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This report is a resume of [9]. We consider the dynamics ofpolynomial skew
products on $\mathbb{C}^{2}$ . We investigate the existence of the Green and fiberwise Green
functions of the maps, which induces generalized Green hnctions that are well-
behaved on $\mathbb{C}^{2}$ , and we give an example of the Green ffinctions which are not
defined on some curves in $\mathbb{C}^{2}$ . The generalized Green functions relate to the dy-
namics ofthe extensions ofthe maps to holomorphic or rational maps on weighted
projective spaces.

1 Introduction

We consider the dynamics of a polynomial skew product on $\mathbb{C}^{2}$ of the form
$f(z,w)=(p(z),q(z,w))$, where $p$ and $q$ are polynomials such that $p(z)=$
$z^{d_{1}}+O(z^{d_{1}-1})$ and $q(z,w)=q_{z}(w)=\phi/2+O_{z}(\parallel 2^{-1})$ . We assume that $d_{1}\geq 2$

and $d_{2}\geq 2$ . Let $d= \max\{d_{1},d_{2}\}$ , which coincides with the dynamical degree of$f$.
We denote by $J^{n}$ the n-th iterate of$f$. The dynamics of$f$ consists ofthe dynamics
on the base space and the dynamics on the fibers: $f^{n}(z,w)=(p^{n}(z), Q_{z}^{n}(w))$ ,
where $Q_{z}^{n}=q_{p^{n-1}(z)^{\circ}}\cdots\circ q_{p(z)}\circ q_{z}$ . Hence useful tools for the study of the dy-
namics of $f$ are the Green function $G_{f}$ of $f$, the Green hnction $G_{p}$ of $p$, and the
fiberwise Green function $G_{z}$ of$f$:

$G_{f}(z,w)= \lim_{narrow\infty}d^{-n}\log^{+}|f(z,w)|$ ,

$G_{p}(z)= \lim_{narrow\infty}T_{1}^{n}\log^{+}|p^{n}(z)|$, and

$G_{z}(w)= \lim_{narrow\infty}d_{2}^{-n}\log^{+}|Q_{z}^{n}(w)|$ ,

where $\log^{+}=\max\{log,0\}$ and $|(z,w)|= \max\{|z|, |w|\}$ . It is well-known that $G_{p}$ is
defined, continuous, and subharmonic on $\mathbb{C}$ .

数理解析研究所講究録
第 1699巻 2010年 73-80 73



Known results about the existence of the limits $G_{f}$ and $G_{z}$ are as follows. We
say that a polynomial map is regular if it extends to a holomorphic map on the
projective space $\mathbb{P}^{2}$ , or equivalently if it extends to a non-degenerate homoge-
neous map on $\mathbb{C}^{3}$ . It is well-known that if$f$ is regular, then $G_{f}$ is well-behaved on
$\mathbb{C}^{2}$ ; that is, it is defined, continuous, and plurisubharmonic on $\mathbb{C}^{2}$ . Note that $f$ is
regular if and only if $d_{1}=d_{2}=\deg q$ , where $\deg q$ denotes the algebraic degree
of $q$ . Several studies have been made on the dynamics of regular polynomial skew
products (e.g. [4], [5], [6] and [1]). However, the existence of $G_{z}$ is not known
even if $f$ is regular. Conversely, the existence of $G_{z}$ implies that of $G_{f}$ . It is clear
that $G_{z}$ is well-behaved on $K_{p}\cross \mathbb{C}$ . Favre and Guedj [2] studied the existence and
properties of $G_{z}$ on $K_{p}\cross \mathbb{C}$ without the assumption about the form of $q$ . Using an
argument in the proof of [2, Theorem 6.1], we showed the existence of $G_{z}$ on an
open subset of $K_{p}^{c}\cross \mathbb{C}$ in [8, Lemma 2.3] with the assumption $d_{1}\leq d_{2}$ , which is
improved in this paper.

