma$ : $\mathbb{R}arrow \mathbb{R}$ are Borel functions. We assume that $b$ and $\sigma$ are bounded and Lipschitz
continuous. Then for each $r\geq 0$ and $x\in \mathbb{R}$ there exists a unique solution of (4.2).

At the end of the time interval $[0,1]$ , The trader has the amount of cash $W_{n}^{n}$ and the
amount of the security $\varphi_{n}^{n}$ , where

$W_{l+1}^{n}=W_{l}^{n}+\psi_{l}^{n}S_{\iota^{n}}\exp(-g_{n}(\psi_{l}^{n}))i$ $\varphi_{l+1}^{n}=\varphi_{l}^{n}-\psi_{l}^{n}$ (4.3)

for $l=0,$ $\ldots,$ $n-1$ and $W_{0}^{n}=0,$ $\varphi_{0}^{n}=\Phi_{0}$ . We say that an execution strategy $(\psi_{l}^{n})_{l=0}^{n-1}$ is
admissible if $(\psi_{l}^{n})_{l}\in \mathcal{A}_{m}^{n}(\Phi_{0})$ holds, where $\mathcal{A}_{k}^{n}(\varphi)$ is the set of strategies $(\psi_{l}^{n})_{l=0}^{k-1}$ such that

$\psi_{l}^{n}$ is $\mathcal{F}_{l’ n}$-measurable, $\psi_{l}^{n}\geq 0$ for each $l=0,$ $\ldots,$ $k-1$ , and $\sum_{l=0}^{k-1}\psi_{l}^{n}\leq\varphi$ .

A trader whose execution strategy is in $\mathcal{A}_{n}^{n}(\Phi_{0})$ is permitted to leave the unsold shares
of the security, and there will be no penalty if $he/she$ cannot finish the liquidation until the
time horizon. In Section 6, we consider the case when a trader must finish the liquidation.

The investor’s problem is to choose an admissible strategy to maximize the expected
utility $E[u(W_{n}^{n}, \varphi_{n}^{n}, S_{n}^{n})]$ , where $u\in C$ is his$/her$ utility function and $C$ is the set of non-
decreasing, non-negative and continuous functions on $D=\mathbb{R}\cross[0, \Phi_{0}]\cross[0, \infty)$ such that

$u(w, \varphi, s)\leq C_{u}(1+w^{m_{u}}+s^{m_{u}})$ , $(w, \varphi, s)\in D$ (4.4)

for some constants $C_{u}>0$ and $m_{u}\in \mathbb{N}$ .
For $k=1,$ $\ldots,$ $n,$ $(w, \varphi, s)\in D$ and $u\in C$ , we define the (discrete-time) value function

$V_{k}^{n}(w, \varphi, s;u)$ by

$V_{k}^{n}(w, \varphi, s;u)=\sup_{(\psi_{l}^{n})_{l=0}^{k-1}\in \mathcal{A}_{k}^{n}(\varphi)}E[u(W_{k}^{n}, \varphi_{k}^{n}, S_{k}^{n})]$

subject to (4.1) and (4.3) for $l=0,$ $\ldots,$ $k-1$ and $(W_{0}^{n}, \varphi_{0}^{n}, S_{0}^{n})=(w, \varphi, s)$ . (For $s=0$ , we
set $S_{l}^{n}\equiv 0.)$ For $k=0$ , we denote $V_{0}^{n}(w, \varphi, s;u)=u(w, \varphi, s)$ . Then our problem is the same
as $V_{n}^{n}(0, \Phi_{0}, s_{0};u)$ . We consider the limit of the value function $V_{k}^{n}(w, \varphi, s;u)$ as $narrow\infty$ .

Let $h$ : $[0, \infty)arrow[0, \infty)$ be a non-decreasing continuous function. We introduce the
following condition.
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$[A] \lim_{narrow\infty_{\psi}}\sup_{\in[0,\Phi_{0}]}|\frac{d}{d\psi}g_{n}(\psi)-h(n\psi)|=0$ .

Let $g( \zeta)=\int_{0}^{\zeta}h(\zeta’)d\zeta’$ for $\zeta\in[0, \infty)$ . Under the condition $[A]$ , we see that $\epsilon_{n}arrow 0$ ,

where

$\epsilon_{n}=\sup_{\psi\in(0,\Phi_{0}]}|\frac{g_{n}(\psi)}{\psi}-\frac{g(n\psi)}{n\psi}|$. (4.5)

Now we define the function which gives the limit of the discrete-time value functions. For
$t\in[0,1]$ and $\varphi\in[0, \Phi_{0}]$ we denote by $\mathcal{A}_{t}(\varphi)$ the set of $(\mathcal{F}_{r})_{0\leq r\leq t}$-progressively measurable

process $(\zeta_{r})_{0\leq r\leq t}$ such that $\zeta_{r}\geq 0$ for each $r\in[0, t],$ $\int_{0}^{t}\zeta_{r}dr\leq\varphi$ almost surely and

$\sup_{r,\omega}\zeta_{r}(\omega)<\infty$ . For $t\in[0,1],$ $(w, \varphi, s)\in D$ and $u\in C$ , we define $V_{t}(w, \varphi, s;u)$ by

$V_{t}(w, \varphi, s;u)=\sup_{(\zeta_{r})_{r}\in \mathcal{A}_{\ell}(\varphi)}E[u(W_{t}, \varphi_{t}, S_{t})]$
(4.6)

subject to

$dW_{r}=\zeta_{r}S_{r}dr$ , $d\varphi_{r}=-\zeta_{r}dr$ , $dS_{r}=\hat{\sigma}(S_{r})dB_{r}+\hat{b}(S_{r})dr-g(\zeta_{r})S_{r}dr$ (4.7)

and $(W_{0}, \varphi_{0}, S_{0})=(w, \varphi, s)$ , where $\hat{\sigma}(s)=s\sigma(\log s),\hat{b}(s)=s\{b(\log s)+\frac{1}{2}a(\log s)^{2}\}$ for

$s>0$ and $\hat{\sigma}(0)=\hat{b}(0)=0$ . When $s>0$ , we obviously see that the process of the log-price
of the security $X_{r}=\log S_{r}$ satisfies

$dX_{r}=\sigma(X_{r})dB_{r}+b(X_{r})dr-g(\zeta_{r})dr$.

