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Abstract

We investigate the random dynamics of rational maps on the Riemann sphere
$\hat{\mathbb{C}}$ and the dynamics of semigroups of rational maps on $\hat{\mathbb{C}}$ . We see that the both
fields are related to each other very deeply. We show that regarding random complex
dynamics of polynomials, in most cases, the chaos of the averaged system disappears,
due to the cooperation of the generators. We investigate the iteration and spectral
properties of transition operators. We show that under certain conditions, in the limit
stage, “singular functions on the complex plane” appear. In particular, we consider
the functions $T$ which represent the probability of tending to infinity with respect
to the random dynamics of polynomials. Under certain conditions these functions
$T$ are complex analogues of the devil’s staircase and Lebesgue’s singular functions.
More precisely, we show that these functions $T$ are continuous on $\hat{\mathbb{C}}$ and vary only
on the Julia sets of associated semigroups. Furthermore, by using ergodic theory
and potential theory, we investigate the non-differentiability and regularity of these
functions. We also investigate stability and bifurcation of random complex dynamics.
We show that stable systems are open and dense in the space of random dynamics
of polynomials. We find many phenomena which can hold in the random complex
dynamics and the dynamics of semigroups of rational maps, but cannot hold in the
usual iteration dynamics of a single holomorphic map. We carry out a systematic
study of these phenomena and their mechanisms.

1 Introduction

This is a research announcement article. Many results of this article has been written in
[41], and the detail of some new results of this article will be written in [42].
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In this paper, we investigate the random dynamics of rational maps on the Riemann
sphere $\hat{\mathbb{C}}$ and the dynamics of rational semigroups (i.e., semigroups of non-constant ra-
tional maps where the semigroup operation is functional composition) on $\hat{\mathbb{C}}$ . We see that
the both fields are related to each other very deeply. In fact, we develop both theories
simultaneously.

One motivation for research in complex dynamical systems is to describe some math-
ematical models on ethology. For example, the behavior of the population of a certain
species can be described by the dynamical system associated with iteration of a polyno-
mial $f(z)=az(1-z)$ such that $f$ preserves the unit interval and the postcritical set in
the plane is bounded (cf. [7]). However, when there is a change in the natural environ-
ment, some species have several strategies to survive in nature. Rom this point of view,
it is very natural and important not only to consider the dynamics of iteration, where the
same survival strategy (i.e., function) is repeatedly applied, but also to consider random
dynamics, where a new strategy might be applied at each time step. The first study of
random complex dynamics was given by J. E. Fornaess and N. Sibony ([9]). For research
on random complex dynamics of quadratic polynomials, see [2, 3, 4, 5, 6, 10]. For research
on random dynamics of polynomials (of general degrees) with bounded planar postcritical
set, see the author’s works [36, 35, 37, 38, 39, 40].

The first study of dynamics of rational semigroups was conducted by A. Hinkkanen
and G. J. Martin ([13]), who were interested in the role of the dynamics of polynomial
semigroups ($i.e.$ , semigroups of non-constant polynomial maps) while studying various one-
complex-dimensional moduli spaces for discrete groups, and by F. Ren’s group ([11]), who
studied such semigroups from the perspective of random dynamical systems. Since the
Julia set $J(G)$ of a finitely generated rational semigroup $G=\langle h_{1},$

$\ldots,$
$h_{m}\rangle$ has “backward

self-similarity,” i.e., $J(G)= \bigcup_{j=1}^{m}h_{j}^{-1}(J(G))$ (see [27, Lemma 1.1.4]), the study of the
dynamics of rational semigroups can be regarded as the study of “backward iterated
function systems,” and also as a generalization of the study of self-similar sets in fractal
geometry.

For recent work on the dynamics of rational semigroups, see the author’s papers $[27]-$

[40] and [26, 43, 44, 45, 46].
In order to consider the random dynamics of a family of polynomials on $\hat{\mathbb{C}}$ , let $T_{\infty}(z)$

be the probability of tending to $\infty\in\hat{\mathbb{C}}$ starting with the initial value $z\in\hat{\mathbb{C}}$ . In this paper,
we see that under certain conditions, the function $T_{\infty}$ : $\hat{\mathbb{C}}arrow[0,1]$ is continuous on $\hat{\mathbb{C}}$

and has some singular properties (for instance, varies only inside a thin fractal set, the
so-called Julia set of a polynomial semigroup), and this function is a complex analogue of
the devil’s staircase (Cantor function) or Lebesgue’s singular functions (see Example 4.2,
Figures 2, 3, and 4). Before going into detail, let us recall the definition of the devil’s
staircase (Cantor function) and Lebesgue’s singular functions. Note that the following
definitions look a little bit different from those in [47], but it turns out that they are
equivalent to those in [47].

Definition 1.1 ([47]). Let $\varphi$ : $\mathbb{R}arrow[0,1]$ be the unique bounded function which satisfies
the following functional equation:

$\frac{1}{2}\varphi(3x)+\frac{1}{2}\varphi(3x-2)\equiv\varphi(x),$ $\varphi|_{(-\infty,0]}\equiv 0,$ $\varphi|_{[1,+\infty)}\equiv 1$ . (1)

The function $\varphi|_{[0,1]}$ : $[0,1]arrow[0,1]$ is called the devil’s staircase (or Cantor function).
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Remark 1.2. The above $\varphi$ : $\mathbb{R}arrow[0,1]$ is continuous on $\mathbb{R}$ and varies precisely on the
Cantor middle third set. Moreover, it is monotone (see Figure 1).

Definition 1.3 ([47]). Let $0<a<1$ be a constant. We denote by $\psi_{a}$ : $\mathbb{R}arrow[0,1]$ the
unique bounded function which satisfies the following functional equation:

$a\psi_{a}(2x)+(1-a)\psi_{a}(2x-1)\equiv\psi_{a}(x),$ $\psi_{a}|_{(-\infty,0]}\equiv 0,$ $\psi_{a}|_{[1,+\infty)}\equiv 1$ . (2)

For each $a\in(0,1)$ with $a\neq 1/2$ , the function $L_{a}$ $:=\psi_{a}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is called
Lebesgue’s singular function with respect to the parameter $a$ .

Remark 1.4. The function $\psi_{a}$ : $\mathbb{R}arrow[0,1]$ is continuous on $\mathbb{R}$ , monotone on $\mathbb{R}$ , and
strictly monotone on $[0,1]$ . Moreover, if $a\neq 1/2$ , then for almost every $x\in[0,1]$ with
respect to the one-dimensional Lebesgue measure, the derivative of $\psi_{a}$ at $x$ is equal to
zero (see Figure 1).

Figure 1: (IYom left to right) The graphs of the devil’s staircase and Lebesgue’s singular
function.

These singular functions defined on $[0,1]$ can be redefined by using random dynamical
systems on $\mathbb{R}$ as follows. Let $f_{1}(x)$ $:=3x,$ $f_{2}(x)$ $:=3(x-1)+1(x\in \mathbb{R})$ and we consider
the random dynamical system (random walk) on $\mathbb{R}$ such that at every step we choose $f_{1}$

with probability 1/2 and $f_{2}$ with probability 1/2. We set $\hat{\mathbb{R}}$

$:=\mathbb{R}\cup\{\pm\infty\}$ . We denote by
$T_{+\infty}(x)$ the probability of tending to $+\infty\in\hat{\mathbb{R}}$ starting with the initial value $x\in \mathbb{R}$ . Then,
we can see that the function $\tau_{+\infty}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is equal to the devil’s staircase.

Similarly, let $g_{1}(x)$ $:=2x,$ $g_{2}(x)$ $:=2(x-1)+1(x\in \mathbb{R})$ and let $0<a<1$ be a constant.
We consider the random dynamical system on $\mathbb{R}$ such that at every step we choose the
map $g_{1}$ with probability $a$ and the map $g_{2}$ with probability $1-a$ . Let $T_{+\infty,a}(x)$ be the
probability of tending to $+\infty$ starting with the initial value $x\in \mathbb{R}$ . Then, we can see that
the function $T_{+\infty,a}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is equal to Lebesgue’s singular function $L_{a}$ with
respect to the parameter $a$ .

We remark that in most of the literature, the theory of random dynamical systems
has not been used directly to investigate these singular functions on the interval, although
some researchers have used it implicitly.

One of the main purposes of this paper is to consider the complex analogue of the
above story. In order to do that, we have to investigate the independent and identically-
distributed (abbreviated by i.i. $d.$ ) random dynamics of rational maps and the dynamics of
semigroups of rational maps on $\hat{\mathbb{C}}$ simultaneously. We develop both the theory of random
dynamics of rational maps and that of the dynamics of semigroups of rational maps. The
author thinks this is the best strategy since when we want to investigate one of them, we
need to investigate another.

To introduce the main idea of this paper, we let $G$ be a rational semigroup and denote
by $F(G)$ the Fatou set of $G$ , which is defined to be the maximal open subset of $\hat{\mathbb{C}}$ where
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$G$ is equicontinuous with respect to the spherical distance on $\hat{\mathbb{C}}$ . We call $J(G)$ $:=\hat{\mathbb{C}}\backslash$

$F(G)$ the Julia set of $G$ . The Julia set is backward invariant under each element $h\in$

$G$ , but might not be forward invariant. This is a difficulty of the theory of rational
semigroups. Nevertheless, we “utilize” this as follows. The key to investigating random
complex dynamics is to consider the following kernel Julia set of $G$ , which is defined
by $J_{ker}(G)= \bigcap_{g\in G}g^{-1}(J(G))$ . This is the largest forward invariant subset of $J(G)$ under
the action of $G$ . Note that if $G$ is a group or if $G$ is a commutative semigroup, then
$J_{ker}(G)=J(G)$ . However, for a general rational semigroup $G$ generated by a family
of rational maps $h$ with $\deg(h)\geq 2$ , it may happen that $\emptyset=J_{ker}(G)\neq J(G)$ (see
subsection 3.5, section 4).

