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Extending local holomorphic conjugacies

fa4E 4T (Hiroyuki Inou)*

Abstract

Polynomial-like mappings plays an important role in studying complex
dynamics in one variable. It has been used to study local connectivity of Ju-
lia sets and the Mandelbrot set, rigidity of polynomials, self-similarity of the
Mandelbrot set, etc. There is an important equivalence relation called hybrid
equivalence for polynomial-like mappings. Here, we consider a stronger
equivalence relation, i.e., holomorphic equivalence and prove that usually
polynomial-like restrictions of rational maps or entire functions are not holo-
morphically equivalent.

1 Introduction and statement of results
Definition. A map f : U’ — U is called a polynomial-like mapping if
1. f is proper and holomorphic;
2. U’ € U are topological disks in C.

We always assume the degree of any polynomial-like mapping is greater than one.
The filled Julia set of a polynomial-like mapping f : U’ — U is the set

K(f)={zeU’; f"(2) €U’ (¥n > 0)}.

The simplest example of polynomial-like mappings is a restriction of any poly-
nomial; For a polynomial P of degree d > 2. Let U = {|z| < R} for sufficiently
large R > 0 and U’ = P~Y(U). Then P : U’ — U is a polynomial-like mappings
of degree d.
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A fundamental theorem on polynomial-like mappings is the straightening the-
orem by Douady and Hubbard [DH] as follows. We say two polynomial-like map-
pings f : U' — U and g : V' — V of the same degree are hybrid equivalent if
there is a quasiconformal conjugacy ¢ : U” — V" between some neighborhoods
U” and V" of K(f) and K (g) respectively such that 9 = 0 almost everywhere

in K(f).

Theorem (Straightening theorem). Any hybrid equivalence class of polynomial-
like mappings of degree d > 2 contains a polynomial of degree d.

More precisely, for any polynomial-like mapping f : U’ — U of degree d,
there exists a polynomial P of degree d hybrid equivalent to f.

Here, we consider stronger equivalence relation, that is holomorphic equiva-
lence. Namely, we require the conjugacy ¢ above is holomorphic. Then we can
distinguish most of rational maps or entire maps having polynomial-like restric-
tions.

Main Theorem ([I1]). For i = 1,2, let f; be a rational map or an entire map.
Assume that there exist polynomial-like restrictions f; : U{ — Uy and fo : Uy —
U, of degree not less than two which are analytically conjugate. Then there exist
rational or entire maps g, 1 and s such that

fiocpr =109, faopa=po0g (1)

and g has a polynomial-like restriction g : V' — V analytically conjugate to
f1:U] = Uy by ;.
Furthermore,

e if both of the degrees d, = deg fi and do = deg f5 are finite, then g, p1, P2
are also of finite degrees. In particular, we have d; = ds.

e If fi is a polynomial and f, is a rational map, then f, is a polynomial by
taking a Mobius conjugate and we can take g, p1 and p, to be polynomials.

We say a map g is semiconjugate to another map f if there exists a (not nec-
essarily injective) map ¢ such that o o g = f o . The conclusion of the theorem
says that there exists a (rational or entire) map g which is globally semiconjugate
to both f; and f5.

It seems such a (non-trivial) global semiconjugacy is rare. For example, if f, g
and ¢ have finite degrees, then by taking the degree of the equation pog = fo,
we have deg f = deg g. Therefore, we have the following:
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Corollary 1. If the degrees of rational maps f1, fo are different, then they do not
have polynomial-like restrictions f; : U] — U, (i = 1,2) which are holomorphi-
cally conjugate.

This corollary is one of the essential steps in proving discontinuity of straight-
ening maps [12].

It is also known that there is no global semiconjugacy from a transcendental
map to a polynomial [I1]. However, (non-)existences of the following semiconju-
gacies are still open:

Conjecture. 1. There is no global semiconjugacy from a polynomial to a tran-
scendental entire map.

2. There is no global semiconjugacy from a transcendental entire map to a
rational map.

Here we give some examples of global semiconjugacy (i.e., f o ¢ = @ 0 g):
Example. 1. f=hyohy,g= hsoh;and p = h,.

2. f =g =1, and ¢ = T}, where T} is the Chebyshev polynomial of degree d
(i-e., T4(cos z) = cos dz).

3. f(2) = 2°h(2°), g(2) = 2°(h(2))° and ¢(2) = 2°.

4. A linear map g(z) = Az, |A| > 1 can be semiconjugate to power map,
Chebyshev map and Lattes map if A satisfies a certain condition. Note that
the power map z — 29 for |d| > 2 is semiconjugate to the Chebyshev
map 73, and the Chebyshev map is again semiconjugate to some Lattés
map. However this is not the case of the above theorem because there is no
polynomial-like restriction preserved by those semiconjugacies.

