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1 Introduction
In this note, we consider Axiom A regular polynoinial skew products on $\mathbb{C}^{2}$ .
It is of the form : $f(z, w)=(p(z), q(z, w))$ , where $p(z)=z^{d}+\cdots$ and $q_{z}(w)=$

$q(z, w)=w^{d}+\cdots$ are polynomials of degree $d\geq 2$ . Then its k-th iterate is
expressed by:

$f^{k}(\vee, \cdot w)=(p^{k}(z), q_{p^{k-1}(z)}o\cdots oq_{z}(w))=:(p^{k}(z), Q_{z}^{k}(w))$ .

Hence it preserves the family of fibers $\{\sim 2^{\prime\}}\cross \mathbb{C}$ and this makes it possible to
study its dynamics more precisely. Let $K$ be the set of points with bounded
orbits and put $K_{z}:=\{w\in \mathbb{C};(z, w)\in K\}$ and $K_{J_{p}}:=K\cap(J_{p}\cross \mathbb{C})$ . The fiber
Julia set $J_{z}$ is the boundary of $K_{z}$ .

Let $\Omega$ be the set of non-wandering points for $f$ . Then $f$ is said to be
Axiom $A$ if $\Omega$ is compact, hyperbolic and periodic points are dense in $\Omega$ . For
polynomial skew products, Jonsson [J2] has shown that $f$ is Axiom A if and
only if the following three conditions are satisfied :

(a) $p$ is hyperbolic,
(b) $f$ is vertically expanding over $J_{p}$ ,
(c) $f$ is vertically expanding over $A_{p}$ $:=$ {attracting periodic points of $p$}.
Here $f$ is vertically expanding over $Z\subset \mathbb{C}$ with $p(Z)\subset Z$ if there exist $\lambda>1$

and $C>0$ such $tha|t|(Q_{z}^{k})’(w)|\geq C\lambda^{k}$ holds for any $\approx\in Z,$ $w\in J_{z}$ and $k\geq 0$ .
We are interested in the dynamics of $f$ on $J_{p}\cross \mathbb{C}$ because the dynamics

outside $J_{p}\cross \mathbb{C}$ is fairly simple. Consider the critical set

$C_{J_{p}}=\{(z, w)\in J_{p}\cross \mathbb{C};(1_{z}’(w)=0\}$

over the base Julia set $J_{p}$ . Let $l^{4}$ be the ergodic measure of maximal entropy
for $f$ (see Fornaess and Sibony [FSl]). Its support $J_{2}$ is called the second Julia
set of $f$ . Let $PC_{J_{p}}$ $:= \bigcup_{n\geq 1}f^{r\iota}\cdot(C_{J_{\rho}})$ be the postcritical set of $C_{J_{p}}$ . Jonsson [J2]
has shown that

数理解析研究所講究録
第 1699巻 2010年 81-87 81



(d) $J_{2}= \bigcup_{z\in J_{\nu}}\{z\}\cross J_{z}$ (Corollary 4.4),
(e) the condition $(t))\Leftrightarrow PC_{J_{p}}\cap J_{2}=\emptyset$ (Theorerri 3.1),
$(f).J_{2}$ is the closure of the set of repelling periodic points of $f$ (Corollary 4.7).

By the Birkhoff ergodic theorem, $\mu- a.e$ . $x$ has a dense $ort$) $it$ in $J_{2}$ . Es-
pecially, $J_{2}=supp$ $l^{\iota}$ is transitive. Hence $J_{2}$ coincides with the basic set of
unstable dimension two. See also [FS2].

For any subset $X$ in $\mathbb{C}_{\grave{J}}^{2}$ its accumulation set is defined by

$A(X)= \bigcap_{N\geq 0}\overline{\bigcup_{n\underline{>}lV}f^{n}(X)}$ .

DeMarco&Hruska [DHl] defined the pointwise and component-wise accumu-
lation sets of $C_{J}$. respectively by

$A_{pt}(C_{J_{\rho}})=\overline{\bigcup_{x\in C_{J_{p}}}A(x)}$ and $A_{cc}(C_{J_{p}})=\overline{\bigcup_{C\in C(C_{J_{\rho}})}A(C)}$ ,

where $C(C_{J_{\rho}})$ denotes the collection of connected components of $C_{J_{\rho}}$ . It follows
from the definition that

$A_{pt}(C_{J_{p}}$ノ $)\subset A_{CC}(C_{J_{\rho}})\subset A(C_{J_{p}})$ .