The organization of the paper is as follows. A summary of our results appears
in Section 2, which includes an introduction of the weighted Green fimctions. In
Section 3, we give an example of the Green ffinctions which are not defined on
some curves in $\mathbb{C}^{2}$ and those ofwhich coincide with the weighted Green ffinctions
on $\mathbb{C}^{2}$ . Details for the case $d_{1}=d_{2}$ and for the case $d_{1}\neq d_{2}$ appear in Section 4
and in Section 5, respectively.

2 Summary of results

Let $f(z,w)=(p(z),q(z,w))$ be a polynomial skew product as before. To state
our results, the following rational number defined by $f$ plays a central role:

$k= \min\{l\in Q$ $c_{j}z^{n_{j}}Misaterminqforsomec_{j}\neq 0ld\geq n_{j_{j}}+lm_{j}foranyintegersn_{j}andm_{j}s.t$

.
$\}$

if $\deg_{z}q>0$ and $k=1$ if $\deg_{z}q=0$ , where $\deg_{z}q$ denotes the algebraic degree
of $q$ with respect to $z$ . Since $q$ has only finitely many terms, one can take the
minimum. Indeed, $k$ is equal to

$\max\{\frac{n_{j}}{d-m_{j}}$ $withc_{j}\neq 0andm_{j}<dc_{j}z^{n_{j}}\mathcal{N}^{n_{j}}isaterminq\}$ .

By definition, $k\leq\deg_{z}q$ and $k<\deg q$ . Moreover, $d^{n} \leq\deg(fi)\leq\max\{1,k\}\parallel$

for any integer $n$ . Hence the dynamical degree of $f$ is equal to $d$ as described
previously. Note that $f$ is regular if and only if $d_{1}=d_{2}$ and $k\leq 1$ .

Our results on the non-existence and the existence of several Green functions
of$f$ are as follows. In the case $d_{1}=d_{2}$ , we give an example ofthe Green ffinctions
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which are not defined on some curves in $\mathbb{C}^{2}$ (Example 3.1). On the other hand,
$G_{z}$ is well-behaved on a region defined by using $k$, and $G_{z}(w)$ tends to $kG_{p}(z)$

as $(z, w)$ in the region tends to its boundary (Theorem 4.1). If $d_{1}<d_{2}$ , then $G_{z}$

is well-behaved on $\mathbb{C}^{2}$ and it coincides with $G_{f}$ (Theorem 5.1). If $d_{1}>d_{2}$ , then
$\tilde{G}_{z}^{*}\leq kG_{p}$ on $\mathbb{C}^{2}$ , where $\tilde{G}_{Z}^{*}=$ lim $supnarrow\infty^{d^{-n}\log^{+}}|Q_{z}^{n}|$ (Theorem 5.3). From
these results we have the following main result:

Theorem 2.1. A generalization ofthe Greenfunction $G_{f}^{k}$ of$f$,

$G_{f}^{k}(z,w)= \lim_{narrow\infty}d^{-n}\log^{+}|J^{n}(z,w)|_{k}$,

$\mathbb{C}^{2}where|(z,$

$w)|_{k}= \max\{|z|^{k}, |w|\}$, is defined, continuous, andplurisubharmonic on

In this paper we call this ffinction the weighted Green fiinction of $f$. The
convergence to $G_{f}^{k}$ is uniform if $d_{1}\leq d_{2}$ .