Let Rat be the space of all non-constant rational maps on the Riemann sphere $\hat{\mathbb{C}}$ ,
endowed with the distance $\kappa$ which is defined by $\kappa(f, g)$ $:= \sup_{z\in\hat{\mathbb{C}}}d(f(z), g(z))$ , where $d$

denotes the spherical distance on $\hat{\mathbb{C}}$ . Let Rat$+$ be the space of all rational maps $g$ with
$\deg(g)\geq 2$ . Let $\mathcal{P}$ be the space of all polynomial maps $g$ with $\deg(g)\geq 2$ . Let $\tau$ be a
Borel probability measure on Rat with compact support. We consider the i.i. $d$ . random
dynamics on $\hat{\mathbb{C}}$ such that at every step we choose a map $h\in$ Rat according to $\tau$ . Thus this
determines a time-discrete Markov process with time-homogeneous transition probabilities
on the phase space $\hat{\mathbb{C}}$ such that for each $x\in\hat{\mathbb{C}}$ and each Borel measurable subset $A$ of $\hat{\mathbb{C}}$ , the
transition probability $p(x, A)$ of the Markov process is defined as $p(x, A)=\tau(\{g\in$ Rat $|$

$g(x)\in A\})$ . Let $G_{\tau}$ be the rational semigroup generated by the support of $\tau$ . Let $C(\hat{\mathbb{C}})$ be
the space of all complex-valued continuous functions on $\hat{\mathbb{C}}$ endowed with the supremum
norm. Let $M_{\tau}$ be the operator on $C(\hat{\mathbb{C}})$ defined by $M_{\tau}( \varphi)(z)=\int\varphi(g(z))d\tau(g)$ . This $M_{\tau}$

is called the transition operator of the Markov process induced by $\tau$ . For a topological
space $X$ , let $\mathfrak{M}_{1}(X)$ be the space of all Borel probability measures on $X$ endowed with
the topology induced by the weak convergence (thus $\mu_{n}arrow\mu$ in $\mathfrak{M}_{1}(X)$ if and only if
$\int\varphi d\mu_{n}arrow\int\varphi d\mu$ for each bounded continuous function $\varphi$ : $Xarrow \mathbb{R}$). Note that if $X$ is
a compact metric space, then $\mathfrak{M}_{1}(X)$ is compact and metrizable. For each $\tau\in \mathfrak{M}_{1}(X)$ ,
we denote by $supp\tau$ the topological support of $\tau$ . Let $\mathfrak{M}_{1,c}(X)$ be the space of all Borel
probability measures $\tau$ on $X$ such that $supp\tau$ is compact. Let $M_{\tau}^{*}$ : $\mathfrak{M}_{1}(\hat{\mathbb{C}})arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$

be the dual of $M_{\tau}$ . This $M_{\tau}^{*}$ can be regarded as the “averaged map” on the extension
$\mathfrak{M}_{1}(\hat{\mathbb{C}})$ of $\hat{\mathbb{C}}$ (see Remark 2.21). We define the “Julia set” $J_{meas}(\tau)$ of the dynamics of
$M_{\tau}^{*}$ as the set of all elements $\mu\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ satisfying that for each neighborhood $B$ of $\mu$ ,
$\{(M_{\tau}^{*})^{n}|_{B} : Barrow \mathfrak{M}_{1}(\hat{\mathbb{C}})\}_{n\in N}$ is not equicontinuous on $B$ (see Definition 2.17). For each
sequence $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in($Rat$)^{N}$ , we denote by $J_{\gamma}$ the set of non-equicontinuity of the
sequence $\{\gamma_{n}\circ\cdots\circ\gamma_{1}\}_{n\in N}$ with respect to the spherical distance on $\hat{\mathbb{C}}$ . This $J_{\gamma}$ is called
the Julia set of $\gamma$ . Let $\tilde{\tau}$ $:=\otimes_{j=1}^{\infty}\tau\in \mathfrak{M}_{1}((Rat)^{N})$ .

We prove the following theorem.

Theorem 1.5 ([41], Cooperation Principle I, see Theorem 3.14). Let $\tau\in \mathfrak{M}_{1,c}(Rat)$ .
Suppose that $J_{ker}(G_{\tau})=\emptyset$ . Then $J_{meas}(\tau)=\emptyset$ . Moreover, for f-a. $e$ . $\gamma\in(Rat)^{N}$ , the
2-dimensional Lebesgue measure of $J_{\gamma}$ is equal to zero.

This theorem means that if all the maps in the support of $\tau$ cooperate, the set of
sensitive initial values of the averaged system disappears. Note that for any $h\in$ Rat$+$ ,
$J_{meas}(\delta_{h})\neq\emptyset$ . Thus the above result deals with a phenomenon which can hold in the
random complex dynamics but cannot hold in the usual iteration dynamics of a single
rational map $h$ with $\deg(h)\geq 2$ .
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$\mathbb{R}om$ the above result and some further detailed arguments, we prove the following
theorem. To state the theorem, for a $\tau\in \mathfrak{M}_{1,c}(Rat)$ , we denote by $U_{\tau}$ the space of all finite
linear combinations of unitary eigenvectors of $M_{\tau}$ : $C(\hat{\mathbb{C}})arrow C(\hat{\mathbb{C}})$ , where an eigenvector
is said to be unitary if the absolute value of the corresponding eigenvalue is equal to one.
Moreover, we set $\mathcal{B}_{0_{r}\tau}$ $:=\{\varphi\in C(\hat{\mathbb{C}})|M_{\tau}^{n}(\varphi)arrow 0\}$. Under the above notations, we have
the following.

Theorem 1.6 ([41], Cooperation Principle II: Disappearance of Chaos, see Theorem 3.15).

Let $\tau\in \mathfrak{M}_{1,c}$ (Rat). Suppose that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . Then we have all of the
following statements.

(1) There exists a direct decomposition $C(\hat{\mathbb{C}})=U_{\tau}\oplus \mathcal{B}_{0,\tau}$ . Moreover, $\dim \mathbb{C}U_{\mathcal{T}}<\infty$ and
$\mathcal{B}_{0,\tau}$ is a closed subspace of $C(\hat{\mathbb{C}})$ . Moreover, there exists a non-empty $M_{\tau}^{*}$ -invariant
compact subset $A$ of $\mathfrak{M}_{1}(\hat{\mathbb{C}})$ with finite topological dimension such that for each
$\mu\in \mathfrak{M}_{1}(\hat{\mathbb{C}}),$ $d((M_{\tau}^{*})^{n}(\mu), A)arrow 0$ in $\mathfrak{M}_{1}(\hat{\mathbb{C}})$ as $narrow\infty$ . Furthermore, each element
of $U_{\tau}$ is locally constant on $F(G_{\tau})$ . Therefore each element of $U_{\tau}$ is a continuous
function on $\hat{\mathbb{C}}$ which varies only on the Julia set $J(G_{\tau})$ .

(2) For each $z\in\hat{\mathbb{C}}$ , there exists a Borel subset $\mathcal{A}_{z}$ of $(Rat)^{N}$ with $\tilde{\tau}(\mathcal{A}_{z})=1$ with the
following property.

-For each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in \mathcal{A}_{z}$ , there exists a number $\delta=\delta(z, \gamma)>0$ such that
diam$(\gamma_{n}\cdots\gamma_{1}(B(z, \delta)))arrow 0$ as $narrow\infty$ , where diam denotes the diameter with
respect to the spherical distance on $\hat{\mathbb{C}}$ , and $B(z, \delta)$ denotes the ball with center
$z$ and radius $\delta$ .

(3) There exists at least one and at most finitely many minimal sets for $(G_{\tau},\hat{\mathbb{C}})$ , where
we say that a non-empty compact subset $L$ of $\hat{\mathbb{C}}$ is a minimal set for $(G_{\tau},\hat{\mathbb{C}})$ if $L$

is minimal in $\{C\subset\hat{\mathbb{C}}|\emptyset\neq C$ is compact, $\forall g\in G_{\tau},$ $g(C)\subset C\}$ with respect to
inclusion.

(4) Let $S_{\tau}$ be the union of minimal sets for $(G_{\tau},\hat{\mathbb{C}})$ . Then for each $z\in\hat{\mathbb{C}}$ there exists
a Borel subset $C_{z}$ of $(Rat)^{\mathbb{N}}$ with $\tilde{\tau}(C_{z})=1$ such that for each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in C_{z}$ ,
$d(\gamma_{n}\cdots\gamma_{1}(z), S_{\tau})arrow 0$ as $narrow\infty$ .

This theorem means that if all the maps in the support of $\tau$ cooperate, the chaos of
the averaged system disappears. Theorem 1.6 describes new phenomena which can hold
in random complex dynamics but cannot hold in the usual iteration dynamics of a single
$h\in$ Rat$+\cdot$ For example, for any $h\in Rat_{+}$ , if we take a point $z\in J(h)$ , where $J(h)$ denotes
the Julia set of the semigroup generated by $h$ , then for any ball $B$ with $B\cap J(h)\neq\emptyset$ ,
$h^{n}(B)$ expands as $narrow\infty$ , and we have infinitely many minimal sets (periodic cycles) of
$h$ .

In Theorem 3.15, we completely investigate the structure of $U_{\tau}$ and the set of unitary
eigenvalues of $M_{\tau}$ (Theorem 3.15). Using the above result, we show that if $\dim_{\mathbb{C}}U_{\tau}>1$ and
int $(J(G_{\tau}))=\emptyset$ where int $(\cdot)$ denotes the set of interior points, then $F(G_{\tau})$ has infinitely
many connected components (Theorem 3.15-20). Thus the random complex dynamics
can be applied to the theory of dynamics of rational semigroups. The key to proving
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Theorem 1.6 (Theorem 3.15) is to show that for almost every $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in(Rat)^{N}$

with respect to $\tilde{\tau}$

$:=\otimes_{j=1}^{\infty}\tau$ and for each compact set $Q$ contained in a connected component
$U$ of $F(G_{\tau}),$ $diam\gamma_{n}\circ\cdots\circ\gamma_{1}(Q)arrow 0$ as $narrow\infty$ . This is shown by using careful arguments
on the hyperbolic metric of each connected component of $F(G_{\tau})$ . Combining this with the
decomposition theorem on (almost periodic operators” on Banach spaces from [19], we
prove Theorem 1.6 (Theorem 3.15).

Considering these results, we have the following natural question: “When is the kernel
Julia set empty?” Since the kernel Julia set of $G$ is forward invariant under $G$ , Montel’s
theorem implies that if $\tau$ is a Borel probability measure on $\mathcal{P}$ with compact support,
and if the support of $\tau$ contains an admissible subset of $\mathcal{P}$ (see Definition 3.54), then
$J_{ker}(G_{\tau})=\emptyset$ (Lemma 3.56). In particular, if the support of $\tau$ contains an interior point
with respect to the topology of $\mathcal{P}$ , then $J_{ker}(G_{\tau})=\emptyset$ (Lemma 3.52). From this result, it
follows that for any Borel probability measure $\tau$ on $\mathcal{P}$ with compact support, there exists
a Borel probability measure $\rho$ with finite support, such that $\rho$ is arbitrarily close to $\tau$ , such
that the support of $\rho$ is arbitrarily close to the support of $\tau$ , and such that $J_{ker}(G_{\rho})=\emptyset$

(Proposition 3.57). The above results mean that in a certain sense, $J_{ker}(G_{\tau})=\emptyset$ for most
Borel probability measures $\tau$ on $\mathcal{P}$ . Summarizing these results we can state the following.
In order to state the result, let $\mathcal{O}$ be the topology of $\mathfrak{M}_{1,c}(Rat)$ such that $\tau_{n}arrow\tau$ in
$(\mathfrak{M}_{1,c}(Rat), \mathcal{O})$ if and only if $( a)\int\varphi d\tau_{n}arrow\int\varphi d\tau$ for each bounded continuous function $\varphi$

on Rat, and (b) $supp\tau_{n}arrow supp\tau$ with respect to the Hausdorff metric.

Theorem 1.7 ([41], Cooperation Principle III, see Lemmas 3.52, 3.56, Proposition 3.57).
Let $A:=\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|J_{ker}(G_{\tau})=\emptyset\}$ and $B:=\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|J_{ker}(G_{\tau})=\emptyset,$ $\#supp\tau<$

$\infty\}$ . Then we have all of the following.

(1) $A$ and $B$ are dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$ .

(2) If the interior of the support of $\tau$ is not empty with respect to the topology of $\mathcal{P}$ , then
$\tau\in A$ .

(3) For each $\tau\in A$ , the chaos of the averaged system of the Markov process induced by
$\tau$ disappears (more precisely, all the statements in Theorems $1.5_{J}1.6$ hold).

In the subsequent paper [42], we investigate more detail on the above result.
We remark that in 1983, by numerical experiments, K. Matsumoto and I. Tsuda ([21])

observed that if we add some uniform noise to the dynamical system associated with
iteration of a chaotic map on the unit interval $[0,1]$ , then under certain conditions, the
quantities which represent chaos (e.g., entropy, Lyapunov exponent, etc.) decrease. More
precisely, they observed that the entropy decreases and the Lyapunov exponent turns
negative. They called this phenomenon “noise-induced order”, and many physicists have
investigated it by numerical experiments, although there has been only a few mathematical
supports for it.