We remark that $V_{0}(w, \varphi, s;u)=u(w, \varphi, s)$ .
$t\in[0,1]$ and $(w, \varphi, s)\in D$ .

5 Main Results

We notice that $V_{t}(w, \varphi, s;u)<\infty$ for each

In this section we present main results of this paper. First we give the convergence theorem
for value functions.

Theorem 2. For each $(w, \varphi, s)\in D,$ $t\in[0,1]$ and $u\in C$ it holds that

$\lim_{narrow\infty}V_{[nt]}^{n}(w, \varphi, s;u)=V_{t}(w, \varphi, s;u)$ , (5.1)

where $[nt]$ is the greatest integer less than or equal to $nt$ .

Theorem 2 implies that an optimal execution problem in continuous-time model is derived
as the limit of the ones in discrete-time model. We call $V_{t}(w, \varphi_{j}s;u)$ a continuous-time value
function. We regard a stochastic process $(\zeta_{r})_{r}$ as a trader’s execution strategy. The value of
$\zeta_{r}$ means instantaneous sales (in other words, execution speed) at time $r$ .

As for the continuity of $V_{t}(w, \varphi, s;u)$ , we have the following theorem.
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Theorem 3. Let $u\in C$ .
(i) If $h(\infty)=\infty$ , then $V_{t}(w, \varphi, s;u)$ is continuous in $(t, w, \varphi, s)\in[0,1]\cross D$ .
(ii) If $h(\infty)<\infty$ , then $V_{t}(w, \varphi, s;u)$ is continuous in $(t, w, \varphi, s)\in(0,1]\cross D$ and $V_{t}(w, \varphi, s;u)$

converges to $Ju(w, \varphi, s)unif_{07}mly$ on any compact subset of $D$ as $t\downarrow 0$ , where

$Ju(w, \varphi, s)=\{\begin{array}{ll}\sup_{\psi\in[0,\varphi]}u(w+\frac{1-e^{-h(\infty)\psi}}{h(\infty)}s, \varphi-\psi, se^{-h(\infty)\psi}) (h(\infty)>0)\sup_{\psi\in[0,\varphi]}u(w+\psi s, \varphi-\psi, s) (h(\infty)=0).\end{array}$

As you can see, the continuity in $t$ at the origin is according to the state of the function
$h$ at the infinity point. When $h(\infty)<\infty$ , the value function is not always continuous at
$t=0$ and has the right limit $Ju(w, \varphi, s)$ . $Ju(w, \varphi, s)$ implies the utility of the profit of the
execution of a trader who sells a part of the shares of a security $\psi$ by dividing infinitely in
infinitely short time (enough to neglect the fluctuation of the price of a security) and makes
the amount $\varphi-\psi$ remain.

Next we study the semi-group property (Bellman principle) of the family of non-linear
operators corresponding to the continuous-time value function. We define an operator $Q_{t}$ :
$Carrow C$ by $Q_{t}u(w, \varphi, s)=V_{t}(w, \varphi, s;u)$ . We easily see that $Q_{t}$ is well-defined. Then we have
the following.

Theorem 4. For each $r,$ $t\in[0,1]$ with $t+r\leq 1$ , $(w, \varphi, s)\in D$ and $u\in C$ it holds that
$Q_{t+r}u(w, \varphi, s)=Q_{t}Q_{r}u(w, \varphi, s)$ .

By using Theorem 4, we can characterize the continuous-time value function as a viscosity
solution of the corresponding HJB. We define a function $F$ : $Sarrow[-$ oo $\infty)$ by

$F(z,p, X)=- \sup_{\zeta\geq 0}\{\frac{1}{2}\hat{\sigma}(z_{s})^{2}X_{ss}+\hat{b}(z_{s})p_{s}+\zeta(z_{s}p_{w}-p_{\varphi})-g(\zeta)z_{s}p_{s}\}$ ,

where $S=U\cross \mathbb{R}^{3}\cross S^{3},$ $U=D\backslash \partial D,$ $S^{3}$ is the space of symmetric matrices in $\mathbb{R}^{3}\otimes \mathbb{R}^{3}$ and

$z=(\begin{array}{l}z_{w}z_{\varphi}z_{s}\end{array})\in D,$ $p=(\begin{array}{l}p_{w}p_{\varphi}p_{s}\end{array})\in \mathbb{R}^{3},$ $X=(\begin{array}{lll}X_{ww} X_{w\varphi} X_{ws}X_{\varphi w} X_{\varphi\varphi} X_{\varphi s}X_{sw} X_{s\varphi} X_{ss}\end{array})\in S^{3}$.

Although the function $F$ may take-oo, we can define a viscosity solution of the following
HJB as usual:

$\frac{\partial}{\partial t}v+F(z, \mathcal{D}v, \mathcal{D}^{2}v)=0$ on $(0,1]\cross U$, (5.2)

where $\mathcal{D}$ denotes the differential operator with respect to $z=(w, \varphi, s)$ . We introduce the
definitions of viscosity solutions of the HJB above.