It also follows that $\mathcal{A}_{pt}(C_{J_{\nu}})=A_{CC}(C_{J_{\rho}})$ if $J_{p}$ is a Cantor set and $A_{CC}(C_{J_{\rho}})=$

$A(C_{J_{\rho}})$ if $J_{\rho}$ is connected.
Let $\Lambda\})e$ the closure of the set of saddle periodic points in $J_{p}\cross \mathbb{C}$ . It

decomposes into a disjoint union of saddle basic sets: $\Lambda=u_{i=1}^{m}\Lambda_{i}$ . Put $\Lambda_{z}=$

$\{w\in \mathbb{C};(z, w)\in\Lambda\}$ . The stable and unstable manifolds of $\Lambda$ are respectively
defined by

$W^{s}(\Lambda)$ $=$ $\{y\in \mathbb{C}^{2};f^{k}(y)arrow\Lambda\}$ ,
$\dagger t^{ru}(\Lambda)$ $=$ { $y\in \mathbb{C}^{2};\exists$ backward orbit $\hat{y}=(y_{-k})$ tending to $\Lambda$ }.

Theorem A. ([DHl])

$A_{pt}(C_{J_{p}})=\Lambda$ , $A(C_{J_{p}})=fi^{ru}/(\Lambda)\cap(J_{p}\cross \mathbb{C})$ .

Theorem B. ([DHl, DH2])

$A_{CC}(C_{J_{\rho}})=A_{pt}(C_{J_{p}})$ $\Rightarrow$ $\forall C\in C(C_{J_{p}}),$ $C\cap K=\emptyset$ or $C\subset K$ . (1)
$A_{pt}(C_{J_{\rho}})=A(C_{J_{p}}$ノ $)$ $\Leftrightarrow$ the map $z\mapsto\Lambda_{z}$ is continuous in $J_{p}$ . (2)

Under the assumption $l\Psi^{u}(\Lambda)\cap M^{rs}/(\Lambda)=\Lambda$ ,

$A_{pt}(C_{J_{p}}$ノ $)=A(C_{J_{p}})\Leftrightarrow$ the map $z\mapsto K_{z}$ is continuous in $J_{p}$ . (3)
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Note that

$\nu V^{u}(\Lambda)\cap W^{s}(\Lambda)=\Lambda\Leftrightarrow 7’V^{u}(\Lambda_{i})\cap W^{s}(\Lambda_{j})=\emptyset$ for any $1\leq i\neq j\leq m$ . (4)

Sumi [S] gives an example of Axiom A polynomial skew product which does
not satisfy the condition in (4). It is also (incorrectly) described as Example
5.10 in [DHl].

$\backslash 1^{\gamma}e$ define a relation $\succ$ among saddle basic sets by $\Lambda_{i}\succ\Lambda_{j}$ if $(W^{u}(\Lambda_{i})\backslash$

$\Lambda_{i})\cap(W^{s}(\Lambda_{j})\backslash \Lambda_{j})\neq\emptyset$. A cycle is a chain of basic sets : $\Lambda_{i_{1}}\succ\Lambda_{i_{2}}\succ\cdots\succ$

$\Lambda_{i_{\iota}},=\Lambda_{i_{1}}$ . For Axiom A open endomorphisms, there is no trivial cycle because
$W^{u}(\Lambda_{i})\cap W^{s}(\Lambda_{i})=\Lambda_{i}$ holds for any $i$ . See [J2], Proposition A.4. Jonsson
has also shown that, for Axiom A polynomial skew products on $\mathbb{C}^{2}$ , the non-
wandering set $\Omega$ coincides with the chain recurrent set $\mathcal{R}$ . This leads to the
following lemma, which we use later.

Lemma 1. ([J2], Corollary 8.14) Axiom A polynomial skew products on $\mathbb{C}^{2}$

have no cycles.