Moreover, the weighted Green hnction of $f$ relates to the dynamics of the ex-
tension of $f$ to a rational map on the weighted projective space $\mathbb{P}(r, s, 1)$ , where
$r$ and $s$ are the denominator and numerator of $k$, respectively. The weighted pro-
jective space $\mathbb{P}(r, s, 1)$ is a quotient space of $\mathbb{C}^{3}-\{O\}$ ,

$\mathbb{P}(r, s, 1)=\mathbb{C}^{3}-\{O\}/\sim$ ,

where $(z, w, t)\sim(\lambda^{r}z, \lambda^{s}w, \lambda t)$ for any $\lambda$ in $\mathbb{C}-\{0\}$ . We denote a point in the
weighted projective space $\mathbb{P}(r, s, 1)$ by weighted homogeneous coordinates $[z$ :
$w$ : $t]$ . It follows from the definition of $k$ that $f$ extends to a rational map $f$ on
$\mathbb{P}(r, s, 1)$ , where $f[z:w:t]=[\tilde{p}(z, t):\tilde{q}(z,w, t):t^{d}]$ and

$\tilde{p}(z, t)=p(\frac{z}{t^{r}})t^{dr}$ and $\tilde{q}(z,w, t)=q(\frac{z}{t^{r}},$ $\frac{w}{t^{s}})l^{ds}$ .

Indeed, it extends to a weighted homogeneous map $F$ on $\mathbb{C}^{3}$ ,

$F(z,w, t)=(p( \frac{z}{t^{r}})t^{dr},q(\frac{z}{t^{r}},$ $\frac{w}{t^{s}})t^{ds},$ $t^{d})$ ;

that is, $F(\lambda^{r}z, \lambda^{s}w,\lambda t)=(\lambda^{dr}Z, \lambda^{ds}W, \lambda^{d}T)$ for any $\lambda$ in $\mathbb{C}$ , where $(Z, W, T)=$
$F(z,w, t)$ . It follows from definition that $f$ is holomorphic, or equivalently $F$

is non-degenerate if and only if $d_{1}=d_{2}$ . See also [3, Theorem $C$ and Section
5.3] for extensions of polynomial maps on $\mathbb{C}^{2}$ to holomorphic maps on weighted
projectlve spaces.

We define the Fatou set of $f$ as the maximal open set of IP $(r,s, 1)$ where the
family of iterates $U^{\tilde{n}}\}_{n\geq 0}$ is normal. The Julia set of $f$ is defined as the comple-
ment of the Fatou set of $f$. In the case $d_{1}=d_{2}$ , we show that the Fatou and Julia
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sets of the extension of $f$ are determined by the weighted Green hnction of $f$. If
$d_{1}<d_{2}$ , then it follows rather easily that the dynamics near infinity has similar
properties as the case $d_{1}=d_{2}$ . On the other hand, the dynamics near infinity
seems to be unclear if $d_{1}>d_{2}$ .

3 Example
Polynomial skew products that are semiconjugate to polynomial products give us
examples of the Green functions which are not well-behaved on some curves in
$\mathbb{C}^{2}$ and those which coincide with the weighted Green ffinctions on $\mathbb{C}^{2}$ .
Example 3.1. Let $f(z,w)=(z^{2},w^{2}+cz^{4})$ for any $c\neq 0$ . Then $k=2$, and
$f$ is semiconjugate to polynomial product $g(z,w)=(z^{2},w^{2}+c)$ by $\pi(z,w)=$

$(z,z^{2}w)$ : $f\circ\pi=\pi\circ g$. Hence $Q_{z}^{n}(w)=z^{2^{n+1}}q_{c}^{n}(z^{-2}w)$ for $z\neq 0$, where $q_{c}(w)=$

$w^{2}+c$. Let $G_{c}(w)= \lim_{narrow\infty}2^{-n}\log|q_{c}^{n}(w)|$. If $0$ is a periodic point ofperiod
$p>1$ , then $G_{c}$ is not defined on $\{0,q_{c}(0), \cdots,q_{c}^{p-1}(0)\}$ . Hence $G_{z}$ and $G_{f}$ are
not defined on curves $\{(z,q_{c}^{i}(0)z^{2}) : |z|>1\}_{j=0}^{p-1}$ . On the other hand, if$q_{c}^{n}(0)$ tends
to infinity, then $G_{c}$ is well-behaved on $\mathbb{C}$ . Hence $G_{z}$ and $G_{f}$ are well-behaved on
$\mathbb{C}^{2}$ and both coincide with the weighted Greenfmction of$f$.