Definition 2. (i) A continuous function $v:(0,1]\cross Uarrow \mathbb{R}$ is a viscosity subsolution of
(5.2) if there is a smooth function $\hat{v}\in C^{1,2}((0,1]\cross U)$ such that $v-\hat{v}$ has a local maximum
at $(\overline{t},\tilde{z})$ , then it holds either $F(\hat{v}(\overline{t},\overline{z}), \mathcal{D}\hat{v}(\overline{t})\overline{z}),$ $\mathcal{D}^{2}\hat{v}(\overline{t},\overline{z}))=-$ oo or

$\frac{\partial}{\partial t}\hat{v}(\overline{t},\overline{z})+F(\hat{v}(\overline{t},\overline{z}), \mathcal{D}\hat{v}(\overline{t},\overline{z}), \mathcal{D}^{2}\hat{v}(\overline{t},\overline{z}))\leq 0$.
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(ii) A continuous function $v:(0,1]\cross Uarrow \mathbb{R}$ is a viscosity supersolution of (5.2) if there
is a smooth function $\hat{v}\in C^{1,2}((0,1]\cross U)$ such that $v-\hat{v}$ has a local minimum at $(\overline{t},\overline{z})$ , then
it holds both
$F(\hat{v}(\overline{t},\overline{z}), \mathcal{D}\hat{v}(\overline{t},\overline{z}), \mathcal{D}^{2}\hat{v}(\overline{t},\overline{z}))>-$ oo and

$\frac{\partial}{\partial t}\hat{v}(\overline{t},\overline{z})+F(\hat{v}(\overline{t},\overline{z}), \mathcal{D}\hat{v}(\overline{t},\overline{z}), \mathcal{D}^{2}\hat{v}(\overline{t},\overline{z}))\geq 0$.

(iii) $v\iota s$ called a viscosity solution of (5.2) if $v$ is both viscosity subsolution and supersolution.

Here we remark that (5.2) is rewritten as

$\frac{\partial}{\partial t}v(t, w, \varphi, s)-\sup_{\zeta\geq 0}\mathcal{L}^{\zeta}v(t, w, \varphi, s)=0$ , $(t, w, \varphi, s)\in(0,1]\cross U$ , (5.3)

where

$\mathcal{L}^{\zeta}v(t, w, \varphi, s)$ $=$ $\frac{1}{2}\hat{\sigma}(s)^{2}\frac{\partial^{2}}{\partial s^{2}}v(t, w, \varphi, s)+\hat{b}(s)\frac{\partial}{\partial s}v(t, w, \varphi, s)$

$+ \zeta(s\frac{\partial}{\partial w}v(t, w, \varphi, s)-\frac{\partial}{\partial\varphi}v(t, w, \varphi, s))-g(\zeta)s\frac{\partial}{\partial s}v(t, w, \varphi, s).(5.4)$

Now we introduce the following theorem which we will give the proof in Section 10.

Theorem 5. Assume $h$ is $st_{7}\dot{n}ctly$ increasing and $h(\infty)=\infty$ . Moreover we assume

$\lim_{\epsilon\downarrow 0}\inf\frac{V_{t}(w,\varphi,s+\epsilon;u)-V_{t}(w,\varphi,s;u)}{\epsilon}>0$ (5.5)

for any $t\in(0,1]$ and $(w, \varphi, s)\in U$ . Then $V_{t}(w, \varphi, s;u)$ is a viscosity solution of (5.2).

Finally we give the uniqueness result of viscosity solutions of (5.3).

Theorem 6. Assume that $\hat{\sigma}$ and $\hat{b}$ are both Lipschitz continuous. Moreover we assume
the conditions in Theorem 5 and the growth condition $\lim_{\zetaarrow}\inf_{\infty}\frac{h(\zeta)}{\zeta}=0$ . If the polynomial

growth function $v:[0,1]\cross Darrow \mathbb{R}$ is a viscosity solution of (5.3) and satisfies the following
boundary conditions

$v(0, w, \varphi, s)=u(w, \varphi, s)$ , $(w, \varphi, s)\in D$ ,
$v(t, w, 0, s)=E[u(w, 0, Z(t;0, s))]$ , $(t, w, s)\in[0,1]\cross \mathbb{R}\cross[0, \infty)$ , (5.6)

$v(t, w, \varphi, 0)=u(w, \varphi, 0)$ , $(t, w, \varphi)\in[0,1]\cross \mathbb{R}\cross[0, \Phi_{0}]$ ,

then it holds that $V_{t}(w, \varphi, s;u)=v(t, w, \varphi, s)$ , where

$Z(t;r, s)=\exp(Y(t;r, \log s))(s>0)$ , $0(s=0)$ . (5.7)

The proof is also in Section 10. In Section 8.2, we will present an example where as-
sumptions in Theorem 5 and Theorem 6 are fulfilled.
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6 Sell-Out Condition
In this section we consider the optimal execution problem under the “sell-out condition.” A
trader has a certain shares of a security at the initial time, and he$/she$ must liquidate all
of them until the time horizon. Then the spaces of admissible strategies are reduced to the
following :

$\mathcal{A}_{k}^{n}$
’so

$( \varphi)=\{(\psi_{l}^{n})_{l}\in \mathcal{A}_{k}^{n}(\varphi);\sum_{l=0}^{k-1}\psi_{l}^{n}=\varphi\}$ , $\mathcal{A}_{t}^{so}(\varphi)=\{(\zeta_{r})_{r}\in \mathcal{A}_{t}(\varphi);\int_{0}^{t}\zeta_{r}dr=\varphi\}$ .