Moreover, in this paper, we introduce ${}^{t}mean$ stable“ rational semigroups in subsec-
tion 3.6. If $G$ is mean stable, then $J_{ker}(G)=\emptyset$ and a small perturbation $H$ of $G$ is still
mean stable. We show that if $\Gamma$ is a compact subset of Rat $+$ and if the semigroup $G$

generated by $\Gamma$ is semi-hyperbolic (see Definition 2.12) and $J_{ker}(G)=\emptyset$ , then there exists
a neighborhood $\mathcal{V}$ of $\Gamma$ in the space of non-empty compact subset of Rat such that for each
$\Gamma‘\in \mathcal{V}$ , the semigroup $G’$ generated by $\Gamma’$ is mean stable, and $J_{ker}(G’)=\emptyset$ . Regarding the
stability and mean stability, we present the following.

104



Theorem 1.8 (Cooperation Principle IV, Theorems 3.101, 3.106).

(1) The set { $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|\tau$ is mean stable} is open and dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$ . More-
over, the set $\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|J_{ker}(G_{\tau})=\emptyset, J(G_{\tau})\neq\emptyset\}$ contains $\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|$

$\tau$ is mean stable}.
(2) The set { $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|\tau$ is mean stable, $\#\Gamma_{\tau}<\infty$ } is dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$ .
(3) Let $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ be mean stable. Then there exists a neighborhood $\Omega$ of $\tau$ in

$(\mathfrak{M}_{1,c}(Rat_{+}), \mathcal{O})$ such that $\nu\mapsto U_{\nu}$ is continuous on $\Omega$ and the cardinality of the set
of all minimal sets for $(G_{\nu},\hat{\mathbb{C}})$ is constant on $\Omega$ .

By using the above results, we investigate the random dynamics of polynomials. Let
$\tau$ be a Borel probability measure on $\mathcal{P}$ with compact support. Suppose that $J_{ker}(G_{\tau})=\emptyset$

and the smallest filled-in Julia set $\hat{K}(G_{\tau})$ (see Definition 3.19) of $G_{\tau}$ is not empty. Then
we show that the function $T_{\infty_{1}\tau}$ of probability of tending to $\infty\in\hat{\mathbb{C}}$ belongs to $U_{\tau}$ and
is not constant (Theorem 3.22). Thus $T_{\infty,\tau}$ is non-constant and continuous on $\hat{\mathbb{C}}$ and
varies only on $J(G_{\tau})$ . Moreover, the function $T_{\infty,\tau}$ is characterized as the unique Borel
measurable bounded function $\varphi$ : $\hat{\mathbb{C}}arrow \mathbb{R}$ which satisfies $M_{\tau}(\varphi)=\varphi,$ $\varphi|_{F_{\infty}(G_{\tau})}\equiv 1$ , and
$\varphi|_{\hat{K}(G_{\tau})}\equiv 0$ , where $F_{\infty}(G_{\tau})$ denotes the connected component of the Fatou set $F(G_{\tau})$ of
$G_{\tau}$ containing $\infty$ (Proposition 3.26). From these results, we can show that $T_{\infty,\tau}$ has a
kind of “monotonicity,” and applying it, we get information regarding the structure of the
Julia set $J(G_{\tau})$ of $G_{\tau}$ (Theorem 3.31). We call the function $T_{\infty,\tau}$ a devil’s coliseum,
especially when int $(J(G_{\tau}))=\emptyset$ (see Example 4.2, Figures 2, 3, and 4). Note that for any
$h\in \mathcal{P},$ $T_{\infty,\delta_{h}}$ is not continuous at any point of $J(h)\neq\emptyset$ . Thus the above results deal with
a phenomenon which can hold in the random complex dynamics, but cannot hold in the
usual iteration dynamics of a single polynomial.

It is a natural question to ask about the regularity of non-constant $\varphi\in U_{\tau}$ (e.g.,
$\varphi=T_{\infty,\tau})$ on the Julia set $J(G_{\tau})$ . For a rational semigroup $G$ , we set
$P(G)$ $:= \bigcup_{h\in G}$ {all critical values of $h$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ }, where the closure is taken in $\hat{\mathbb{C}}$ , and
we say that $G$ is hyperbolic if $P(G)\subset F(G)$ . If $G$ is generated by $\{h_{1}, \ldots, h_{m}\}$ as a
semigroup, we write $G=\langle h_{1},$

$\ldots,$
$h_{m}\rangle$ . We prove the following theorem.

Theorem 1.9 ([41], see Theorem 3.82 and Theorem 3.84). Let $m\geq 2$ and let $(h_{1}, \ldots, h_{m})\in$

$\mathcal{P}^{m}$ . Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ . Let $0<p_{1},p_{2},$ $\ldots,p_{m}<1$ with $\sum_{i=1}^{m}p_{i}=1$ . Let $\tau=$

$\sum_{i=1}^{m}p_{i}\delta_{h_{i}}$ . Suppose that $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ and $\sup-$

pose also that $G$ is hyperbolic. Then we have all of the following statements.

(1) $J_{ker}(G_{\tau})=\emptyset,$ $int(J(G_{\tau}))=\emptyset$ , and $\dim_{H}(J(G))<2$ , where $\dim_{H}$ denotes the
Hausdorff dimension with respect to the spherical distance on $\hat{\mathbb{C}}$ .

(2) Suppose further that at least one of the following conditions (a)(b)(c) holds.

$( a)\sum_{j=1}^{m}p_{j}\log(p_{j}\deg(h_{j}))>0$ .
(b) $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ .
(c) $m=2$ .
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Then there exists a non-atomic ”invariant measure” $\lambda$ on $J(G)$ with $supp\lambda=J(G)$

and an uncountable dense subset $A$ of $J(G)$ with $\lambda(A)=1$ and $\dim_{H}(A)>0$ ,
such that for every $z\in A$ and for each non-constant $\varphi\in U_{\tau}$ , the pointwise Holder
exponent of $\varphi$ at $z$ , which is defined to be

$\inf\{\alpha\in \mathbb{R}|\lim_{yarrow}\sup_{z}\frac{|\varphi(y)-\varphi(z)|}{|y-z|^{\alpha}}=\infty\}$ ,

is strictly less than 1 and $\varphi$ is not differentiable at $z$ (Theorem 3.82).

(3) In (2) above, the pointwise Holder exponent of $\varphi$ at $z$ can be represented in terms of
$p_{j},$ $\log(\deg(h_{j}))$ and the integral of the sum of the values of the Green’s function of
the basin of $\infty$ for the sequence $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in\{h_{1}, \ldots, h_{m}\}^{N}$ at the finite critical
points of $\gamma_{1}$ (Theorem 3.82).

(4) Under the assumption of (2), for almost every point $z\in J(G)$ with respect to the
$\delta$ -dimensional Hausdorff measure $H^{\delta}$ where $\delta=\dim_{H}(J(G))$ , the pointwise Holder
exponent of a non-constant $\varphi\in U_{\tau}$ at $z$ can be represented in terms of the $p_{j}$ and
the derivatives of $h_{j}$ (Theorem 3.84).

Combining Theorems 1.5, 1.6, 1.9, it follows that under the assumptions of Theo-
rem 1.9, the chaos of the averaged system disappears in the $C^{0}$ “sense”, but it remains
in the $C^{1}$ “sense”. Flrom Theorem 1.9, we also obtain that if $p_{1}$ is small enough, then for
almost every $z\in J(G)$ with respect to $H^{\delta}$ and for each $\varphi\in U_{\tau},$ $\varphi$ is differentiable at $z$ and
the derivative of $\varphi$ at $z$ is equal to zero, even though a non-constant $\varphi\in U_{\tau}$ is not differen-
tiable at any point of an uncountable dense subset of $J(G)$ (Remark 3.86). To prove these
results, we use Birkhoff’s ergodic theorem, potential theory, the Koebe distortion theorem
and thermodynamic formalisms in ergodic theory. We can construct many examples of
$(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ such that $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ , where
$G=\langle h_{1},$

$\ldots,$
$h_{m}\rangle,$ $G$ is hyperbolic, $\hat{K}(G)\neq\emptyset$ , and $U_{\tau}$ possesses non-constant elements

$(e.g., T_{\infty,\tau})$ for any $\tau=\sum_{i=1}^{m}p_{i}\delta_{h_{i}}$ (see Proposition 4.1, Example 4.2, Proposition 4.3,
Proposition 4.4, and Remark 4.6).

As pointed out in the previous paragraphs, we find many new phenomena which can
hold in random complex dynamics and the dynamics of rational semigroups, but cannot
hold in the usual iteration dynamics of a single rational map. These new phenomena and
their mechanisms are systematically investigated.

In the proofs of all results, we employ the skew product map associated with the
support of $\tau$ (Definition 3.46), and some detailed observations concerning the skew product
are required. It is a new idea to use the kernel Julia set of the associated semigroup to
investigate random complex dynamics. Moreover, it is both natural and new to combine
the theory of random complex dynamics and the theory of rational semigroups. Without
considering the Julia sets of rational semigroups, we are unable to discern the singular
properties of the non-constant finite linear combinations $\varphi$ (e.g., $\varphi=T_{\infty,\tau}$ , a devil’s
coliseum) of the unitary eigenvectors of $M_{\tau}$ .

In section 2, we give some fundamental notations and definitions. In section 3, we
present the main results of this article. The results of subsections 3.1-3.8 have been
written in [41]. For the proofs of the results of subsections 3.1-3.8, see [41]. The proofs
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of the results of subsections 3.9-3.10 will be written in [42]. In section 4, we give many
examples to which the main results are applicable.

In the subsequent paper [42], we investigate the stability and bifurcation of $M_{\tau}$ .

2 Preliminaries

In this section, we give some basic definitions and notations on the dynamics of semigroups
of holomorphic maps and the i.i. $d$ . random dynamics of holomorphic maps.

Notation: Let $(X, d)$ be a metric space, $A$ a subset of $X$ , and $r>0$ . We set $B(A, r)$ $:=$

$\{z\in X|d(z, A)<r\}$ . Moreover, for a subset $C$ of $\mathbb{C}$ , we set $D(C, r)$ $:=\{z\in \mathbb{C}|$

$\inf_{a\in C}|z-a|<r\}$ . Moreover, for any topological space $Y$ and for any subset $A$ of $Y$ , we
denote by int $(A)$ the set of all interior points of $A$ .

Definition 2.1. Let $Y$ be a metric space. We set CM $(Y)$ $:=$ { $f$ : $Yarrow Y|f$ is continuous}
endowed with the compact-open topology. Moreover, we set OCM $(Y)$ $:=\{f\in$ CM $(Y)|$

$f$ is an open map} endowed with the relative topology from CM $(Y)$ . Furthermore, we set
$C(Y)$ $:=$ { $\varphi$ : $Yarrow \mathbb{C}|\varphi$ is continuous}. When $Y$ is compact, we endow $C(Y)$ with
the supremum norm $\Vert\cdot\Vert_{\infty}$ . Moreover, for a subset $\mathcal{F}$ of $C(Y)$ , we set $\mathcal{F}_{nc}$ $:=\{\varphi\in \mathcal{F}|$

$\varphi$ is not constant}.
Definition 2.2. Let $Y$ be a complex manifold. We set HM $(Y)$ $:=\{f$ : $Yarrow Y|$
$f$ is holomorphic} endowed with the compact open topology. Moreover, we set NHM $(Y)$ $:=$

{ $f\in$ HM$(Y)|f$ is not constant} endowed with the compact open topology.