Put
$C_{0}$ $:=C_{J_{p}}\backslash K$ , $C_{i}$ $:=C_{J_{\rho}}\cap W^{s}(\Lambda_{i})(1\leq i\leq m)$ .

We will try to give characterizations of the equalities $A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{\rho}}’)$ and
$A_{pt}(C_{J_{p}})=A(C_{J_{p}})$ in terms of $C_{i}$ .

Lemma 2. $C_{\text{ノ}}J_{p}=u_{i=0}^{m}C_{i}$ .

proof. By Proposition 3.1 in Jonsson [Jl], $\hat{\Omega}$ has local product structure
for open Axiom A endomorphisms. Theorem A implies $A(x)\subset\Lambda$ for any
$x\in C_{J_{p}}$ . If $A(x)=\emptyset$ , then $x\in C_{0}$ . Otherwise there exist an $n$ and $y\in\Lambda$

such that $f^{n}(x)\in W_{loc}^{s}(y)$ . Hence $A(x)\subset\Lambda_{i}$ if $y\in\Lambda_{i}$ . Thus we conclude
$C_{J_{p}}=u_{i=0}^{m}C_{i}$ . $\square$

If we put $\Lambda_{0}=\emptyset$ , we have $A(C_{i})\supset A_{pt}(C_{i})=\Lambda_{i}$ for any $i\geq 0$ .

Theorem 1.

$A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})\Leftrightarrow\forall C\in C(C_{J_{p}}),$ $0\leq\exists i\leq m$ such that $C\subset C_{i}$ . (5)

In terms of $C_{i}$ , the condition in (1) is expressed by

$\forall C\in C(C_{J_{P}})$ , $C\subset C_{0}$ or $C \subset\bigcup_{i=1}^{m}C_{i}$ .

Hence, if $m=1$ , that is, $\Lambda$ itself is a basic set, then the condition in (5)
coincides with that in (1). In general, the condition in (5) is stronger than
that in (1).

$11^{\gamma}e$ have another characterization of $A_{pt}(C_{J_{p}})=A(C_{J_{p}}’)$ in terms of $C_{i}$ .
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Theorem 2. For any $i\geq 0$ , we have

$A(C_{i})=A1_{i}\Leftrightarrow C_{i}$ is closed. (6)

Consequently we have

$A_{pt}(C_{J_{\rho}})=A(C_{J_{p}})\Leftrightarrow C_{i}$ is closed for any $i\geq 0$ .

As for the $con(litioii$ in (3), we have

Theorem 3. The following three conditions are equivalent to each other.
$(a)C_{0}$ is closed,
$(b)A(C_{J_{p}})=W^{u}(\Lambda)’$ ,
$(c)$ the map $z\mapsto K_{z}$ is continuous in $J_{p}$ .

Note that Theorem 3 reproves the equivalence (3) in Theorem B. We also
note that $A_{pt}(C_{J_{p}}$ノ $)=A(C_{J_{l^{y}}})$ is equivalent to

$Tf^{\gamma u}(\Lambda)\cap(J_{p}\cross \mathbb{C})=\nu V^{u}(\Lambda)\cap\uparrow\eta^{rs},(\Lambda)=\Lambda$ .

Corollary 1. Suppose $C_{0}$, is closed. Then,

$W^{u}(\Lambda)\cap l/\dagger^{rS}!(\Lambda)=\Lambda\Leftrightarrow C_{i}$ is closed for any $i\geq 1$ .

We do not know whether the assumption that $C_{0}$ is closed can be removed
or not. The $(\Rightarrow)$ part holds without this assumption.

The author would like to thank Hiroki Sumi for helpful discussion on his
exarnple.