Now we define value functions with the sell-out condition by

$V_{k}^{n,SO}(w, \varphi, s;U)=\sup_{(\psi_{l}^{n})_{l}\in \mathcal{A}_{k}^{n,SO}(\varphi)}E[U(W_{k}^{n})]$
,

$V_{t}^{SO}(w, \varphi, s;U)=\sup_{(\zeta_{r})_{r}\in \mathcal{A}_{t}^{SO}(\varphi)}E[U(W_{t})]$

for a continuous, non-decreasing and polynomial growth function $U$ : $\mathbb{R}arrow \mathbb{R}$ . Then we
have the following theorem.

Theorem 7. It holds that $V_{t}^{so}(w, \varphi, s;U)=V_{t}(w, \varphi, s;u)$ , where $u(w, \varphi, s)=U(w)$ .

By Theorem 7, we see that the sell-out condition $\int_{0}^{t}\zeta_{r}dr=\varphi$ makes no change for

the (value of) value function in continuous-time model when a trader wants to maximize
the expected utility of only the terminal cash holdings (that is the proceeds of his$/her$

execution.) Thus, although the value function in the discrete-time model may vary whether
the sell-out condition exists or not, in the continuous-time model we may not worry about
such a condition when we treat the utility functions which are independent of $\varphi$ and $s$ .
Moreover we obtain the following theorem which is the similar result of Theorem 2.

Theorem 8. For each $(w, \varphi, s)\in D$ it holds that

$\lim_{narrow\infty}V_{[nt]}^{n,SO}(w, \varphi, s;U)=V_{t}^{so}(w, \varphi, s;U)$ $(=V_{t}(w, \varphi, s;U).)$

7 $Random\backslash$ MI Model
Until now we consider MI functions as deterministic functions. This means that we can get
the information of MI beforehand. But in the real market it is hard to estimate the effect of
MI. Moreover it often happens that the concentration of unexpected orders will causes the
overfluctuation of the price. In this section we consider an optimal execution problem with
random MI. We also consider the discrete-time model first and derive the continuous-time
model by taking the limit. We set the random MI function as

$g_{k}^{n}(\psi)\omega)=c_{k}^{n}(\omega)g_{n}(\psi)$ , $\psi\in[0, \Phi_{0}]i\omega\in\Omega$ ,

where $g_{n}(\psi)$ is the same as in Section 4 and $c_{k}^{n},$ $k=0,1,2,$ $\ldots$ , are i.i. $d$ . positive random
variables. The discrete-time value function $\hat{V}_{k}^{n}(w, \varphi, s;u)$ is defined by the same way as in
Section 4 by replacing $g_{n}(\psi)$ of (4.1) and (4.3) with $g_{k}^{n}(\psi, \omega)$ .

For deterministic part of MI $g_{n}(\psi)$ , we also assume the condition [A]. Moreover, for noise
part of MI $c_{k}^{n}(\omega)$ , we assume the following conditions.
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$[B1]$ For any $n\in \mathbb{N}$ and $x\geq 0$ it holds that $\gamma_{n}>0$ and

$\frac{h(x\gamma_{n})}{n}arrow 0$ , $narrow\infty$ , (7.1)

where $\gamma_{n}=$ essinf $c_{k}^{n}$ .

$[B2]$ Let $\mu_{n}$ is the distribution of $\frac{c_{0}^{n}+\ldots+c_{n-1}^{n}}{n}$ . Then $\mu_{n}$ has a weak limit $\mu$ as $narrow\infty$ .

$[B3]$ There is a sequence of infinitely divisible distributions $(p_{n})_{n}$ on $\mathbb{R}$ such that $\mu_{n}=\mu*p_{n}$

and/either

[B3-a] $n \int_{\mathbb{R}}x^{2}p_{n}(dx)arrow 0$ , $narrow\infty$

or
[B3-b] There is a sequence $(K_{n})_{n}\subset(0, \infty)$ such that $\lim_{narrow\infty}K_{n}=0,$ $p_{n}((-\infty, -K_{n}))=0$

$(or p_{n}((K_{n}, \infty))=0)$ and $\int xp_{n}(dx)arrow 0$ , $narrow\infty$ .

Let us give some remarks for condition $[B1]$ . Since $c_{k}^{n},$ $k=0,1,2,$ $\ldots$ , are identically
distributed, $\gamma_{n}$ is independent of $k$ . Moreover, if $h(\infty)<\infty$ , then (7.1) is always fulfilled. if
$h(\infty)=\infty$ , we have the following example:

$h(\zeta)=\alpha\zeta^{p},$ $\gamma_{n}=\frac{1}{n^{1’ p-\delta}}(p, \delta>0, \delta<1/p)$ .

Since $\mu$ is an infinitely divisible distribution, there is some L\’evy process $(L_{t})_{0\leq t\leq 1}$ on a
certain probability space such that $L_{1}$ is distributed by $\mu$ . The process $(L_{t})_{t}$ is independent of
any Brownian motion, because $(L_{t})_{t}$ is obviously non-decreasing and non-negative. Without
loss of generality, we may assume that $(L_{t})_{t}$ and $(B_{t})_{t}$ are defined on the same filtered space.
Let $\nu$ is a L\’evy measure of $(L_{t})_{t}$ . We assume the following moment condition for $\nu$ .

$[C] \int_{(0,\infty)}(z+z^{2})\nu(dz)<\infty$ .

