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Component-wise accumulation sets for Axiom A polynomial skew products
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1 Introduction

In this note, we consider Axiom A regular polynomial skew products on C2.
It is of the form : f(z,w) = (p(2), q(z,w)), where p(z) = 2% +--- and ¢,(w) =
g(z,w) = w® + --- are polynomials of degree d > 2. Then its k-th iterate is
expressed by :

FHzw) = (05(2), g1z 0 -+ - 0 a(w)) =2 (p°(2), Q% (w)).

Hence it preserves the family of fibers {z} x C and this makes it possible to
study its dynamics more precisely. Let K be the set of points with bounded
orbits and put K, := {w € C; (z,w) € K} and K;, := KN(J, x C). The fiber
Julia set J, is the boundary of K,.

Let ©2 be the set of non-wandering points for f. Then f is said to be
Aziom A if Q is compact, hyperbolic and periodic points are dense in 2. For
polynomial skew products, Jonsson [J2] has shown that f is Axiom A if and
only if the following three conditions are satisfied :

(a) p is hyperbolic,
(b) f is vertically expanding over J,
(c) f is vertically expanding over A, := {attracting periodic points of p}.

Here f is vertically expanding over Z C C with p(Z) C Z if there exist A > 1
and C > 0 such that [(Q%) (w)| > C)* holds for any 2 € Z,w € J, and k > 0.

We are interested in the dynamics of f on J, x C because the dynamics
outside J, x C is fairly simple. Consider the critical set

Cy, = {(z,w) € J, x C; ¢, (w) = 0}

over the base Julia set J,. Let u be the ergodic measure of maximal entropy
for f (see Fornaess and Sibony [FS1]). Its support J is called the second Julia
setof f. Let PC; := Up>1f"(C},) be the posteritical set of C;,. Jonsson [J2]
has shown that
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(d) Jo = Uzeq, {2} x J. (Corollary 4.4),
(e) the condition (b) <= PC; N .J, =0 (Theorem 3.1),
(f) J is the closure of the set of repelling periodic points of f (Corollary 4.7).

By the Birkhoff ergodic theorem, p-a.e. x has a dense orbit in J,. Es-
pecially, Jo = supp u is transitive. Hence J, coincides with the basic set of
unstable dimension two. See also [F'S2].

For any subset X in C?, its accumulation set is defined by

A(X) = ONEOUnZan(X)'

DeMarco & Hruska [DH1]| defined the pointwise and component-wise accumu-
lation sets of C';, respectively by

Apt(CJp) = UIEC‘JPA(:E) and ACC(CJP) = UCeC(CJP)A(C)a

where C(C},) denotes the collection of connected components of C,,. It follows
from the definition that

Apt(CJp) C ACC(CJP) C A(CJP).

It also follows that Ay (C,,) = Ac(Cy,) if J, is a Cantor set and A..(C;) =
A(Cy,) if J, is connected.

Let A be the closure of the set of saddle periodic points in J, x C. It
decomposes into a disjoint union of saddle basic sets : A = U2, A;. Put A, =
{w € C;(z,w) € A}. The stable and unstable manifolds of A are respectively
defined by '

W (A) = {yeC%fy) — A},
W*(A) = {y € C?% 3 backward orbit § = (y_x) tending to A}.

Theorem A. ([DHI])
Apt(Cy) =A, A(C;) =W*A)N(J, x C).
Theorem B. ([DH1, DH2])

Acc(CJp) :Apt(CJp) = VCEC(CJP),COKZO orC C K. (1)
Ap(Cy,) = A(Cy,) <= the map z — A, is continuous in J,. (2)

Under the assumption W*(A) N W3 (A) = A,

Ap(Cy,) = A(C;,) < the map z — K, is continuous in J. (3)



83

Note that
WHA)NW(A) = A < W*(A;) N W?H(A;) = O forany 1 <i#j<m. (4)

Sumi [S] gives an example of Axiom A polynomial skew product which does
not satisfy the condition in (4). It is also (incorrectly) described as Example
5.10 in [DH1].

We define a relation > among saddle basic sets by A; = A; if (W*(A;) \
A) N (W2E(A;) \ Aj) # 0. A cycle is a chain of basic sets : Ay, > Ay > - >
A;, = A;,. For Axiom A open endomorphisms, there is no trivial cycle because
W*(A;) N W?2(A;) = A; holds for any i. See [J2], Proposition A.4. Jonsson
has also shown that, for Axiom A polynomial skew products on C?, the non-
wandering set () coincides with the chain recurrent set R. This leads to the
following lemma, which we use later.