In the case of polynomials (i.e., the case f, g, ¢ are all polynomials), any semi-
conjugate maps are essentially obtained by some combinations of the above 1, 2
and 3 [I1]. This is proved by applying Ritt’s theorems on decomposing polyno-
mials in terms of composition [R] and a theorem by Engstrom [En] which is a
stronger version of Ritt’s second theorem.

Shishikura suggested the following application to the author. Consider a poly-
nomial P having a renormalization hybrid equivalent to itself. More precisely,
assume there exists a polynomial-like mapping P" : U’ — U hybrid equivalent to
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P itself. This implies that for any k£ > 0, there exists a polynomial-like mapping
Jr = Pt U, — Uy hybrid equivalent to P. After rescaling, fx might converge
to some polynomial-like map fj.

In other words, consider the hybrid class F' of polynomial-like mappings con-
taining P. Then any maps f € F' has a polynomial-like restriction R(f) = f™ :
U; — Uy, which is again in F'. After a proper rescaling and giving some topology
in F', it is known that the renormalization operator R : F' — F' is contraction for
some cases (see [L] and [M]). For such a case, R"(f) converges to the unique
fixed point f, € F satisfying the equation

f302) = 3 5o(2).

From this equation, it is easy to see that f; is not a rational map. By the main
theorem, we can prove that any renormalization fixed point is not a rational map
under much weaker assumption:

Corollary 2. The renormalization fixed point is not a rational map. More pre-
cisely, if f : U' — U is a polynomial-like mapping such that there is a polynomial-
like restriction f™ : V' — V (n > 1) holomorphically conjugate to f, then f is
not a rational map.

Proof. Consider a rational map f such that f* : V/ — V is a polynomial-like
mapping for some n > 1, V' and V. Since the degrees of f and f™ are different,
f" : V' — V is not holomorphically conjugate to f itself by Corollary 1. O

2 Idea of proof

The main idea of the proof of Main Theorem is the “pushing-forward” of the
holomorphic conjugacy.

Let ¢ : Uy — U, be a holomorphic conjugacy between f; : U] — U; and
f2 : Ué — Ug. Let

Io={(2,¢(2);z€e U1} cCxC

be the graph of ¢. Consider the product dynamics F'(z,y) = (fi(x), f2(y)) of fi
and f5 and let
I, = F*(Ty).

Since F' is a proper map, [, is a local analytic set.
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Corollary 1. '), Cc ', ;1.

Proof. Let (f*(2), f3(¢(2))) € T'y. Since z € Uy, there exists some w € U’ such
that fi*(w) = z. Therefore,

(f1(2), £7((2))) = (f T (w), £7 (e(fr(w)))) = (fT+ (w), f7 (p(w))).
Since U’ C U, this proves that (f*(2), f2(¢(2))) € Tpt1. | O

Therefore, we have an increase sequence of local analytic sets

FoCF1C"'CFnCFn+1C"'. (2)

Let 7, : X, — I',, be a resolution of singularities, i.e., X,, is a Riemann
surface and 7, is a holomorphic map which is biholomorphic outside a discrete
set. By (2) and the property F'(I',,) = I',41, it follows that there is an injective
map ¢, : X, — X, and a proper map g, : X,, — X, for each n > 0 such
that

Tn+l O ln = Tn, Tny10gn = F om,.

Then the following diagram

Lo L1 tn—1 in tn41
XOC > Xl( .o C Xn( > n+1;’ . e

NN NN e
Lo [5] tn41 L

tn—1 ln
Xo© > X¢ .. .C X,© > Xn+1

commutes.
Now take the direct limit of X,:

X =lim X,,.
Then X is a complex manifold. Furthermore, 7, and g,, induce holomorphic maps

7r:X—>F=UI‘n, g: X—-X

n>0

such that m o g = F o w. Let ¢; = p; o m where p; is the projection to the i-th
coordinate. Then we have ¢; o g = f; o ; for i = 1, 2. Moreover on Xj, the map
@i : Xo — U, is biholomorphic. Therefore, X has a polynomial-like restriction
g : V' — V holomorphically conjugate to f; : U/ — U;, where V = X, and
V' = (p1lx0) "1 (U)).
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We need to classify g : X — X. To do this end, we apply the uniformization
theorem to divide into several cases, and we need to study all the possibilities. For
example, we have the following:

e Since g has a polynomial-like restriction, there is a repelling periodic point

of g. By the Schwarz lemma, it follows that X is not hyperbolic. There-
fore, by taking the universal covering, we may assume that X is either the
complex plane C or the Riemann sphere C.

e If both f; and f, are rational, then we have

degg < deg F' = deg f; - deg fa < +00.

Hence it follows that g is not transcendental.

In this way, we can exclude most of the possibilities and prove the theorem.
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