Now we present the function which corresponds to the limit of discrete-time value func-
tions. Let $\hat{\mathcal{A}}_{t}(\varphi)$ be the set of $(\zeta_{r})_{r}\in \mathcal{A}_{t}(\varphi)$ such that $(\zeta_{r})_{r}$ is $(\mathcal{F}_{r})_{r}$-adapted and c\‘agl\‘ad (i.e.
right continuous and has a left limit at each point.) For $t\in[0,1],$ $(w, \varphi, s)\in D$ and $u\in C$ ,
we define $\hat{V}_{t}(w, \varphi, s;u)$ by

$\hat{V}_{t}(w, \varphi, s;u)=\sup_{(\zeta_{r})_{r}\in.\hat{4}_{t}(\varphi)}E[u(W_{t}, \varphi_{t}, S_{t})]$

subject to

$dW_{r}=\zeta_{r}S_{r}dr$ , $d\varphi_{r}=-\zeta_{r}dr$ , $dX_{r}=\sigma(X_{r})dB_{r}+b(X_{r})dr-g(\zeta_{r})dL_{r}$ , $S_{r}=\exp(X_{r})(7.2)$

and $(W_{0}, \varphi_{0}, S_{0})=(w, \varphi, s)$ . Then we have the following.

Theorem 9. For each $(w, \varphi, s)\in D,$ $t\in[0,1]$ and $u\in C$ it holds that

$\lim_{narrow\infty}\hat{V}_{[nt]}^{n}(w, \varphi, s;u)=\hat{V}_{t}(w, \varphi, s;u)$ .
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By this theorem, we see that the function $\hat{V}_{t}(w, \varphi, s;u)$ corresponds to the continuous-
time model of an optimal execution problem with random MI. The term $g(\zeta_{r})dL_{r}$ represents

MI with noise. Let $L_{t}= \gamma t+\int_{(0,\infty)}zN(dr, dz)$ be the L\’evy decomposition of $(L_{t})_{t}$ . Then

$g(\zeta_{r})dL_{r}$ can be divided into the following two terms:

$g( \zeta_{r-})dL_{r}=\gamma g(\zeta_{r})dr+g(\zeta_{r-})\int_{(0_{1}\infty)}zN(dr, dz)$ .

The last term in the right-hand side refers to the effect of noise of MI. This means that noise
of MI appears as a jump of L\’evy process.

We also have the continuity and semi-group property of continuous-time value function
as the same form in Section 5. As for the characterization as the viscosity solution of HJB,
we may also have the similar results as in Section 5, and this is a further development.

8 Examples

In this section we consider two examples of our model. Let $b(x)\equiv-\mu$ and $\sigma(x)\equiv\sigma$ for
some constants $\mu,$ $\sigma\geq 0$ and suppose $\tilde{\mu}=\mu-\sigma^{2}\prime 2>0$ . We assume that a trader has a
risk-neutral utility function $u(w, \varphi, s)=w$ . We remark that we can replace the stochastic
control problem $V_{t}(w, \varphi, s;u)$ with the deterministic control problem $f(t, \varphi)$ , where

$f(t, \varphi)$ $=$ $\sup_{(\zeta_{r})_{r}\in A_{t}^{\det}(\varphi)}\int_{0}^{t}\zeta_{r}\exp(-\tilde{\mu}r-\int_{0}^{r}g(\zeta_{v})dv)dr$ ,

$\mathcal{A}_{t}^{\det}(\varphi)$ $=$ { $(\zeta_{r})_{r}\in \mathcal{A}_{t}(\varphi)$ ; $(\zeta_{r})_{r}$ is deterministic}.

Indeed we have the following.

Proposition 1. It holds that $V_{t}(w, \varphi, s;u)=w+sf(t, \varphi)$ .

By Proposition 1, we see that $\frac{\partial}{\partial s}V_{t}(w, \varphi, s)=f(t, \varphi)>0$ for $t,$ $\varphi>0$ .

8.1 Log-Linear Impact
Let $(\alpha_{n})_{n\in \mathbb{N}}\subset(0, \infty)$ be a sequence which has a limit $\alpha\in(0, \infty)$ as $narrow\infty$ and let
$g_{n}(\psi)=\alpha_{n}\psi$ . Then the condition $[A]$ is satisfied with $h(\zeta)\equiv\alpha$ (and thus $g(\zeta)=\alpha\zeta.$ ) We
have the following.

Theorem 10. It holds that

$V_{t}(w, \varphi_{i}s;u)=w+\frac{1-e^{-\alpha\varphi}}{\alpha}s$ (8.1)

for each $t\in(O, 1]$ and $(w, \varphi, s)\in D$ .

We notice that the right-hand side of (8.1) is equal to $Ju(w, \varphi, s)$ and converges to $w+\varphi s$

as $\alpha\downarrow 0$ , which is the profit gained by choosing the execution strategy of so-called block
liquidation such that a trader sells all shares $\varphi$ at $t=0$ when there is no market impact.
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Theorem 10 implies that the optimal strategy in this case is to execute all shares dividing
infinitely in infinitely short time at $t=0$ . This is almost the same as a block liquidation
at the initial time, and a trader does not delay the execution time (although MI lowers the
profit of the execution.) Therefore we cannot see the essential influence of the MI in this
example.

8.2 Log-Quadratic Impact
In this subsection we consider the case of strictly convex MI function. Let $(\alpha_{n})_{n\in N}\subset(0, \infty)$

be a sequence and $g_{n}(\psi)=\alpha_{n}\psi^{2}$ . We suppose $\lim_{narrow\infty}|\alpha_{n}-n\alpha|=0$ for some $\alpha\in(0, \infty)$ .
Then the condition $[A]$ is satisfied with $h(\zeta)=2\alpha\zeta$ and $g(\zeta)=\alpha\zeta^{2}$ . We remark that the
continuous-time value function in this example is the unique viscosity solution of (5.2) with
boundary conditions (5.6).