2 Proofs of Theorems
First we prove Theorem 1. Note that $A_{pt}(C_{J_{p}}$ノ $)=A_{cc}(C_{J_{p}})$ if and only if
$A4(C)\subset\Lambda$ for any $C\in C(C_{J_{\rho}})$ .
$(\Rightarrow)$ Suppose $C\in C(C_{J_{p}})$ intersects at least two of $C_{i}$ . By Theorem $B,$ (1), we
rnay assume $C \subset\bigcup_{i=1}^{m}C_{i}$ . Then, }$)y$ Lemma 2, we have $C=u_{i=1}^{m}(C\cap C_{i})$ . If
all $C\cap C_{i}$ are closed, it contradicts $t\}_{1e}$ connectivity of $C$ . Thus at least one of
them is not closed. We may assume that there exists a sequence $x_{n}\in C\cap C_{i}$

tending to $x_{0}\in C\cap C_{j}$ for some $i\neq j$ . Take a small open neighborhood
$U_{k}$ of $\Lambda_{k}$ for $1\leq k\leq m$ so that $f(U_{k})\cap U_{\ell}=\emptyset$ for $k\neq\ell$ . Since $x_{0}\in C_{j}$ ,
there exists a $K>1$ such that $f^{k}(x_{0})\in U_{j}$ for $k\geq K$ . Then $f^{K}(x_{n})\in U_{j}$

for large $n$ . Since $x_{n}\in C_{i}$ , the orbit of $x_{n}$ eventually leaves $U_{j}$ . Hence put
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$k_{n}$ $:= \min\{k\geq K;f^{k}(x_{?l})\not\in U_{j}\}$ . We will show $k_{n}arrow\infty$ . Otherwise, taking
a subsequence, we may assume $\{k_{n}\}$ is bounded. Then there is a subsequence
$n_{\ell}$ such that $k_{n_{\ell}}=L$ for all $p$ . That is, $f^{L}(x_{n_{\ell}})\not\in U_{j}$ . Taking $\ellarrow\infty$ , we
have $f^{L}(x_{0})\not\in U_{j}$ , which contradicts $L\geq K$ . Now let $y$ be an accumulation
point of the sequence $\{f^{k_{n}}(x_{n})\}$ . From the definition of $U_{k}$ , we have $y\not\in\cup U_{k}$ ,
hence $y\not\in\Lambda$ . Since $y\in A(C)$ , this implies $A_{cc}(C_{J_{P}})$ contains a point $y$ outside
$\Lambda=A_{pt}(C_{J_{\rho}})$ . Thus we conclude $A_{pt}(C_{J_{p}})\neq A_{C\mathcal{L}}(C_{J_{\rho}})$ .

Moreover we can prove $y\in W^{u}(\Lambda_{j})$ . In fact, by taking subsequences if
necessary, put $y_{-f}= \lim_{7tarrow\infty}f^{k_{n}-\ell}(x_{n})$ . Then $\{y_{-}\ell;\ell\geq 0\}$ forms a backward
orbit of $y$ in $\overline{U_{j}}$ . By the local product structure of $\hat{\Omega}$ , we conclude $y_{-l}arrow\Lambda_{j}$ ,
hence $y\in t\eta^{ru},(\Lambda_{j})$ .
$(\Leftarrow)$ We have only to show that $A(C)\subset\Lambda_{i}$ if $C\subset C_{i}$ . If $C\subset C_{0}$ , then
$A(C)=\emptyset$ since $C$ is compact. Suppose $C\subset C_{i}$ and there exists $x\in A(C)\backslash \Lambda_{i}$

for $i\geq 1$ . By taking $U_{i}$ small, there exists a neighborhood $V$ of $x$ such that
$V\cap U_{i}=\emptyset$ . Since $x\in\overline{\bigcup_{k\geq N}f^{k}(C)}$ for any $N\geq 0$ , there exist $m_{n}\nearrow\infty$ and
$x_{n}\in C$ such that $f^{m_{\mathfrak{n}}}(x_{n})\in V$ , i.e. $f^{m_{\iota}}’(x_{n})\not\in U_{i}$ for any $n$ . Since $C$ is
closed, we may assume $x_{n}$ tends to some $x_{0}\in C\subset C_{i}$ . As above, if we put
$k_{n}$ $:= \min\{k\geq K;f^{k}(x_{n})\not\in U_{i}\}$ , we have an accumulation point $y$ of $\{f^{k_{7\prime}}(x_{n})\}$