Remark 2.3. CM $(Y)$ , OCM $(Y)$ , HM $(Y)$ , and NHM $(Y)$ are semigroups with the semi-
group operation being functional composition.

Definition 2.4. A rational semigroup is a semigroup generated by a family of non-
constant rational maps on the Riemann sphere $\hat{\mathbb{C}}$ with the semigroup operation be-
ing functional composition([13, 11]). A polynomial semigroup is a semigroup gen-
erated by a family of non-constant polynomial maps. We set Rat : $=\{h$ : $\hat{\mathbb{C}}arrow$

$\hat{\mathbb{C}}|h$ is a non-constant rational map} endowed with the distance $\kappa$ which is defined by
$\kappa(f, g);=\sup_{z\in\hat{\mathbb{C}}}d(f(z), g(z))$ , where $d$ denotes the spherical distance on $\hat{\mathbb{C}}$ . Moreover,
we set Rat$+;=\{h\in$ Rat $|\deg(h)\geq 2\}$ endowed with the relative topology from Rat.
Furthermore, we set $\mathcal{P}$ $:=$ { $g:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}|g$ is a polynomial, $\deg(g)\geq 2$} endowed with the
relative topology from Rat.

Definition 2.5. Let $Y$ be a compact metric space and let $G$ be a subsemigroup of CM $(Y)$ .
The Fatou set of $G$ is defined to be $F(G)$ $:=$

{ $z\in Y|\exists$ neighborhood $U$ of $z$ s.t. $\{g|_{U}$ : $Uarrow Y\}_{g\in G}$ is equicontinuous on $U$ }. (For the
definition of equicontinuity, see [1]. $)$ The Julia set of $G$ is defined to be $J(G)$ $:=Y\backslash F(G)$ .
If $G$ is generated by $\{g_{i}\}_{i}$ , then we write $G=\langle g_{1},$ $g_{2},$ $\ldots)$ . If $G$ is generated by a subset
$\Gamma$ of CM $(Y)$ , then we write $G=\langle\Gamma\rangle$ . For finitely many elements $g_{1},$ $\ldots,$ $g_{m}\in$ CM $(Y)$ , we
set $F(g_{1}, \ldots, g_{m})$ $:=F(\langle g_{1}, \ldots, g_{m}\rangle)$ and $J(g_{1}, \ldots, g_{m})$ $:=J(\langle g_{1}, \ldots, g_{m}\})$ . For a subset $A$

of $Y$ , we set $G(A)$ $:= \bigcup_{g\in G}g(A)$ and $G^{-1}(A)$ $:= \bigcup_{g\in G}g^{-1}(A)$ . We set $G^{*}$ $:=G\cup\{Id\}$ ,
where Id denotes the identity map.

107



By using the method in [13, 11], it is easy to see that the following lemma holds.

Lemma 2.6. Let $Y$ be a compact metric space and let $G$ be a subsemigroup of OCM$(Y)$ .
Then for each $h\in G,$ $h(F(G))\subset F(G)$ and $h^{-1}(J(G))\subset J(G)$ . Note that the equality
does not hold in general.

The following is the key to investigating random complex dynamics.

Definition 2.7. Let $Y$ be a compact metric space and let $G$ be a subsemigroup of CM $(Y)$ .
We set $J_{ker}(G)$ $:= \bigcap_{g\in G}g^{-1}(J(G))$ . This is called the kernel Julia set of $G$ .

Remark 2.8. Let $Y$ be a compact metric space and let $G$ be a subsemigroup of CM$(Y)$ .
(1) $J_{ker}(G)$ is a compact subset of $J(G)$ . (2) For each $h\in G,$ $h(J_{ker}(G))\subset J_{ker}(G)$ . (3) If
$G$ is a rational semigroup and if $F(G)\neq\emptyset$ , then int $(J_{ker}(G))=\emptyset$ . (4) If $G$ is generated
by a single map or if $G$ is a group, then $J_{ker}(G)=J(G)$ . However, for a general rational
semigroup $G$ , it may happen that $\emptyset=J_{ker}(G)\neq J(G)$ (see subsection 3.5 and section 4).

The following postcritical set is important when we investigate the dynamics of
rational semigroups.

Definition 2.9. For a rational semigroup $G$ , let $P(G)$ $:= \bigcup_{g\in G}$ { $al1$ critical values of $g:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ }
where the closure is taken in $\hat{\mathbb{C}}$ . This is called the postcritical set of $G$ .

Remark 2.10. If $\Gamma\subset$ Rat and $G=\langle\Gamma\rangle$ , then $P(G)=\overline{G^{*}(\bigcup_{h\in\Gamma}\{al1}$critical valuesoflf h} $)$ .
From this one may know the figure of $P(G)$ , in the finitely generated case, using a com-
puter.

Definition 2.11. Let $G$ be a rational semigroup. Let $N$ be a positive integer. We denote
by $SH_{N}(G)$ the set of points $z\in\hat{\mathbb{C}}$ satisfying that there exists a positive number $\delta$ such
that for each $g\in G,$ $\deg(g : Varrow B(z, \delta))\leq N$ , for each connected component $V$ of
$g^{-1}(B(z, \delta))$ . Moreover, we set $UH(G);= \hat{\mathbb{C}}\backslash \bigcup_{N\in N}SH_{N}(G)$ .

Definition 2.12. Let $G$ be a rational semigroup. We say that $G$ is hyperbolic if $P(G)\subset$

$F(G)$ . We say that $G$ is semi-hyperbolic if $UH(G)\subset F(G)$ .

Remark 2.13. We have $UH(G)\subset P(G)$ . If $G$ is hyperbolic, then $G$ is semi-hyperbolic.

It is sometimes important to investigate the dynamics of sequences of maps.

Definition 2.14. Let $Y$ be a compact metric space. For each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in$ $($ CM $(Y))^{N}$

and each $m,$ $n\in \mathbb{N}$ with $m\geq n$ , we set $\gamma_{m_{1}n}=\gamma_{m}\circ\cdots\circ\gamma_{n}$ and we set

$F_{\gamma}$ $:=$ { $z\in Y|\exists$ neighborhood $U$ of $z$ s.t. $\{\gamma_{n,1}\}_{n\in N}$ is equicontinuous on $U$ }

and $J_{\gamma}$ $:=Y\backslash F_{\gamma}$ . The set $F_{\gamma}$ is called the Fatou set of the sequence $\gamma$ and the set $J_{\gamma}$ is
called the Julia set of the sequence $\gamma$ .

Remark 2.15. Let $Y=\hat{\mathbb{C}}$ and let $\gamma\in$ $($ Rat$+)^{N}$ . Then by [1, Theorem 2.8.2], $J_{\gamma}\neq\emptyset$ .
Moreover, if $\Gamma$ is a non-empty compact subset of Rat $+$ and $\gamma\in\Gamma^{N}$ , then by [30], $J_{\gamma}$ is a
perfect set and $J_{\gamma}$ has uncountably many points.

We now give some notations on random dynamics.
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Definition 2.16. For a topological space $Y$ , we denote by $\mathfrak{M}_{1}(Y)$ the space of all Borel
probability measures on $Y$ endowed with the topology such that $\mu_{n}arrow\mu$ in $\mathfrak{M}_{1}(Y)$ if
and only if for each bounded continuous function $\varphi$ : $Yarrow \mathbb{C},$ $\int\varphi d\mu_{n}arrow\int\varphi d\mu$ . Note
that if $Y$ is a compact metric space, then $\mathfrak{M}_{1}(Y)$ is a compact metric space with the
metric $d_{0}(\mu_{1}, \mu_{2})$ $:= \sum_{j=1}^{\infty}\frac{1}{2J}\frac{|\int\phi_{j}d\mu_{1}-\int\phi_{j}d\mu_{2}|}{1+|\int\phi_{j}d\mu_{1}-\int\phi_{j}d\mu_{2}|}$ , where $\{\phi_{j}\}_{j\in N}$ is a dense subset of $C(Y)$ .
Moreover, for each $\tau\in \mathfrak{M}_{1}(Y)$ , we set $supp\tau$ $:=\{z\in Y|\forall$ neighborhood $U$ of $z,$ $\tau(U)>$

$0\}$ . Note that $supp\tau$ is a closed subset of $Y$. Furthermore, we set $\mathfrak{M}_{1,c}(Y)$ $:=\{\tau\in \mathfrak{M}_{1}(Y)|$

$supp\tau$ is compact}.
For a complex Banach space $\mathcal{B}$ , we denote by $\mathcal{B}^{*}$ the space of all continuous complex

linear functionals $\rho$ : $\mathcal{B}arrow \mathbb{C}$ , endowed with the weak* topology.

For any $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ), we will consider the $i$ . i.d. random dynamics on $Y$ such that at
every step we choose a map $g\in$ CM $(Y)$ according to $\tau$ (thus this determines a time-discrete
Markov process with time-homogeneous transition probabilities on the phase space $Y$ such
that for each $x\in Y$ and each Borel measurable subset $A$ of $Y$ , the transition probability
$p(x, A)$ of the Markov process is defined as $p(x, A)=\tau(\{g\in$ CM$(Y)|g(x)\in A\}))$ .

Definition 2.17. Let $Y$ be a compact metric space. Let $\tau\in \mathfrak{M}_{1}(CM(Y))$ .
1. We set $\Gamma_{\tau};=supp\tau$ (thus $\Gamma_{\tau}$ is a closed subset of CM$(Y)$ ). Moreover, we set

$X_{\tau}$ $:=(\Gamma_{\tau})^{N}(=\{\gamma=(\gamma_{1}, \gamma_{2}, \ldots)|\gamma_{j}\in\Gamma_{\tau}\})$ endowed with the product topology.
Furthermore, we set $\tilde{\tau};=\otimes_{j=1}^{\infty}\tau$ . This is the unique Borel probability measure on
$X_{\tau}$ such that for each cylinder set $A=A_{1}\cross\cdots\cross A_{n}\cross\Gamma_{\tau}\cross\Gamma_{\tau}\cross\cdots$ in $X_{\tau}$ ,
$\tilde{\tau}(A)=\prod_{j=1}^{n}\tau(A_{j})$ . We denote by $G_{\tau}$ the subsemigroup of CM $(Y)$ generated by the
subset $\Gamma_{\tau}$ of CM $(Y)$ .

2. Let $M_{\tau}$ be the operator on $C(Y)$ defined by $M_{\tau}(\varphi)(z)$ $:= \int_{\Gamma_{\tau}}\varphi(g(z))d\tau(g)$ . $M_{\tau}$ is
called the transition operator of the Markov process induced by $\tau$ . Moreover, let
$M_{\tau}^{*}$ : $C(Y)^{*}arrow C(Y)^{*}$ be the dual of $M_{\tau}$ , which is defined as $M_{\tau}^{*}(\mu)(\varphi)=\mu(M_{\tau}(\varphi))$

for each $\mu\in C(Y)^{*}$ and each $\varphi\in C(Y)$ . Remark: we have $M_{\tau}^{*}(\mathfrak{M}_{1}(Y))\subset \mathfrak{M}_{1}(Y)$

and for each $\mu\in \mathfrak{M}_{1}(Y)$ and each open subset $V$ of $Y$ , we have $M_{\tau}^{*}(\mu)(V)=$

$\int_{\Gamma_{\tau}}\mu(g^{-1}(V))d\tau(g)$ .