Now we extend the set of admissible strategies such that

$\tilde{\mathcal{A}}_{t}(\varphi)$ $=$ $\{(\zeta_{r})_{0\leq r\leq t}$ ; $(\mathcal{F}_{r})_{r}$-adapted, $\zeta_{r}\geq 0,$ $\int_{0}^{t}\zeta_{r}dr\leq\varphi$

and
$\sup_{(r_{I}\omega)\in[0,t-\epsilon]\cross\Omega}\zeta_{r}(\omega)<\infty$

for all $\epsilon\in(0, t)\}$ .

We easily see that the value of $V_{t}(w, \varphi, s;u)$ does not change by replacing $\mathcal{A}_{t}(\varphi)$ with At $(\varphi)$ .
We define functions $\hat{v}^{i}(t, w, \varphi, s)$ and $\hat{\zeta}_{t}^{l},$ $i=1,2$ , by

$\hat{v}^{1}(t, w, \varphi, s)=w+\frac{s\sqrt{1-e^{-2\mu t}}}{2\sqrt{\alpha\tilde{\mu}}}$ , $\hat{\zeta}_{t}^{1}=\sqrt{\frac{\tilde{\mu}}{\alpha(1-e^{-2\mu(t-r)})}}$

and

$\hat{v}^{2}(t, w, \varphi, s)=w+\frac{s}{2\sqrt{\alpha\tilde{\mu}}}(1-e^{-2\sqrt{\alpha\mu}\varphi})$ , $\hat{\zeta}_{t}^{2}=\sqrt{\frac{\tilde{\mu}}{\alpha}}1_{[0,\varphi\sqrt{\alpha/\mu}]}(r)$ .

Then we have the following.

Theorem 11.
(i) If $\frac{arctanh\sqrt{1-e^{-2\mu t}}}{\sqrt{\alpha\tilde{\mu}}}\leq\varphi$ , then $V_{t}(w, \varphi, s;u)=\hat{v}^{1}(t, w, \varphi, s)$ and the optimal strategy is

given by $(\hat{\zeta}_{r}^{1})_{r}$ .

(ii) If $\varphi\leq\sqrt{\frac{\tilde{\mu}}{\alpha}}t$ , then $V_{t}(w, \varphi, s;u)=\hat{v}^{2}(t, w, \varphi, s)$ and the optimal strategy is given by
$(\hat{\zeta}_{r}^{2})_{r}$ .

This theorem implies that the form of optimal strategies and value functions vary accord-
ing to the amount of the security holdings $\varphi$ . If a trader has a little amount of securities,
then we have the case (ii) and the optimal strategy is to sell up the entire shares of the

security until the time $\sqrt{\frac{\tilde{\mu}}{\alpha}}t$ . If he$/she$ has so large amount, then we have the case (i) and
a trader cannot finish the selling.
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Figure 1: The forms of optimal execution strategies $(\zeta_{r})_{r}$ . Circle-marked dotted line means
the numerical solution, and solid line means the analytical solution. Horizontal axis is time
$r$ . The left graph: $\varphi=1$ . The middle graph: $\varphi=10$ . The right graph: $\varphi=100$ .

$0.8061\mapsto$

$020A0_{0} \frac{f\cdot\cdot.---|}{0204060B1}$

Figure 2: The forms of the amount of security holdings $(\varphi_{r})_{r}$ corresponding with optimal
strategies. Horizontal axis is time $r$ . The left graph : $\varphi=1$ . The middle graph : $\varphi=10$ .
The right graph : $\varphi=100$ .

We have not had the explicit form of $V_{t}(w, \varphi, s;u)$ on a whole space. So we try to solve
this example numerically. $V_{1}(w, \varphi, s;u)$ is approximated by $V_{n}^{n}(w, \varphi, s;u)$ for enough large
$n$ , and we can assume that the optimal strategy is deterministic. We can get the value of
$V_{n}^{n}(w, \varphi, s;u)$ numerically by the computer when $n$ is not so large. Figure 1 describes the
form of execution strategies and Figure 2 describes the form of corresponding processes of
the amount of a security when we set $n=500,$ $w=0,$ $s=0,$ $\alpha=0.01,\tilde{\mu}=0.05,$ $\sigma=0$ and
$\varphi=1,10$ and 100. We also get the form of the function $f(t, \varphi)$ of Proposition 1 numerically,
which is described in Figure 3. If a pair $(t, \varphi)$ is in the range (a) of Figure 4, then we have
$f(t, \varphi)=\frac{\sqrt{1-e^{-2\mu t}}}{2\sqrt{\alpha\tilde{\mu}}}$ , and if $(t, \varphi)$ is in the range (c), we have $f(t, \varphi)=\frac{1}{2\sqrt{\alpha\tilde{\mu}}}(1-e^{-2\sqrt{\alpha\mu}\varphi})$ .

We have not had the form of $f(t, \varphi)$ analytically when $(t, \varphi)$ is in the range (b).

9 Concluding Remarks
In this paper we study the optimal execution problem in consideration of MI. First we
formulate the discrete-time model and then take the limit. We show that the discrete-time
value functions converge to the continuous-time value function.

We mainly treat the case when MI function is convex. This is not only from the math-
ematical reason, but also from the financial viewpoint. In a Black-Scholes type market, an
optimal execution strategy of a risk-neutral trader is a block liquidation when there is no
MI. The form of the optimal strategy entirely changes when MI is quadratic. When MI is
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Figure 4: The region of pairs $(t, \varphi)$ .

not convex, especially linear, then a trader’s optimal strategy is almost block liquidation.
As for types of MI, it is often said that MI can be divided into two parts : permanent

impact and temporary impact (see [2] and [13].) As time passes, the temporary impact
disappears and the price once pushed down transitorily is recovered. Our examples treat
permanent impact only, but we can also consider temporary impact and price recovery effects.
If the process of security prices follows some mean-reverting process, like Ornstein-Uhlenbeck
(OU) process, then we may deal with the optimization problem with MI and price recovery.
Now we are going to study such a problem and may have a quite similar result as in [1], in
spite of the fact that there is a difference of whether the fluctuation of a security price is
described as an arithmetic OU process or a geometric OU process.