outside $\Lambda$ . By the above remark, $y\in W^{u}(\Lambda_{i})\backslash \Lambda_{i}$ . We have $y\not\in W^{s}(\Lambda_{i})$ because
$W^{u}(\Lambda_{i})\cap W^{s}(\Lambda_{i})=\Lambda_{i}$ . Since $y\in A(C),$ $y\in K_{J_{p}}\backslash J_{2}=W^{s}(\Lambda)$ . Thus $y$ must
belong to $W^{s}(\Lambda_{i_{1}})$ for some $i_{1}\neq i$ . That is, we have a sequence $\{f^{k_{n}}(x_{n})\}$ in
$W^{s}(\Lambda_{i})$ tending to $y\in W^{u}(\Lambda_{i})\cap W^{s}(\Lambda_{i_{1}})$ , hence we have an order $\Lambda_{i}\succ\Lambda_{i_{1}}$ .

By successively applying this argument, we have a chain of saddle basic
sets :

$\Lambda_{i}\succ\Lambda_{i_{1}}\succ\Lambda_{i_{2}}\succ\cdots$ , $i\neq i_{1}\neq i_{2}\neq\cdots$

Since there exist only finitely many basic sets, we must have a cycle of them,
whicli contradicts Lemma 1. This completes the proof of Theorem 1. $\square$

We will prove Theorem 2. By the sarne argument as above, we have

Lemma 3. Let $i,$ $j\geq 1$ . If $\overline{C_{i}}\cap C_{j}\neq\emptyset$ , then $A(C_{i})\cap(W^{u}(\Lambda_{j})\backslash \Lambda)\neq\emptyset$ . If $C_{i}$

is closed, then $A(C_{i})=\Lambda_{i}$ .

Note that $A_{pt}(C_{J_{\rho}})=A(C_{J_{p}}$ノ $)$ if and only if $A(C_{i})\subset\Lambda$ for any $i$ . We have
only to show (6).

$(\Rightarrow)$ If $C_{i}$ for some $i$ is not closed, then there exists a $j\neq i$ such that
$\overline{C_{i}}\cap C_{j}\neq\emptyset$ . If $i\geq 1$ , then $j\geq 1$ and by Lemma 3, $A(C_{i})$ contains a point
outside $\Lambda$ . Suppose $C_{0}$ is not closed. Then there exists a sequence $x_{n}\in C_{0}$

tending to a point $x_{0}\in C_{i}$ for some $i\geq 1$ . For a fixed large $R>0$ , put
$k_{n}$ $:= \min\{k\in \mathbb{N};||f^{k}(x_{n})||>R\}$ . It is easy to see $k_{n}arrow\infty$ . (Otherwise,
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$||f^{L}(x_{0})||\geq R$ for some $L\geq K$ , which contradicts $x_{0}\in C_{i}.$ ) Note that
$\{f^{k_{r\iota}}(\lambda_{n})\}$ is }$)0\iota\iota nde(1$ . Tlius, if we take any one of its accuinulation points $y$ ,
then $y\in A(C_{0})\backslash A_{J_{t}}^{\nearrow},$ , hence $A(C_{0})$ intersects $W^{u}(\Lambda)\backslash 1i_{J_{p}}’$ .

$(\Leftarrow)$ By Lemma 3, it follows that, for $i\geq 1,$ $A(C_{i})=\Lambda_{i}$ if $C_{i}$ is closed. If $C_{0}$ is
closed, it is compact, hence $A(C_{0})=\emptyset$ . This completes the proof of Theorem
2. $\square$

Now we prove Theorem 3.
$(a)\Rightarrow(b)$ By Theorem 2, $A(C_{0})=\emptyset$ if $C_{\text{ノ}}0$ is closed. Then

$A(C_{J_{p}}’)= \bigcup_{i=1}^{7n}A(C_{i})\subset A_{J_{p}}’\cap(I/V^{u}(\Lambda)\cap(J_{p}\cross \mathbb{C}))=\uparrow\eta^{ru},(\Lambda)’$ .