3. We denote by $F_{meas}(\tau)$ the set of $\mu\in \mathfrak{M}_{1}(Y)$ satisfying that there exists a neigh-
borhood $B$ of $\mu$ in $\mathfrak{M}_{1}(Y)$ such that the sequence $\{(M_{\tau}^{*})^{n}|_{B} : Barrow \mathfrak{M}_{1}(Y)\}_{n\in N}$ is
equicontinuous on $B$ . We set $J_{meas}(\tau)$ $:=\mathfrak{M}_{1}(Y)\backslash F_{meas}(\tau)$ .

4. We denote by $F_{meas}^{0}(\tau)$ the set of $\mu\in \mathfrak{M}_{1}(Y)$ satisfying that the sequence$\{(M_{\tau}^{*})^{n}$ :
$\mathfrak{M}_{1}(Y)arrow \mathfrak{M}_{1}(Y)\}_{n\in \mathbb{N}}$ is equicontinuous at the one point $\mu$ . We set $J_{meas}^{0}(\tau);=$

$\mathfrak{M}_{1}(Y)\backslash F_{meas}^{0}(\tau)$ .

Remark 2.18. We have $F_{meas}(\tau)\subset F_{meas}^{0}(\tau)$ and $J_{meas}^{0}(\tau)\subset J_{meas}(\tau)$ .

Remark 2.19. Let $\Gamma$ be a closed subset of Rat. Then there exists a $\tau\in \mathfrak{M}_{1}$ (Rat) such
that $\Gamma_{\tau}=\Gamma$ . By using this fact, we sometimes apply the results on random complex
dynamics to the study of the dynamics of rational semigroups.

Definition 2.20. Let $Y$ be a compact metric space. Let $\Phi$ : $Yarrow \mathfrak{M}_{1}(Y)$ be the topo-
logical embedding defined by: $\Phi(z):=\delta_{z}$ , where $\delta_{z}$ denotes the Dirac measure at $z$ . Using
this topological embedding $\Phi$ : $Yarrow \mathfrak{M}_{1}(Y)$ , we regard $Y$ as a compact subset of $\mathfrak{M}_{1}(Y)$ .
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Remark 2.21. If $h\in$ CM $(Y)$ and $\tau=\delta_{h}$ , then we have $M_{\tau}^{*}\circ\Phi=\Phi\circ h$ on $Y$. Moreover,
for a general $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ), $M_{\tau}^{*}( \mu)=\int h_{*}(\mu)d\tau(h)$ for each $\mu\in \mathfrak{M}_{1}(Y)$ . Therefore,
for a general $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ), the map $M_{\tau}^{*}$ : $\mathfrak{M}_{1}(Y)arrow \mathfrak{M}_{1}(Y)$ can be regarded as the
“averaged map” on the extension $\mathfrak{M}_{1}(Y)$ of $Y$.

Remark 2.22. If $\tau=\delta_{h}\in \mathfrak{M}_{1}(Rat_{+})$ with $h\in$ Rat$+$ , then $J_{meas}(\tau)\neq\emptyset$ . In fact, using
the embedding $\Phi$ : $\hat{\mathbb{C}}arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$ , we have $\emptyset\neq\Phi(J(h))\subset J_{meas}(\tau)$ .

The following is an important and interesting object in random dynamics.

Definition 2.23. Let $Y$ be a compact metric space and let $A$ be a subset of $Y$. Let $\tau\in$

$\mathfrak{M}_{1}$ (CM $(Y)$ ). For each $z\in Y$ , we set $T_{A_{\mathfrak{l}}\tau}(z)$ $:=\tilde{\tau}(\{\gamma=(\gamma_{1},\gamma_{2}, \ldots)\in X_{\tau}$ I $d(\gamma_{n,1}(z), A)arrow$

$0$ as $narrow\infty\})$ . This is the probability of tending to $A$ starting with the initial value $z\in Y$.
For any $a\in Y$ , we set $T_{a,\tau}$ $:=T_{\{a\},\tau}$ .

3 Results

In this section, we present the main results of this article. The results of subsections 3.1-
3.8 have been written in [41]. For the proofs of the results of subsections 3.1-3.8, see [41].
The results and their proofs of subsections 3.9-3.10 will be written in [42].

3.1 General results and properties of $M_{\tau}$

In this subsection, we present some general results and some results on properties of the
iteration of $M_{\tau}$ : $C(\hat{\mathbb{C}})arrow C(\hat{\mathbb{C}})$ and $M_{\tau}^{*}$ : $C(\hat{\mathbb{C}})^{*}arrow C(\hat{\mathbb{C}})^{*}$ . We need some notations.

Definition 3.1. Let $Y$ be a n-dimensional smooth manifold. We denote by $Leb_{n}$ the
two-dimensional Lebesgue measure on $Y$.

Definition 3.2. Let $\mathcal{B}$ be a complex vector space and let $M$ : $\mathcal{B}arrow \mathcal{B}$ be an operator. Let
$\varphi\in \mathcal{B}$ and $a\in \mathbb{C}$ be such that $\varphi\neq 0,$ $|a|=1$ , and $M(\varphi)=a\varphi$ . Then we say that $\varphi$ is a
unitary eigenvector of $M$ with respect to $a$ , and we say that $a$ is a unitary eigenvalue.

Definition 3.3. Let $Y$ be a compact metric space and let $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ). Let $K$ be a
non-empty subset of $Y$ such that $G(K)\subset K$ . We denote by $\mathcal{U}_{f,\tau}(K)$ the set of all unitary
eigenvectors of $M_{\tau}$ : $C(K)arrow C(K)$ . Moreover, we denote by $\mathcal{U}_{v,\tau}(K)$ the set of all unitary
eigenvalues of $M_{\tau}$ : $C(K)arrow C(K)$ . Similarly, we denote by $\mathcal{U}_{f,\tau,*}(K)$ the set of all unitary
eigenvectors of $M_{\tau}^{*}$ : $C(K)^{*}arrow C(K)^{*}$ , and we denote by $\mathcal{U}_{v,\tau,*}(K)$ the set of all unitary
eigenvalues of $M_{\tau}^{*}$ : $C(K)^{*}arrow C(K)^{*}$ .

Definition 3.4. Let $V$ be a complex vector space and let $A$ be a subset of $V$. We set
LS $(A)$ $:= \{\sum_{j=1}^{m}a_{j}v_{j}|a_{1}, \ldots, a_{m}\in \mathbb{C}, v_{1}, \ldots, v_{m}\in A, m\in \mathbb{N}\}$ .

Definition 3.5. Let $Y$ be a topological space and let $V$ be a subset of $Y$. We denote by
$C_{V}(Y)$ the space of all $\varphi\in C(Y)$ such that for each connected component $U$ of $V$ , there
exists a constant $C_{U}\in \mathbb{C}$ with $\varphi|_{U}\equiv C_{U}$ .

Remark 3.6. $C_{V}(Y)$ is a linear subspace of $C(Y)$ . Moreover, if $Y$ is compact, metrizable,
and locally connected and $V$ is an open subset of $Y$ , then $C_{V}(Y)$ is a closed subspace of
$C(Y)$ . Furthermore, if $Y$ is compact, metrizable, and locally connected, $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ),
and $G_{\tau}$ is a subsemigroup of OCM $(Y)$ , then $M_{\tau}(C_{F(G_{\tau})}(Y))\subset C_{F(G_{\tau})}(Y)$ .
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Definition 3.7. For a topological space $Y$ , we denote by Cpt $(Y)$ the space of all non-
empty compact subsets of $Y$ . If $Y$ is a metric space, we endow Cpt $(Y)$ with the Hausdorff
metric.

Definition 3.8. Let $Y$ be a metric space and let $G$ be a subsemigroup of CM$(Y)$ . Let
$K\in$ Cpt $(Y)$ . We say that $K$ is a minimal set for $(G, Y)$ if $K$ is minimal among the space
$\{L\in$ Cpt $(Y)|G(L)\subset L\}$ with respect to inclusion. Moreover, we set ${\rm Min}(G, Y)$ $:=\{K\in$

Cpt$(Y)|K$ is minimal for $(G, Y)\}$ .

Remark 3.9. Let $Y$ be a metric space and let $G$ be a subsemigroup of CM $(Y)$ . By
Zorn’s lemma, it is easy to see that if $K_{1}\in$ Cpt $(Y)$ and $G(K_{1})\subset K_{1}$ , then there exists
a $K\in{\rm Min}(G, Y)$ with $K\subset K_{1}$ . Moreover, it is easy to see that for each $K\in{\rm Min}(G, Y)$

and each $z\in K,$ $\overline{G(z)}=K$. In particular, if $K_{1},$ $K_{2}\in{\rm Min}(G, Y)$ with $K_{1}\neq K_{2}$ , then
$K_{1}\cap K_{2}=\emptyset$ . Moreover, by the formula $\overline{G(z)}=K$ , we obtain that for each $K\in{\rm Min}(G, Y)$ ,
either (1) $\# K<\infty$ or (2) $K$ is perfect and $\# K>\aleph_{0}$ . Furthermore, it is easy to see that if
$\Gamma\in$ Cpt(CM $(Y)$ ), $G=\langle\Gamma\}$ , and $K\in{\rm Min}(G, Y)$ , then $K= \bigcup_{h\in\Gamma}h(K)$ .
Definition 3.10. Let $Y$ be a compact metric space. Let $\rho\in C(Y)^{*}$ . We denote by $a(\rho)$

the set of points $z\in Y$ which satisfies that there exists a neighborhood $U$ of $z$ in $Y$ such
that for each $\varphi\in C(Y)$ with $supp\varphi\subset U,$ $\rho(\varphi)=0$ . We set $supp\rho:=Y\backslash a(\rho)$ .

Definition 3.11. Let $\{\varphi_{n} : Uarrow\hat{\mathbb{C}}\}_{n=1}^{\infty}$ be a sequence of holomorphic maps on an open
set $U$ of $\hat{\mathbb{C}}$ . Let $\varphi$ : $Uarrow\hat{\mathbb{C}}$ be a holomorphic map. We say that $\varphi$ is a limit function of
$\{\varphi_{n}\}_{n=1}^{\infty}$ if there exists a strictly increasing sequence $\{n_{j}\}_{j=1}^{\infty}$ in $\mathbb{N}$ such that $\varphi_{n_{j}}arrow\varphi$ as
$jarrow\infty$ locally uniformly on $U$.

Definition 3.12. For a topological space $Z$ , we denote by Con $(Z)$ the set of all connected
components of $Z$ .

Definition 3.13. Let $G$ be a rational semigroup. We set $J_{res}(G)$ $:=\{z\in J(G)|\forall U\in$

Con$(F(G)),$ $z\not\in\partial U\}$ . This is called the residual Julia set of $G$ .

We now present the main results.

Theorem 3.14 (Cooperation Principle I). Let $\tau\in \mathfrak{M}_{1,c}$ (NHM $(\mathbb{C}\mathbb{P}^{n})$ ), where $\mathbb{C}\mathbb{P}^{n}$ denotes
the n-dimensional complex projective space. Suppose that $J_{ker}(G_{\tau})=\emptyset$ . Then, $F_{meas}(\tau)=$

$\mathfrak{M}_{1}(\mathbb{C}\mathbb{P}^{n})$ , and for $\tilde{\tau}- a.e$ . $\gamma\in(NHM(\mathbb{C}\mathbb{P}^{n}))^{\mathbb{N}},$ $Leb_{2n}(J_{\gamma})=0$ .