It is also meaningful to characterize the continuous-time value function as the solution
of corresponding HJB. We have shown that the value function is a viscosity solution un-
der some strong assumptions. Such assumptions are not necessary when we consider only
bounded strategies. But since the control region of our model is unbounded, we should argue
deliberately about whether $F>-\infty$ or not.

In trading operations, a trader should execute while considering the fluctuation of the
price of other assets ($e.g$ . the rebalance of an index fund.) [14] studied the multi-dimensional
version of this model to consider such a case. But in the case of rebalancing, it is necessary
to consider not only selling but also buying the securities. We should formulate such a model
of an optimal execution problem carefully, avoiding the opportunity of free-lunch when MI
is large.

The complete solution of our example in Section 8.2 is another remaining task. This is
a representative example where an trading policy is influenced vastly by MI, and will be
pleasant to solve completely in future researches.
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10 Appendix

10.1 Proof of Theorem 5
In Section 10.1 and Section 10.2 we always assume that $h$ is strictly increasing and $h(\infty)=$

$\infty$ .
Let $L>0$ . We define the function $V_{t}^{L}(w, \varphi, s;u)$ as (4.6) replacing $\mathcal{A}_{t}(\varphi)$ with $\mathcal{A}_{r}^{L}(\varphi)$ ,

where $\mathcal{A}_{t}^{L}(\varphi)=\{(\zeta_{r})_{r}\in \mathcal{A}_{t}(\varphi)$ ; $\zeta_{r}\leq L$ for any $r\}$ . First we consider the characterization
of $V_{t}^{L}(w, \varphi, s;u)$ as the viscosity solution of the corresponding HJB. We define a function
$F^{L}:Sarrow \mathbb{R}$ by

$F^{L}(z,p, X)=- \sup_{0\leq\zeta\leq L}\{\frac{1}{2}\hat{\sigma}(z_{s})^{2}X_{ss}+\hat{b}(z_{s})p_{s}+\zeta(z_{s}p_{w}-p_{\varphi})-g(\zeta)z_{s}p_{s}\}$ .

Then we have the following.

Proposition 2. Assume $h(\infty)=\infty$ . Then, for each $u\in C$ , the function $V_{t}^{L}(w, \varphi, s;u)$ is a
viscosity solution of

$\frac{\partial}{\partial t}v+F^{L}(z, \mathcal{D}v, \mathcal{D}^{2}v, v)=0$ on (0,1] $\cross U$ . (10.1)

Since the control region $[0, L]$ is compact, we obtain Proposition 2 by the semi-group
property of $(Q_{t}^{L})_{t}$ , which is defined by $V_{t}^{L}(w, \varphi, s;u)$ , and the similar arguments in the proof
of Theorem 5.4.1 in [27].

Next we treat HJB (5.2). Let $\ovalbox{\tt\small REJECT}=\{(z,p, X)\in S;F(z, p, X)>-\infty\}$ . A direct
calculation gives the following.

Proposition 3. For $(z,p, X)\in\ovalbox{\tt\small REJECT}$ , it holds that

$F(z,p, X)=- \frac{1}{2}\hat{\sigma}(z_{s})^{2}X_{ss}-\hat{b}(z_{s})p_{s}-\max\{\zeta^{*}(z,p)(z_{s}p_{w}-p_{\varphi})-g(\zeta^{*}(z,p))z_{s}p_{s}, 0\}$ ,

where $\zeta^{*}(z,p)=h^{-1}(\frac{z_{s}p_{\varphi}-p_{w}}{z_{s}p_{s}}\vee h(0))1_{\{p_{s}>0\}}$ . In particular $F$ is continuous on $\ovalbox{\tt\small REJECT}$ .

Now we prove Theorem 5. We define an open set $=U\cross \mathbb{R}^{2}\cross(0, \infty)\cross S^{3}\subset\ovalbox{\tt\small REJECT}$. Since
$F$ is continuous on and $F^{L}$ converges to $F$ monotonously, we see that this convergence is
uniform on any compact set in $\mathcal{B}$ by Dini’s theorem. Similarly, using Dini’s theorem again,
we see that $V^{L}$ converges to $V$ uniformly on any compact set in $(0,1]\cross U$ . Then, by the
similar arguments in the proof of Proposition 4.8 in [23], we obtain the assertion.

10.2 Proof of Theorem 6
Let $\tilde{U}\subset U$ be open and bounded. Let $\mathcal{P}_{(0,1]\cross\tilde{U}}^{2,\pm}$ be parabolic variants of semijets and $\overline{\mathcal{P}}_{(0,1]\cross\tilde{U}}^{2,\pm}$

be their closures (see [5].) By Proposition 3, we easily show the following lemma.

Lemma 1. Suppose $v$ is a subsolution (resp., supersolution) of (5.2). Then it holds that

$a+F(z,p, X)\leq 0$ (resp.) $\geq 0)$

for any $(a, z,p, X)\in(0,1]\cross\tilde{U}\cross \mathbb{R}^{3}\cross S^{3}$ with $(a,p, X)\in\overline{\mathcal{P}}_{(0,1]\cross\tilde{U}}^{2,+}v(z)$ (resp., $(a,p, X)\in$

$\overline{\mathcal{P}}_{(0,1]\cross\tilde{U}}^{2,-}v(z).)$
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Now we consider the comparison principle on a bounded domain.