More generally, for any polynomial $q(w)$ of degree $d$ and for any positive
integer $n$ there exists a polynomial skew product of the form $(z^{d},q(z,w))$ that is
semiconjugate to polynomial product $(z^{d},q(w))$ by projection $\pi(z, w)=(z,z^{n}w)$ .
These maps produce examples similar to Example 3.1.

4 Details in the case $d_{1}=d_{2}$

In this section, we assume that $d_{1}=d_{2}=d$. First, let us give an explanation of
the rational number $k$. If $f$ is regular, then $w^{\beta}$ is a term of highest degree in $q$ ,
which makes an important role on the study of the dynamics of $f$. In general, $\parallel$

may not be a term of highest degree in $q$ . However, if we define the weight of a
monomial $z^{n}\parallel$ as $n+km$, then $\parallel$ is a term of highest weight in $q$ . Although all
arguments in this paper hold with suitable modifications for any rational number
$l$ which is larger than $k$, the minimum $k$ seems to be better. As a remark, the
minimum $k$ might be related to the eigenvaluation of $f$ in [3].

Let $W_{R}=\{|w|>R|z|^{k}, |w|>R^{k+1}\}$ and $A_{f}=U_{n\geq 0}J^{arrow n}(W_{R})$ for large $R>0$ .
Then there exists $c>0$ such that $|q_{z}(w)-\parallel|\leq cR^{-1}$ on $W_{R}$ , and $f$ preserves $W_{R}$ .
Hence the limit $G_{z}$ is well-behaved on $A_{f}$, and $A_{f}$ is independent of $R$ :
Theorem 4.1. If$d_{1}=d_{2}$ , then $G_{z}$ is defined, continuous, andpluriharmonic on
$A_{f}$. Moreover, $G_{z}(w)$ tends to $kG_{p}(z)$ as $(z, w)$ in $A_{f}$ tends to $\partial A_{f}$.
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Hence $G_{f}$ is also well-behaved on $A_{f}$ if $d_{1}=d_{2}$ .

Remark 4.2. Even iff is regular, the theorem above is not trivial. Since $G_{f}$ is
well-behaved on $\mathbb{C}^{2}$ , it is well-known that $G_{z}$ is defined, continuous, andplurihar-
monic on $\{G_{f}>G_{p}\}$ . On the other hand, it follows from Theorem 4.1 that $G_{z}$ is
defined, continuous, andpluriharmonic on $\{G_{f}>kG_{p}\}$ . If$k<1$ , then our region
is bigger than the well-known region.

Let us consider the dynamics of $f$ near infinity. We define the weight of a
monomial $z^{n}W$ as $n+km$. Let $h$ be the weighted homogeneous part of $q$ ; that is,
$h$ is the polynomial consisting of all terms of highest weight $kd$ in $q$ . We assume
that $k$ is an integer for a while. Put $w=cz^{k}$ , then $h(z, cz^{k})=h(1,c)z^{kd}$ . Fix
any $c$ and define $h(c)=h(1, c)$ . It then follows that $h(c)z^{kd}$ is the homogeneous
part of $q(z,cz^{k})$ of degree $kd$, where $h(c)z^{kd}$ and $q(z,cd)$ are polynomials in $z$ .
Moreover, $h^{n}(c)z^{k\theta}$ is the homogeneous part of $Q_{z}^{n}(cz^{k})$ of degree $kd^{n}$ because
$d_{1}=d_{2}$ . If $k$ is not an integer, then $z^{k}$ is not a well-defined ffinction. However,
the polynomial $h$ and the Green function $G_{h}$ have some symmetnies related to the
denominator $r$ of $k$ in that case: $h(c)$ can be written as $c^{l}H(c^{r})$ for some integer
$l\geq 0$ and for some polynomial $H$, the Julia set $J_{h}$ is preserved by the rotation $\rho c$,
where $\rho$ is a r-th root of 1, and $G_{h}(c)=G_{h}(z^{-k}w)$ is a well-defined ffinction in $z$

and $w$ . Hence we get the following asymptotics of $G_{f}^{k}$ near infinity.