Theorem 3.15 (Cooperation Principle II: Disappearance of Chaos). Let $\tau\in \mathfrak{M}_{1,c}(Rat)$

and let $S_{\tau}$ $:= \bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}$ L. Suppose that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . Then, all of the
following statements 1,. . . ,21 hold.

1. Let $\mathcal{B}_{0,\tau}$ $:=\{\varphi\in C(\hat{\mathbb{C}})|M_{\tau}^{n}(\varphi)arrow 0 as narrow\infty\}$ . Then, $\mathcal{B}_{0,\tau}$ is a closed subspace

of $C(\hat{\mathbb{C}})$ and there exists a direct sum decomposition $C(\hat{\mathbb{C}})=$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))\oplus \mathcal{B}_{0,\tau}$ .
Moreover, LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))\subset C_{F(G_{\tau})}(\hat{\mathbb{C}})$ and $\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))<\infty$.

2. Let $q:=\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))$ . Let $\{\varphi_{j}\}_{j=1}^{q}$ be a basis of LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ such that for each
$j=1,$ $\ldots,$ $q$ , there exists an $\alpha_{j}\in \mathcal{U}_{v,\tau}(\hat{\mathbb{C}})$ with $M_{\tau}(\varphi_{j})=\alpha_{j}\varphi_{j}$ . Then, there exists a
unique family $\{\rho_{j} : C(\hat{\mathbb{C}})arrow \mathbb{C}\}_{j=1}^{q}$ of complex linear functionals such that for each
$\varphi\in C(\hat{\mathbb{C}}),$ $\Vert M_{\tau}^{n}(\varphi-\sum_{j=1}^{q}\rho_{j}(\varphi)\varphi_{j})\Vert_{\infty}arrow 0$ as $narrow\infty$ . Moreover, $\{\rho_{j}\}_{j=1}^{q}$ satisfies
all of the following.
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(a) For each $j=1,$ $\ldots,$ $q,$ $\rho_{j}$ : $C(\hat{\mathbb{C}})arrow \mathbb{C}$ is continuous.
(b) For $eachj=1,$ $\ldots,$ $q,$ $M_{\tau}^{*}(\rho_{j})=\alpha_{j}\rho_{j}$ .

(c) For each $(i,j),$ $\rho_{i}(\varphi_{j})=\delta_{ij}$ . Moreover, $\{\rho_{j}\}_{j=1}^{q}$ is a basis of LS $(\mathcal{U}_{f,\tau,*}(\hat{\mathbb{C}}))$ .
(d) For each $j=1,$ $\ldots,$ $q,$ $supp\rho_{j}\subset S_{\tau}$ .

3. We have $\# J(G_{\tau})\geq 3$ . In particular, for each $U\in$ Con$(F(G_{\tau}))$ , we can take the
hyperbolic metric on $U$.

4. There exists a Borel measurable subset $\mathcal{A}$ of $(Rat)^{N}$ with $\tilde{\tau}(\mathcal{A})=1$ such that

(a) for each $\gamma\in \mathcal{A}$ and for each $U\in$ Con$(F(G_{\tau}))$ , each limit function of $\{\gamma_{n,1}|_{U}\}_{n=1}^{\infty}$

is constant, and
(b) for each $\gamma\in \mathcal{A}$ and for each $Q\in$ Cpt $(F(G_{\tau})),$ $\sup_{a\in Q}||\gamma_{n,1}(a)\Vert_{h}arrow 0$ as $narrow$

$\infty$ , where $\Vert\gamma_{n,1}’(a)\Vert_{h}$ denotes the norm of the derivative of $\gamma_{n,1}$ at a measured
from the hyperbolic metric on the element $U_{0}\in$ Con$(F(G_{\tau}))$ with $a\in U_{0}$ to
that on the element $U_{n}\in$ Con$(F(G_{\tau}))$ with $\gamma_{n,1}(a)\in U_{n}$ .

5. For each $z\in\hat{\mathbb{C}}$ , there exists a Borel subset $\mathcal{A}_{z}$ of $(Rat)^{N}$ with $\tilde{\tau}(\mathcal{A}_{z})=1$ with the
following property.

$\bullet$ For each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in \mathcal{A}_{z}$ , there exists a number $\delta=\delta(z,\gamma)>0$ such that
diam$(\gamma_{n}\cdots\gamma_{1}(B(z, \delta)))arrow 0$ as $narrow\infty$ , where diam denotes the diameter with
respect to the spherical distance on $\hat{\mathbb{C}}$ , and $B(z, \delta)$ denotes the ball with center
$z$ and radius $\delta$ .

6. $\#{\rm Min}(G_{\tau},\hat{\mathbb{C}})<\infty$ .

7. Let $W$ $:= \bigcup_{A\in Con(F(G_{\tau})),A\cap S_{\tau}\neq\emptyset}$ A. Then $S_{\tau}$ is compact. Moreover, for each $z\in\hat{\mathbb{C}}$

there exists a Borel measurable subset $C_{z}$ of $($Rat$)^{N}$ with $\tilde{\tau}(C_{z})=1$ such that for each
$\gamma\in C_{z}$ , there exists an $n\in \mathbb{N}$ with $\gamma_{n,1}(z)\in W$ and $d(\gamma_{m,1}(z), S_{\tau})arrow 0$ as $marrow\infty$ .

8. Let $L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ and $r_{L}$ $:=\dim_{\mathbb{C}}(LS(\mathcal{U}_{f^{\tau}},(L)))$ . Then, $\mathcal{U}_{v,\tau}(L)$ is a finite subgroup
of $S^{1}$ with $\#\mathcal{U}_{v,\tau}(L)=r_{L}$ . Moreover, there exists an $a_{L}\in S^{1}$ and a family $\{\psi_{L,j}\}_{j=1}^{r_{L}}$

in $\mathcal{U}_{f,\tau}(L)$ such that

(a) $a_{L}^{r_{L}}=1,$ $\mathcal{U}_{v,\tau}(L)=\{a_{L}^{j}\}_{j=1\prime}^{r_{L}}$

(b) $M_{\tau}(\psi_{L,j})=a_{L}^{j}\psi_{L_{1}j}$ for each $j=1,$ $\ldots,$ $rL$ ,

(c) $\psi_{L,j}=(\psi_{L,1})^{j}$ for each $j=1,$ $\ldots,$ $r_{L}$ , and
(d) $\{\psi_{L,j}\}_{j=1}^{r_{L}}$ is a basis of LS $(\mathcal{U}_{f^{\tau}},(L))$ .

9. Let $\Psi_{S_{\tau}}$ : LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))arrow C(S_{\tau})$ be the map defined by $\varphi\mapsto\varphi|s_{\tau}$ . Then,
$\Psi_{S_{\tau}}$ $($ LS $(\mathcal{U}_{j,\tau}(\hat{\mathbb{C}})))=$ LS $(\mathcal{U}_{f,\tau}(S_{\tau}))$ and $\Psi_{S_{\tau}}$ : LS $(\mathcal{U}_{f_{r^{\mathcal{T}}}}(\hat{\mathbb{C}}))arrow$ LS $(\mathcal{U}_{f,\tau}(S_{\tau}))$ is a linear
isomorphism. Furthermore, $\Psi_{S_{\tau}}\circ M_{\tau}=M_{\tau}\circ\Psi_{S_{\tau}}$ on LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ .

10. $\mathcal{U}_{v,\tau}(\hat{\mathbb{C}})=\mathcal{U}_{v_{1}\tau}(S_{\tau})=\bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}\mathcal{U}_{v,\tau}(L)=\bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}\{a_{L}^{j}\}_{j=1}^{r_{L}}$ and
$\dim_{\mathbb{C}}($ LS $( \mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))=\sum_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}r_{L}$ .
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11. $\mathcal{U}_{v,\tau,*}(\hat{\mathbb{C}})=\mathcal{U}_{v,\tau}(\hat{\mathbb{C}}),$ $\mathcal{U}_{v,\tau,*}(S_{\tau})=\mathcal{U}_{v,\tau}(S_{\tau})$ , and $\mathcal{U}_{v,\tau,*}(L)=\mathcal{U}_{v,\tau}(L)$ for each $L\in$

${\rm Min}(G_{\tau},\hat{\mathbb{C}})$ .

12. Let $L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ . Let $\Lambda_{r_{L}}$ $:=\{g_{1}\circ\cdots og_{r_{L}} I \forall j, g_{j}\in\Gamma_{\tau}\}$ . Moreover, let $G_{\tau}^{r_{L}}$ $:=$

$\langle\Lambda_{r_{L}}\}$ . Then, $r_{L}=\#{\rm Min}(G_{\tau}^{r_{L}}, L)$ .

13. There exists a basis $\{\varphi_{L_{1}i}|L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}}), i=1, \ldots, r_{L}\}$ of LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ and a
basis $\{\rho_{L,i}|L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}}), i=1, \ldots)r_{L}\}$ of LS $(\mathcal{U}_{f,\tau,*}(\hat{\mathbb{C}}))$ such that for each
$L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ and for each $i=1,$ $\ldots,r_{L}$ , we have all of the following.

(a) $M_{\tau}(\varphi_{L_{2}i})=a_{L}^{i}\varphi_{L,i}$ .
(b) $|\varphi_{L_{1}i}||_{L}\equiv 1$ .
(c) $\varphi_{L,i}|_{L’}\equiv 0$ for any $L’\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ with $L’\neq L$ .
(d) $\varphi_{Li})|_{L}=(\varphi_{L,1}|_{L})^{i}$ .
(e) $supp\rho_{L_{1}i}=L$ .
(f) $\rho_{L,i}(\varphi_{L,j})=\delta_{ij}$ for each $j=1,$ $\ldots,$ $r_{L}$ .

14. For each $\nu\in \mathfrak{M}_{1}(\hat{\mathbb{C}}),$ $d_{0}((M_{\tau}^{*})^{n}(\nu), LS(\mathcal{U}_{f,\tau,*}(\hat{\mathbb{C}}))\cap \mathfrak{M}_{1}(\hat{\mathbb{C}}))arrow 0$ as $narrow\infty$ . More-
over, $\dim_{T}(LS(\mathcal{U}_{f,\tau,*}(\hat{\mathbb{C}}))\cap \mathfrak{M}_{1}(\hat{\mathbb{C}}))\leq 2\dim_{C}$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))<\infty$ , where $\dim_{T}$ denotes
the topological dimension.

15. For each $L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}}),$ $T_{L,\tau}$ : $\hat{\mathbb{C}}arrow[0,1]$ is continuous and $M_{\tau}(T_{L,\tau})=T_{L,\tau}$ .
Moreover, $\sum_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}T_{L,\tau}(z)=1$ for each $z\in\hat{\mathbb{C}}$ .

16. If $\#{\rm Min}(G_{\tau},\hat{\mathbb{C}})\geq 2$ , then (a) for each $L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}}),$ $T_{L,\tau}(J(G_{\tau}))=[0,1]$ , and (b)
$\dim_{\mathbb{C}}($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))>1$ .

17.
$S_{\tau}=takenin\hat{\mathbb{C}},andm(g,z)denotesthemultiplier([1J)ofgatthefixedpointz\{\overline{z\in F(G)\cap S_{\tau}|\exists g\in G_{\tau}s.t.g(z)=z,|m(g,z)|<1}\},wheretheclo$

sure is

18. If $\Gamma_{\tau}\cap$ Rat$+\neq\emptyset$ , then
$S_{\tau}=\{\overline{z\in F(G)\cap S_{\tau}|\exists g\in G_{\tau}\cap Rat_{+}s.t.g(z)=z,|m(g,z)|<1}\}\subset UH(G_{\tau})\subset$

$P(G_{\tau})$ .