Proposition 4. Suppose $v$ (resp., $v’$ ) be a subsolution (resp., supersolution) of (5.2) on
$(0,1]\cross\tilde{U}$ . Moreover suppose $v(O, z)\leq 0\leq v’(O, z)$ for $z\in\tilde{U}$ and $v\leq v’$ on $(0,1]\cross\partial\tilde{U}$ .
Then it holds that $v\leq v$

’ on $(0,1]\cross\tilde{U}$ .

By Lemma 1 and the similar arguments in the proof of Theorem 8.12 in [5], we see that
for proving Proposition 4 it suffices to show the following Proposition 5.

Proposition 5. The function $F$ satisfies the following structure condition

$F(z’, \alpha(z-z’), Y)-F(z, \alpha(z-z’), X)\leq\rho(\alpha|z-z’|^{2}+|z-z’|)$

for $\alpha>1,$ $\rho\in C([0, \infty);[0, \infty))$ with $\rho(0)=0_{Z}z,$ $z’\in U,$ $X,$ $Y\in S^{3}$ with $F(z’, \alpha(z-z’), Y)\geq$

$0$ and

$-3\alpha(\begin{array}{ll}I OO I\end{array})\leq(\begin{array}{ll}X OO -Y\end{array})\leq 3\alpha(\begin{array}{ll}I -I-I I\end{array})$ , (10.2)

where $I\in \mathbb{R}^{3}\otimes \mathbb{R}^{3}$ denotes a unit matrtx.

Proof. The condition $F(z’, \alpha(z-z’), Y)\geq 0$ implies $(z’, \alpha(z-z’), Y)\in\ovalbox{\tt\small REJECT}$ , thus it holds
that either (i) $z_{s}>z_{s}’$ or (ii) $z_{s}=z_{s}’$ and $z_{s}’(p_{w}-p_{w}’)-(p_{\varphi}-p_{\varphi}’)>0$. In each case we have
$F(z, \alpha(z-z’), X)>-$oo and

$F(z’, \alpha(z-z’), Y)-F(z, \alpha(z-z’), X)$

$\leq$ $\frac{1}{2}(\hat{\sigma}^{2}(z_{s})X_{ss}-\hat{\sigma}^{2}(z_{s}’)Y_{ss})+|\hat{b}(z_{s})-\hat{b}(z_{s}’)|\alpha|z_{s}-z_{s}’|$

$+ \alpha\sup_{\zeta\geq 0}\{-(z_{s}-z_{s})^{2}g(\zeta)+(z_{s}-z_{s})(z_{w}-z_{w})\zeta\}$ . (10.3)

Since the condition $($ 10.2 $)$ implies

$\hat{\sigma}^{2}(z_{s})X_{ss}-\hat{\sigma}^{2}(z_{s})Y_{ss}\leq 3\alpha(\hat{\sigma}(z_{s})-\hat{\sigma}(z_{s}’))^{2}$

and, $\hat{\sigma}$ and $\hat{b}$ are both Lipschitz continuous and linear growth, we have

$\frac{1}{2}(\hat{\sigma}^{2}(z_{s})X_{ss}-\hat{\sigma}^{2}(z_{s})Y_{ss})+|\hat{b}(z_{s})-\hat{b}(z_{s}’)|\alpha|z_{s}-z_{s}’|\leq C_{0}\alpha|z_{s}-z_{s}’|^{2}$

for some $C_{0}>0$ .
Next we estimate the last term of the right-hand side of (10.3). If $z_{s}=z_{s}’$ , it is obvious

that this term is equal to zero. Then we consider the case of $z_{s}>z_{s}’$ . Since $\lim_{\zetaarrow}\inf_{\infty}\frac{h(\zeta)}{\zeta}>0$ ,

we see that there are some $\beta>0$ and $\zeta_{0}>0$ such that $g(\zeta)\geq\beta\zeta^{2}$ for any $\zeta\geq\zeta_{0}$ . Thus

$\sup_{\zeta\geq 0}\{-(z_{s}-z_{s}’)^{2}g(\zeta)+(z_{s}-z_{s}’)(z_{w}-z_{w}’)\zeta\}$

$\leq$

$-(g( \zeta_{0})+\zeta_{0})|z-z’|^{2}+\sup_{\zeta\geq 0}\{-(z_{s}-z_{s}’)^{2}\beta\zeta^{2}+(z_{s}-z_{s}’)(z_{w}-z_{w}’)\zeta\}$

$\leq$ $(g( \zeta_{0})+\zeta_{0})|z-z’|^{2}+|z_{s}-z_{s}’||z_{w}-z_{w}’|\cross(\frac{z_{w}-z_{w}’}{2\beta(z_{s}-z_{s}’)}\vee 0)$ $\leq C_{2}|z-z’|^{2}$

for some $C_{1},$ $C_{2}>0$ . Thus we obtain the assertion. $\blacksquare$
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Then we obtain Theorem 6 by the similar arguments in the proof of Theorem 7.7.2
in [27], but we should do the calculation carefully. Note especially that the divergence
speed of $h^{-1}(\zeta)$ is slower than the linear function $\zeta$ $(as \zetaarrow\infty)$ and that the function
$q(w, \varphi, s)=(w^{2}+s^{2}+1)^{m}(m\in \mathbb{N})$ satisfies

$\sup_{(w,\varphi,s)\in U}\{\zeta(s\frac{\partial}{\partial w}q(w, \varphi, s)-\frac{\partial}{\partial\varphi}q(w, \varphi_{\dot{r}}s))-g(\zeta)s\frac{\partial}{\partial s}q(w, \varphi, s)\}\leq C_{0}q(w, \varphi, s)$

for some $C_{0}>0$ .
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