Lemma 4.3. If$d_{1}=d_{2}$, then $G_{f}^{k}(z, cz^{k})=k\log|z|+G_{h}(c)+o(1)$ as $|z|arrow\infty$

for anyfixed $c$.

Proposition 4.4. If$d_{1}=d_{2}$ , then $G_{f}^{k}(z,w)=\log|(z,w)|_{k}+\rho_{h}(z^{-k}w)+o(1)$ as
$|(z,w)|_{k}arrow\infty,$ $where\rho_{h}(c)=G_{h}(c)-\log^{+}|c|$ .

We next consider the dynamics of the extension of $f$ to a holomorphic map
$f$ on IP $(r, s, 1)$ , where $;[z : w : t]=[\tilde{p}(z, t) : \tilde{q}(z,w, t) : l^{d}]$ . By definition,
$\tilde{p}(z,t)=z^{d}+tu(z, t)$ for some polynomial $u$, and $\tilde{q}(z,w, t)=h(z,w)+tv(z,w, t)$

for some polynomial $v$, where $h$ contains $w^{d}$ . Hence $f$ is holomorphic; that is, it
has no indeterminacy points. Note that the point $p_{\infty}=[0 : 1 : 0]$ is a superattract-
ing fixed point and that $A_{f}$ coincides with the restriction of the attracting basin

$A_{p_{\infty}}$ to $\mathbb{C}^{2}$ . Let $B_{f}=\mathbb{P}(r,s, 1)-K_{f}UA_{p_{\infty}}$ . Using the Kobayashi hyperbolicity,
we get the following theorem:

Theorem 4.5. $Ifd_{1}=d_{2}$, then the Fatou set offconsists of$intK_{f},$ $A_{p_{\infty}}$ and $intB_{f}$.
In other words, the Julia set off coincides with the closure ofthe set where $G_{f}^{k}$ is
notpluriharmonic, where the closure is taken in IP $(r, s, 1)$ .
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Remark 4.6. We saw that $f$ extends to a non-degenerate weighted homogeneous
map $F$ on $\mathbb{C}^{3}$ if $d_{1}=d_{2}$ . From an argument similar to the proofof[7, Theorem
1.5] itfollows that the weighted Greenfunction $G_{F}^{k}$ of$F$,

$G_{F}^{k}(z,w, t)= \lim_{narrow\infty}\frac{1}{d^{n}}\log|F^{n}(z,w,t)|_{k}$,

where $|(z,w, t)|_{k}= \max\{|z|^{S}.|w|^{r}, |t|^{rs}\}$, is well-behaved on $\mathbb{C}^{3}-\{O\}$ . From identity
$G_{F}^{k}(z,w, 1)=rG_{f}^{k}(z, w)$ it follows that the weighted Green function $G_{f}^{k}$ of$f$ is
well-behaved on $\mathbb{C}^{2}$ . Moreover, one might be able to prove the later statement in
Theorem 4.5for any holomorphic map on a weightedprojective space.

The dynamics of$f$ on $B_{f}$ is as follows. Any point in $B_{f}$ is attracted to the line
at infinity $L_{\infty}=\{t=0\}$ under the iterations, since $L_{\infty}$ is $f$-invariant and attract-
ing. Finally, the dynamics on $L_{\infty}$ , which is induced by the weighted homogeneous
part $h$ of $q$ , should determine the dynamics on $B_{f}$ . We saw that $h(c)$ $:=h(1,c)$

can be wnitten as $c^{l}H(l)$ for some integer $l\geq 0$ and some polynomial $H$, which
is semiconjugate to $c^{l}H(c)^{r}$ by $c^{r}$ . Furthermore, the restriction of $f$ to $L_{\infty}$ is con-
jugate to $c^{l}H(c)^{r}$ .