19. If $\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))>1$, then for any $\varphi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))_{nc}$ there exists an uncount-
able subset $A$ of $\mathbb{C}$ such that for each $t\in A,$ $\emptyset\neq\varphi^{-1}(\{t\})\cap J(G_{\tau})\subset J_{res}(G_{\tau})$ .

20. If $\dim_{\mathbb{C}}$ $($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))>1$ and int $(J(G_{\tau}))=\emptyset$ , then $\#Con(F(G_{\tau}))=\infty$ .

21. Suppose that $G_{\tau}\cap$ Aut $(\hat{\mathbb{C}})\neq\emptyset$ , where Aut $(\hat{\mathbb{C}})$ denotes the set of all holomorphic
automorphisms on $\hat{\mathbb{C}}$ . If there exists a loxodromic or parabolic element of $G_{\tau}\cap Aut(\hat{\mathbb{C}})$ ,
then $\#{\rm Min}(G_{\tau},\hat{\mathbb{C}})=1$ and $\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))=1$ .

Remark 3.16. Let $G$ be a rational semigroup with $G\cap$ Rat$+\neq\emptyset$ . Then by [1, Theorem
4.2.4], $\#(J(G))\geq 3$ .

Remark 3.17. Let $\tau\in \mathfrak{M}_{1,c}(Rat)$ be such that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . The union
$S_{\tau}$ of minimal sets for $(G_{\tau},\hat{\mathbb{C}})$ may meet $J(G_{\tau})$ . See Example 4.7.
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Remark 3.18. Let $\tau\in \mathfrak{M}_{1,c}$ (Rat) be such that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . Then
$\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))>1$ if and only if $(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}\neq\emptyset$ .

Definition 3.19. Let $G$ be a polynomial semigroup. We set
$\hat{K}(G);=$ { $z\in \mathbb{C}|\{g(z)|g\in G\}$ is bounded in $\mathbb{C}$ } $.\hat{K}(G)$ is called the smallest fllled-in
Julia set of $G$ . For any $h\in \mathcal{P}$ , we set $K(h)$ $:=\hat{K}(\langle h\})$ . This is called the filled-in Julia
set of $h$ .

Remark 3.20. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ be such that $J_{ker}(G_{\tau})=\emptyset$ and $\hat{K}(G_{\tau})\neq\emptyset$ . Then
$\#{\rm Min}(G_{\tau},\hat{\mathbb{C}})\geq 2$ . Thus by Theorem 3.15-16, $\dim_{\mathbb{C}}(LS(\mathcal{U}_{j,\tau}(\hat{\mathbb{C}})))>1$ .

Remark 3.21. There exist many examples of $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ such that $J_{ker}(G_{\tau})=\emptyset,\hat{K}(G_{\tau})\neq$

$\emptyset$ and int $(J(G_{\tau}))=\emptyset$ (see Proposition 4.1, Proposition 4.3, Proposition 4.4, Theorem 3.82,
and [28, Theorem 2.3] $)$ .

3.2 Properties on $T_{\infty_{2}\tau}$

In this subsection, we present some results on properties of $T_{\infty,\tau}$ for a $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ .
Moreover, we present some results on the structure of $J(G_{\tau})$ for a $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ with
$J_{ker}(G_{\tau})=\emptyset$ .

By Theorem 3.14 or Theorem 3.15, we obtain the following result.

Theorem 3.22. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that $J_{ker}(G_{\tau})=\emptyset$ . Then, the function $T_{\infty,\tau}$ :
$\hat{\mathbb{C}}arrow[0,1]$ is continuous on the whole $\hat{\mathbb{C}}$ , and $M_{\tau}(T_{\infty,\tau})=T_{\infty_{2}\tau}$ .

Remark 3.23. Let $h\in \mathcal{P}$ and let $\tau:=\delta_{h}$ . Then, $T_{\infty,\tau}(\hat{\mathbb{C}})=\{0,1\}$ and $T_{\infty,\tau}$ is not
continuous at every point in $J(h)\neq\emptyset$ .

On the one hand, we have the following, due to Vitali’s theorem.

Lemma 3.24. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Then, for each connected component $U$ of $F(G_{\tau})$ , there
exists a constant $C_{U}\in[0,1]$ such that $T_{\infty,\tau}|_{U}\equiv C_{U}$ .

Definition 3.25. Let $G$ be a polynomial semigroup. If $\infty\in F(G)$ , then we denote by
$F_{\infty}(G)$ the connected component of $F(G)$ containing $\infty$ . (Note that if $G$ is generated by
a compact subset of $\mathcal{P}$ , then $\infty\in F(G).)$

We give a characterization of $T_{\infty,\tau}$ .

Proposition 3.26. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that $J_{ker}(G_{\tau})=\emptyset$ and $\hat{K}(G_{\tau})\neq\emptyset$ . Then,
there exists a unique bounded Borel measurable function $\varphi$ : $\hat{\mathbb{C}}arrow \mathbb{R}$ such that $\varphi=M_{\tau}(\varphi)$ ,
$\varphi|_{F_{\infty}(G_{\tau})}\equiv 1$ and $\varphi|_{\hat{K}(G_{\tau})}\equiv 0$ . Moreover, $\varphi=T_{\infty,\tau}$ .

Remark 3.27. Combining Theorem 3.22 and Lemma 3.24, it follows that under the
assumptions of Theorem 3.22, if $T_{\infty,\tau}\not\equiv 1$ , then the function $T_{\infty,\tau}$ is continuous on $\hat{\mathbb{C}}$

and varies only on the Julia set $J(G_{\tau})$ of $G_{\tau}$ . In this case, the function $T_{\infty,\tau}$ is called the
devil $s$ coliseum (see Figures 3, 4). This is a complex analogue of the devil’s staircase
or Lebesgue’s singular functions. We will see the monotonicity of this function $T_{\infty,\tau}$ in
Theorem 3.31.
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In order to present the result on the monotonicity of the function $T_{\infty,\tau}$ : $\hat{\mathbb{C}}arrow[0,1]$ ,
the level set of $T_{\infty_{l}\tau}|_{J(G_{\tau})}$ and the structure of the Julia set $J(G_{\tau})$ , we need the following
notations.

Definition 3.28. Let $K_{1},$ $K_{2}\in$ Cpt $(\hat{\mathbb{C}})$ .
1. $K_{1}<_{s}K_{2}$

” indicates that $K_{1}$ is included in the union of all bounded components
of $\mathbb{C}\backslash K_{2}$ .

2. $K_{1}\leq_{s}K_{2}$
” indicates that $K_{1}<_{s}K_{2}$ or $K_{1}=K_{2}$ .

Remark 3.29. This $\leq_{s}$
” is a partial order in Cpt $(\hat{\mathbb{C}})$ . This $\leq_{s}$

” is called the surround-
ing order.

We present a necessary and sufficient condition for $T_{\infty_{2}\tau}$ to be the constant function 1.

Lemma 3.30. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Then, the following (1), (2), and (3) are equivalent. (1)
$T_{\infty,\tau}\equiv 1$ . (2) $T_{\infty,\tau}|_{J(G_{\tau})}\equiv 1$ . (3) $\hat{K}(G_{\tau})=\emptyset$ .

By Theorem 3.22 and Lemma 3.24, we obtain the following result.

Theorem 3.31 (Monotonicity of $T_{\infty,\tau}$ and the structure of $J(G_{\tau})$ ). Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ .
Suppose that $J_{ker}(G_{\tau})=\emptyset$ and $\hat{K}(G_{\tau})\neq\emptyset$ . Then, we have all of the following.

1. int $(\hat{K}(G_{\tau}))\neq\emptyset$ .

2. $T_{\infty,\tau}(J(G_{\tau}))=[0,1]$ .

3. For each $t_{1},$ $t_{2}\in[0,1]$ with $0\leq t_{1}<t_{2}\leq 1$ , we have $T_{\infty,\tau}^{-1}(\{t_{1}\})<_{s}T_{\infty,\tau}^{-1}(\{t_{2}\})\cap$

$J(G_{\tau})$ .

4. For each $t\in(0,1)$ , we have $\hat{K}(G_{\tau})<_{s}T_{\infty,\tau}^{-1}(\{t\})\cap J(G_{\tau})<_{s}\overline{F_{\infty}(G_{\tau})}$ .

5. There exists an uncountable dense subset $A$ of $[0,1]$ with $\#([0,1]\backslash A)\leq\aleph_{0}$ such that
for each $t\in A$ , we have $\emptyset\neq T_{\infty,\tau}^{-1}(\{t\})\cap J(G_{\tau})\subset J_{res}(G_{\tau})$ .

Remark 3.32. If $G$ is generated by a single map $h\in \mathcal{P}$ , then $\partial\hat{K}(G)=\partial F_{\infty}(G)=$

$J(G)$ and so $\hat{K}(G)$ and $\overline{F_{\infty}(G)}$ cannot be separated. However, under the assumptions
of Theorem 3.31, the theorem implies that $\hat{K}(G_{\tau})$ and $\overline{F_{\infty}(G_{\tau})}$ are separated by the
uncountably many level sets $\{T_{\infty,\tau}|_{J(G_{\tau})}^{-1}(\{t\})\}_{t\in(0,1)}$ , and that these level sets are totally
ordered with respect to the surrounding order, respecting the usual order in $(0,1)$ . Note
that there are many $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ such that $J_{ker}(G_{\tau})=\emptyset$ and $\hat{K}(G_{\tau})\neq\emptyset$ . See section 4.

Remark 3.33. For each $\Gamma\in$ Cpt(Rat), there exists a $\tau\in \mathfrak{M}_{1}$ (Rat) such that $\Gamma_{\tau}=\Gamma$ .
Thus, Theorem 3.31 tells us the information of the Julia set of a polynomial semigroup $G$

generated by a compact subset $\Gamma$ of $\mathcal{P}$ such that $J_{ker}(G)=\emptyset$ and $\hat{K}(G)\neq\emptyset$ .
Applying Theorem 3.22 and Lemma 3.24, we obtain the following result.

Theorem 3.34. Let $\Gamma$ be a non-empty compact subset of $\mathcal{P}$ and let $G=\langle\Gamma\rangle$ . Suppose that
$\hat{K}(G)\neq\emptyset$ and $J_{ker}(G)=\emptyset$ . Then, at least one of the following statements (a) and (b)
holds.

(a) int $(J(G))\neq\emptyset$ . (b) $\#\{U\in$ Con $(F(G))|U\neq F_{\infty}(G)$ and $U\not\subset$ int $(\hat{K}(G))\}=\infty$ .

Remark 3.35. There exist finitely generated polynomial semigroups $G$ in $\mathcal{P}$ such that
int $(J(G))\neq\emptyset$ and $J(G)\neq\hat{\mathbb{C}}$ (see [14], Example 4. 11).
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3.3 Planar postcritical set and the condition that $\hat{K}(G_{\tau})=\emptyset$

In this subsection, we present some results which are deduced from the condition that
the planar postcritical set is unbounded. Moreover, we present some results which are
deduced $hom$ the condition that $\hat{K}(G_{\tau})=\emptyset$ .

Definition 3.36. For a polynomial semigroup $G$ , we set $P^{*}(G)$ $:=P(G)\backslash \{\infty\}$ . This is
called the planar postcritical set of the polynomial semigroup $G$ .