$(b)\Rightarrow(a)$ As is shown in the proof of Theorem 2, if $C_{0}$ is not closed, then
$A(C_{0})$ intersects $iV^{u}(\Lambda)\backslash A_{J_{p}}’$ . Thus $A(C_{J_{l)}})\neq W^{u}(\Lambda)\cap W^{s}(\Lambda)$ .
$(c)\Rightarrow(a)$ Suppose $C_{0}$ is not closed. Then there exists a sequence $x_{n}=$

$(z_{n}, c_{n})\in C_{0}$ tending to a point $x_{0}=(z_{0}, c_{0})\in C_{i}$ for some $i\geq 1$ . Then there
exists $\delta>0$ such that $\mathbb{D}(c_{0}, \delta)\subset int$ $K_{z_{0}}$ since $c_{0}\in int$ $K_{z_{0}}$ . Note that the
map $z\mapsto J_{z}$ is continuous in $J_{p}$ . Hence, if $z$ is close to $z_{0}$ , we have either
$\mathbb{D}(c_{0}, \delta)\subset$ int $K_{z}$ or $\mathbb{D}(c_{0}, \delta)\cap K_{z}=\emptyset$ . Since for large $n,$ $c_{r\iota}\in \mathbb{D}(c_{0}, \delta)$ is
outside $K_{z_{n}}$ , we conclude that $\mathbb{D}(c_{0}, \delta)\cap K_{z_{\gamma\iota}}=\emptyset$ for large $n$ . This implies the
discontinuity of the map $z\mapsto K_{z}$ at $z=z_{0}$ .

$(a)\Rightarrow(c)$ We use the argument in Lemma 3.7 of [J2]. Note that $z\mapsto K_{z}$ is
upper semi-continuous in $J_{p}$ . Hence if $z\mapsto K_{z}$ is discontinuous at $z=z_{0}$ , then
it is not lower semi-continuous there. Thus there exist $w_{0}\in intK_{z_{0}}$ and $\delta>0$

such that $D(w_{0}, \delta)\cap K_{z}=\emptyset$ for $z\neq z_{0}$ close to $\approx 0$ . Put $(\approx w)=f^{k}(z_{0}, w_{0})$ .
By Corollary 3.6 in [J2] (see also Theorem 3.3 and Lemrria 3.2 in Comerford
[C] $)$ , there exist $k$ and a critical point $(k$ of $q_{z_{k}}$ in the connected component
$U_{w_{k}}$ of int $K_{z_{k}}$ containing $w_{k}$ such that, for any $\epsilon>0$ , there exists an $n$ so
that $|w_{n}-Q_{z_{k}}^{n-k}(c_{k})|<\epsilon$ . Since $C_{0}$ is closed, the set $\bigcup_{i=1}^{m}C_{i}\ni(z_{k}, c_{k})$ is away
from $C_{0}$ . Thus the critical point $c_{k}$ of $q_{p^{k}(z)}$ close to $c_{k}$ for $z$ sufficiently close
to $\sim 0\vee$ also belongs to int $K_{p^{k}(z)}$ . For this $n$ , take $z$ sufficiently close to $z_{0}$ so
that $|Q_{z}^{n}(u)0)-w_{n}|<\epsilon$ and that $|Q_{p^{k}(z)}^{n-k}(c_{k}’)-Q_{z_{k}}^{n-k}(c_{k})|<\epsilon$ . Thus we have

$|Q_{z}^{n}(w_{0})-Q_{p^{k}(z)}^{n-k}(c_{k}’)|$ $\leq$ $|Q_{z}^{n}(w_{0})-w_{n}|+|w_{n}-Q_{z_{k}}^{n-k}(c_{k})|$

$+|Q_{z_{k}}^{n-k}(c_{k})-Q_{p^{k}(z)}^{n-k}(c_{k}’)|$

$<$ $3\epsilon$ .
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Since $Q_{\gamma}^{n}\sim(w_{0})\not\in K_{p^{r\iota}(z)}$ and $Q_{p^{k}(\sim*)}^{n-k}(c_{k}’)\in int$ $K_{p’{}^{t}(z)}$ , this implies the distance
of the postcritical set from $J_{2}$ is less than $3\epsilon$ . Since we can take $\epsilon$ arbitrarily
small, this contradicts the fact that $f$ is Axiom A. This completes the proof
of Theorem 3. $\square$

Remark 1. $[$DHl, DH2$]$ has proved $(c)\Rightarrow(b)$ .
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