5 Details in the case $d_{1}\neq d_{2}$

5.1 Case $d_{1}<d_{2}$

In this subsection, we assume that $d_{1}<d_{2}$ . The following theorem follows Rom
the same argument as the proof ofTheorem 4.1.

Theorem 5.1. If$d_{1}<d_{2}$ , then $G_{z}$ is defined, continuous, andpluriharmonic on
$A_{f}$. Moreover, $G_{z}(w)$ tends to $0$ as $(z,w)$ in $A_{f}$ tends to $\partial A_{f}$.

Corollary 5.2. If$d_{1}<d_{2}$ , then $G_{Z}$ is defined, continuous, andplurisubharmonic
on $\mathbb{C}^{2}$ , and it coincides with $G_{f}$.

The dynamics of the extension of $f$ to a rational map $f$ on $P(r,s, 1)$ is as
follows. By definition, $\tilde{p}$ is divisible by $t$ and $\tilde{q}(z, w, t)=h(z, w)+tv(z,w, t)$ for
some polynomial $v$, where $h$ is the weighted homogeneous part of $q$ containing
$\parallel$ . Note that the point $p_{\infty}=[0 : 1 : 0]$ is a superattracting fixed point and that
$A_{f}$ coincides with the restriction of the attracting basin of the point above to $\mathbb{C}^{2}$ .
We denote the indeterminacy set of $f$ by $I$. Then $I=\{[z:w:0] : h(z,w)=0\}$ .
Since $f$ maps $L_{\infty}-I$ to $p_{\infty}$ , the attracting basin $A_{p_{\infty}}$ of $p_{\infty}$ includes an open
neighborhood of $L_{\infty}-I$ . Let $A_{I}$ be the attracting basin of $I$ not including $I$; then
$\mathbb{P}(r, s, 1)-K_{f}$ consists of$A_{p_{\infty}},$ $A_{I}$ and $I$ . Consequently, the Fatou set of$f$ consists
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of $intK_{f},$ $A_{p_{\infty}}$ and $intA_{I}$ . The Julia set of $f$ consists of $\partial K_{f},$ $\partial A_{p_{\infty}}$ and $\partial A_{I}$ . Note
that the restriction of $A_{I}$ to $\mathbb{C}^{2}$ is the set where $G_{f}=0$ and $G_{p}>0$ . Hence the
Julia set of$f$ includes the closure of the set where $G_{f}$ is not pluriharmonic, where
the closure is taken in $\mathbb{P}(r, s, 1)$ .

5.2 Case $d_{1}>d_{2}$

The aspect is different if $d_{1}>d_{2}$ . Fix positive integers $r’$ and $s’$ such that $\frac{s’}{r}>k$.
Then $[1 : 0 : 0]$ is an attracting fixed point of the extension of$f$ to a rational map
on $\mathbb{P}(r’, s’, 1)$ . Hence we have the following statement.

Theorem 5.3. If $d_{1}>d_{2}$, then $G_{z}^{*}\leq kG_{p}$ on $\mathbb{C}^{2}$ , where $6_{z}^{*}=$ $\lim supnarrow\infty$

$d^{-n}\log^{+}|Q_{z}^{n}|$ . In particular, if$k\leq 1$ , then $G_{f}=G_{p}$ on $\mathbb{C}^{2}$ .

The dynamics of the extension $f$ is as follows. By definition, $\tilde{p}(z, t)=z^{d}+$

$tu(z,t)$ for some polynomial $u$ , and 7 $(z,w, t)=h(z, w)+tv(z,w, t)$ for some
polynomial $v$, where $h$ is divisible by $z$ . Thus $p_{\infty}$ is the unique indeterminacy
point and the dynamics near infinity is unclear.
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