Lemma 1. ([J2], Corollary 8.14) Aziom A polynomial skew products on C2
have no cycles.

Put
CO = CJP \ K', Cz = CJP N VVS(AZ') (1 <1< m)

We will try to give characterizations of the equalities A..(C;,) = Ap(C,) and
Ap(Cy,) = A(Cy,) in terms of C;.

Lemma 2. C;, = U2,C;.

proof. By Proposition 3.1 in Jonsson [J1], Q has local product structure
for open Axiom A endomorphisms. Theorem A implies A(z) C A for any
z € Cy,. If A(x) =0, then x € Cy. Otherwise there exist an n and y € A
such that f*(z) € Wg,.(y). Hence A(z) C A; if y € A;. Thus we conclude
CJP = Un,C;. O

(2

If we put Ay = 0, we have A(C;) D Ay, (Ci) = A; for any i > 0.
Theorem 1. ,
Aee(Cy,) = Ap(Cy,) <= VC € C(Cy,), 0 < Fi <m such that C C C;. (5)
In terms of Cj;, the condition in (1) is expressed by
vC eC(Cy,), CcCCyorCCULC;.

Hence, if m = 1, that is, A itself is a basic set, then the condition in (5)
coincides with that in (1). In general, the condition in (5) is stronger than
that in (1).

We have another characterization of A, (C;,) = A(C;,) in terms of C;.
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Theorem 2. For any i > 0, we have
A(Cy) = A < C; 15 closed . (6)
Consequently we have
Ap(Cy,) = A(Cy,) <= C; is closed for any ¢ > 0.
As for the condition in (3), we have

Theorem 3. The following three conditions are equivalent to each other.
(a) Cy is closed,

(b) A(Cy,) = WH(A) N W*(A),

(¢) the map z = K, is continuous in J,.

Note that Theorem 3 reproves the equivalence (3) in Theorem B. We also
note that A, (C,,) = A(C},) is equivalent to

WA)N(J, x C) = W*(A)NW?*(A) = A.
Corollary 1. Suppose Cy is closed. Then,
WH*(A)NW?*(A) = A < C; is closed for any i > 1.

We do not know whether the assumption that Cj is closed can be removed
or not. The (=) part holds without this assumption.

The author would like to thank Hiroki Sumi for helpful discussion on his
example.

2 Proofs of Theorems

First we prove Theorem 1. Note that A, (C;) = A(C,) if and only if
A(C) c Aforany C € C(Cy,).

(=) Suppose C € C(Cj,) intersects at least two of C;. By Theorem B, (1), we
may assume C' C U2, C;. Then, by Lemma 2, we have C' = U2, (C N C;). If
all C N C; are closed, it contradicts the connectivity of C. Thus at least one of
them is not closed. We may assume that there exists a sequence z, € C N C;
tending to zo € C' N C; for some i # j. Take a small open neighborhood
Ur of Ay for 1 < k < m so that f(Uy) NU, = 0 for k # €. Since zo € Cj,
there exists a K > 1 such that f*(zo) € U; for k > K. Then f¥(z,) € U;
for large n. Since z, € C;, the orbit of x, eventually leaves U;. Hence put
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kn = min{k > K; f*(z,) ¢ U;}. We will show k, — oco. Otherwise, taking
a subsequence, we may assume {k,} is bounded. Then there is a subsequence
n¢ such that k,, = L for all £. That is, ff(x,,) ¢ U;. Taking £ — oo, we
have f%(zo) ¢ U;, which contradicts L > K. Now let y be an accumulation
point of the sequence {f**(z,)}. From the definition of Uy, we have y ¢ UUj,
hence y ¢ A. Since y € A(C), this implies A.(C},) contains a point y outside
A = Ap(Cy,). Thus we conclude Ay (Cr) # Ac(Cy,).

Moreover we can prove y € W"(A;). In fact, by taking subsequences if
necessary, put y_, = lim, o f*~%(z,). Then {y_; ¢ > 0} forms a backward
orbit of y in U;. By the local product structure of Q, we conclude y_, — Ay,
hence y € W*(A;). '

(<) We have only to show that A(C) c A, if C € C;. If C C Cy, then
A(C) = 0 since C is compact. Suppose C C C; and there exists z € A(C) \ A;
for ¢ > 1. By taking U; small, there exists a neighborhood V' of z such that
VNU; = 0. Since z € Ug>n f*¥(C) for any N > 0, there exist m,, oo and
z, € C such that f™(z,) € V, ie. f™(z,) ¢ U; for any n. Since C is
closed, we may assume z,, tends to some zqg € C C C;. As above, if we put
kn := min{k > K; f*¥(z,) ¢ U;}, we have an accumulation point y of { f*(z,)}
outside A. By the above remark, y € W*(A;)\A;. We have y ¢ W*(A;) because
Wu(A;)) "NW3(A;) = A;. Since y € A(C), y € K, \ J, = W*(A). Thus y must
belong to W#(A;,) for some 4; # i. That is, we have a sequence {f*~(z,)} in
W4(A;) tending to y € W¥(A;) N W*(A;,), hence we have an order A; = A;,.

By successively applying this argument, we have a chain of saddle basic
sets :

A’i>'A'i1>'Ai2>""> Z?é?,l%?,z#

Since there exist only finitely many basic sets, we must have a cycle of them,
which contradicts Lemma 1. This completes the proof of Theorem 1. [J

We will prove Theorem 2. By the same argument as above, we have

Lemma 3. Let ’L,] > 1. Ifaﬂ Cj 75 @, then A(Cz) N (W/u('/\j) \ A) ?é 0 If Ci
is closed, then A(C;) = A;.

Note that A4,,(C;,) = A(C},) if and only if A(C;) C A for any i. We have
only to show (6).

(=) If C; for some ¢ is not closed, then there exists a j # ¢ such that
C;NC;#0. Ifi > 1, then j > 1 and by Lemma 3, A(C;) contains a point
outside A. Suppose Cj is not closed. Then there exists a sequence z, € C
tending to a point zqg € C; for some ¢ > 1. For a fixed large R > 0, put
kn = min{k € N;||f*(z,)|| > R}. It is easy to see k, — oo. (Otherwise,
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l|fE(z0)]] > R for some L > K, which contradicts z, € C;.) Note that
{f*+(x,)} is bounded. Thus, if we take any one of its accumulation points y,
then y € A(Co) \ K, hence A(C)h) intersects W*(A) \ K .

(<) By Lemma 3, it follows that, for i > 1, A(C;) = A, if C; is closed. If C is
closed, it is compact, hence A(Cy) = . This completes the proof of Theorem
2. O

Now we prove Theorem 3.
(a) = (b) By Theorem 2, A(Cy) = @ if Cy is closed. Then

A(Cy) = UR,A(Cy) € Ky N (WHA) N (J, x ©)) = WH(A) N WH(A).

(b) = (a) As is shown in the proof of Theorem 2, if Cj is not closed, then
A(Cy) intersects W*(A) \ K;,. Thus A(C;,) # W*(A) N W*(A).

(c) = (a) Suppose Cj is not closed. Then there exists a sequence z, =
(2n, cn) € Cy tending to a point zp = (29, ¢o) € C; for some 7 > 1. Then there
exists 6 > 0 such that D(cy,d) C int K,, since ¢y € int K,,. Note that the
map 2z — J, is continuous in J,. Hence, if 2 is close to 2y, we have either
D(co,d) C int K, or D(cp,d6) N K, = B. Since for large n, ¢, € D(c,d) is
outside K, , we conclude that D(cq,d) N K,, = O for large n. This implies the
discontinuity of the map z — K, at z = zg.

(a) = (c) We use the argument in Lemma 3.7 of [J2]. Note that z — K, is
upper semi-continuous in J,. Hence if z — K, is discontinuous at z = z;, then
it is not lower semi-continuous there. Thus there exist wy € int K,, and § > 0
such that D(wy,d) N K, = @ for z # 2z close to zo. Put (zx,wi) = f*(20, wo).
By Corollary 3.6 in [J2] (see also Theorem 3.3 and Lemma 3.2 in Comerford
[C]), there exist k& and a critical point ¢, of ¢,, in the connected component
Uw, of int K, containing wy such that, for any ¢ > 0, there exists an n so
that |w, — Q2 %(ck)| < e. Since Cy is closed, the set U™ C; 3 (zk, cx) is away
from Cy. Thus the critical point c), of g,x(.) close to ¢, for z sufficiently close
to zp also belongs to int K,«(,). For this n, take z sufficiently close to z; so
that |Q?(wo) — wn| < € and that |Q" % (c}) — Q% *(ex)| < €. Thus we have

pk(2)
Q7 (wo) — Zf(’i)(dc)l < Q7 (wo) — wal + [wn — Q27 (ck)|
+ Q5 (er) — Qs ()]
< 3e.
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Since Q7 (wo) € Kpn(») and Q;‘,:(’f) (c},) € int Kpn(,, this implies the distance
of the postcritical set from J, is less than 3e. Since we can take e arbitrarily
small, this contradicts the fact that f is Axiom A. This completes the proof
of Theorem 3. [J

Remark 1. [DH1, DH2| has proved (c) = (b).
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