Definition 3.37. Let $Y$ be a complete metric space. We say that a subset $A$ of $Y$ is
residual if $A$ contains a countable intersection of open dense subsets of $Y$. Note that by
Baire’s category theorem, a residual subset $A$ of $Y$ is dense in $Y$.

The following theorem generalizes [2, Theorem 1.5] and [4, Theorem 2.3].

Theorem 3.38. Let $\Gamma\in$ Cpt $(\mathcal{P})$ and let $G=\langle\Gamma\rangle$ . Suppose that $P^{*}(G)$ is not bounded in
$\mathbb{C}$ . Then, there eststs a residual subset $\mathcal{U}$ of $\Gamma^{N}$ such that for each $\tau\in \mathfrak{M}_{1}(\mathcal{P})$ with $\Gamma_{\tau}=\Gamma$ ,
we have $\tilde{\tau}(\mathcal{U})=1$ , and such that for each $\gamma\in \mathcal{U}$ , the Julia set $J_{\gamma}$ of $\gamma$ has uncountably
many connected components.

Question 3.39. What happens if $\hat{K}(G_{\tau})=\emptyset$ (i.e., if $T_{\infty,\tau}\equiv 1$ ) ?

Definition 3.40. Let $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in \mathcal{P}^{N}$ . We set $K_{\gamma}$ $:=$ { $z\in \mathbb{C}|\{\gamma_{n,1}(z)\}_{n\in N}$ is bounded in $\mathbb{C}$ }.
Moreover, we set $A_{\infty,\gamma}$ $:=\{z\in\hat{\mathbb{C}}|\gamma_{n,1}(z)arrow\infty\}$ .

Theorem 3.41. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that $\hat{K}(G_{\tau})=\emptyset$ . Then, we have all of the
following statements 1,. . .,4.

1. $J_{ker}(G_{\tau})=\emptyset$ .

2. $F_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ and $(M_{\tau}^{*})^{n}(\nu)arrow\delta_{\infty}$ as $narrow\infty$ uniformly on $\nu\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ .

3. $T_{\infty_{2}\tau}\equiv 1$ on $\hat{\mathbb{C}}$ .

4. For $\tilde{\tau}- a.e$ . $\gamma\in \mathcal{P}^{N},$ $(a)Leb_{2}(K_{\gamma})=0,$ $(b)K_{\gamma}=J_{\gamma}$ , and (c) $K_{\gamma}=J_{\gamma}$ has uncount-
ably many connected components.

Remark 3.42. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that $J_{ker}(G_{\tau})=\emptyset$ . Rom Theorem 3.22 and
Theorem 3.41, it follows that $\hat{K}(G_{\tau})\neq\emptyset$ if and only if $($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}\neq\emptyset$ .

Example 3.43. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ and suppose that there exist two elements $h_{1},$ $h_{2}\in\Gamma_{\tau}$

such that $K(h_{1})\cap K(h_{2})=\emptyset$ . Then $\hat{K}(G_{\tau})=\emptyset$ . For more examples of $\tau$ with $\hat{K}(G_{\tau})=\emptyset$ ,
see Example 3.59.

3.4 Conditions to be $Leb_{2}(J_{\gamma})=0$ for $\tilde{\tau}-a.e$ . $\gamma$ (even if $J_{ker}(G_{\tau})\neq\emptyset$ )

In this subsection, we present some sufficient conditions to be $Leb_{2}(J_{\gamma})=0$ for $\tilde{\tau}- a.e$ . $\gamma$ .
More precisely, we show that even if $J_{ker}(G_{\tau})\neq\emptyset$ , under certain conditions, for $\tilde{\tau}- a.e$ . $\gamma$ ,
for $Leb_{2^{-}}a.e$ . $z\in\hat{\mathbb{C}}$ , there exists a number $n_{0}\in \mathbb{N}$ such that for each $n$ with $n\geq n_{0}$ ,
$\gamma_{n,1}(z)\in F(G_{\tau})$ . We also define other kinds of Julia sets of $M_{\tau}^{*}$ .
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Definition 3.44. Let $Y$ be a compact metric space. Let $\tau\in \mathfrak{M}_{1}$ (CM $(Y)$ ). Regarding $Y$

as a compact subset of $\mathfrak{M}_{1}(Y)$ as in Definition 2.20, we use the following notation.

1. We denote by $F_{pt}(\tau)$ the set of $z\in Y$ satisfying that there exists a neighborhood $B$

of $z$ in $Y$ such that the sequence$\{(M_{\tau}^{*})^{n}|_{B} : Barrow \mathfrak{M}_{1}(Y)\}_{n\in N}$ is equicontinuous on
$B$ . We set $J_{pt}(\tau):=Y\backslash F_{pt}(\tau)$ .

2. Similarly, we denote by $F_{pt}^{0}(\tau)$ the set of $z\in Y$ such that the sequence $\{(M_{\tau}^{*})^{n}|_{Y}$ :
$Yarrow \mathfrak{M}_{1}(Y)\}_{n\in N}$ is equicontinuous at the one point $z\in Y$. We set $J_{pt}^{0}(\tau);=Y\backslash$

$F_{pt}^{0}(\tau)$ .

Remark 3.45. We have $F_{pt}(\tau)\subset F_{pt}^{0}(\tau)$ and $J_{pt}^{0}(\tau)\subset J_{pt}(\tau)\cap J_{meas}^{0}(\tau)$ .

We also need the following notations on the skew products. In fact, we heavily use the
idea and the notations of the dynamics of skew products, to prove many results of this
paper.

Definition 3.46. Let $Y$ be a compact metric space and let $\Gamma$ be a non-empty compact
subset of CM$(Y)$ . We define a map $f$ : $\Gamma^{N}\cross Yarrow\Gamma^{\mathbb{N}}\cross Y$ as follows: For a point
$(\gamma, y)\in\Gamma^{N}\cross Y$ where $\gamma=(\gamma_{1},\gamma_{2}, \ldots)$ , we set $f(\gamma, y)$ $:=(\sigma(\gamma), \gamma_{1}(y))$ , where $\sigma$ : $\Gamma^{N}arrow\Gamma^{N}$

is the shift map, that is, $\sigma(\gamma_{1}, \gamma_{2}, \ldots)=(\gamma_{2}, \gamma_{3}, \ldots)$ . The map $f$ : $\Gamma^{N}\cross Yarrow\Gamma^{N}\cross Y$ is
called the skew product associated with the generator system $\Gamma$ . Moreover, we use
the following notation.

1. Let $\pi$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow\Gamma^{N}$ and $\pi_{Y}$ : $\Gamma^{N}\cross Yarrow Y$ be the canonical projections. For each
$\gamma\in\Gamma^{\mathbb{N}}$ and $n\in \mathbb{N}$ , we set $f_{\gamma}^{n}$ $:=f^{n}|_{\pi^{-1}\{\gamma\}}$ : $\pi^{-1}\{\gamma\}arrow\pi^{-1}\{\sigma^{n}(\gamma)\}$ . Moreover, we
set $f_{\gamma_{1}n}:=\gamma_{n}0\cdots 0\gamma_{1}$ .

2. For each $\gamma\in\Gamma^{\mathbb{N}}$ , we set $J^{\gamma}$ $:=\{\gamma\}\cross J_{\gamma}(\subset\Gamma^{N}\cross Y)$ . Moreover, we set $\tilde{J}(f)$ $:=$

$\overline{\bigcup_{\gamma\in\Gamma^{N}}J^{\gamma}}$, where the closure is taken in the product space $\Gamma^{N}\cross Y$. Furthermore, we
set $\tilde{F}(f):=(\Gamma^{N}\cross Y)\backslash \tilde{J}(f)$ .

3. For each $\gamma\in\Gamma^{N}$ , we set $\hat{J}^{\gamma,\Gamma}$ $:=\pi^{-1}\{\gamma\}\cap\tilde{J}(f),\hat{F}^{\gamma_{r}\Gamma}$ $:=\pi^{-1}(\{\gamma\})\backslash \hat{J}^{\gamma,\Gamma},\hat{J}_{\gamma_{1}\Gamma}$ $:=$

$\pi_{Y}(\hat{J}^{\gamma,\Gamma})$ , and $\hat{F}_{\gamma,\Gamma}$ $:=Y\backslash \hat{J}_{\gamma,\Gamma}$ . Note that $J_{\gamma}\subset\hat{J}_{\gamma_{I}\Gamma}$ .

4. When $\Gamma\subset$ Rat, for each $z=(\gamma, y)\in\Gamma^{N}\cross\hat{\mathbb{C}}$ , we set $f’(z)$ $:=(\gamma_{1})’(y)$ .

Remark 3.47. Under the above notation, let $G=\langle\Gamma\rangle$ . Then $\pi_{Y}(\tilde{J}(f))\subset J(G)$ and
$\pi\circ f=\sigma\circ\pi$ on $\Gamma^{N}\cross Y$. Moreover, for each $\gamma\in\Gamma^{N},$ $\gamma_{1}(J_{\gamma})\subset J_{\sigma(\gamma)},$ $\gamma_{1}(\hat{J}_{\gamma,\Gamma})\subset\hat{J}_{\sigma(\gamma),\Gamma}$ ,
and $f(\tilde{J}(f))\subset\tilde{J}(f)$ . Furthermore, if $\Gamma\in$ Cpt(Rat), then for each $\gamma\in\Gamma^{N},$ $\gamma_{1}(J_{\gamma})=J_{\sigma(\gamma)}$ ,
$\gamma_{1}^{-1}(J_{\sigma(\gamma)})=J_{\gamma},$ $\gamma_{1}(\hat{J}_{\gamma,\Gamma})=\hat{J}_{\sigma(\gamma),\Gamma},$ $\gamma_{1}^{-1}(\hat{J}_{\sigma(\gamma),\Gamma})=\hat{J}_{\gamma,\Gamma},$ $f(\tilde{J}(f))=\tilde{J}(f)=f^{-1}(\tilde{J}(f))$ ,
and $f(\tilde{F}(f))=\tilde{F}(f)=f^{-1}(\tilde{F}(f))$ (see [30, Lemma 2.4]).

We now present the results. Even if $J_{ker}(G_{\tau})\neq\emptyset$ , we have the following.

Theorem 3.48. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that $J_{ker}(G_{\tau})$ is included in the unbounded
component of $\mathbb{C}\backslash (UH(G_{\tau})\cap J(G_{\tau}))$ . Then, we have the following.

1. For $\tilde{\tau}- a.e$ . $\gamma\in X_{\tau},$ $Leb_{2}(J_{\gamma})=$ Leb2 $(\hat{]}_{\gamma,\Gamma_{\tau}})=0$ .

117



2. For $Leb_{2}$ -a. $e$ . $y\in\hat{\mathbb{C}}$ , for $\tilde{\tau}- a.e$ . $\gamma\in X_{\tau}$ , there exists an $n=n(y, \gamma)\in \mathbb{N}$ such that
$\gamma_{n,1}(y)\in F(G_{\tau})$ .

3. Leb2 $(J_{pt}^{0}(\tau))=0$ .

4. For $Leb_{2}$ -a. $e$ . point $y\in\hat{\mathbb{C}},$
$T_{\infty,\tau}$ is continuous at $y$ .

Remark 3.49. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . If $J_{ker}(G_{\tau})$ is included in the unbounded component
of $\mathbb{C}\backslash (P(G_{\tau})\cap J(G_{\tau}))$ , then $J_{ker}(G_{\tau})$ is included in the unbounded component of $\mathbb{C}\backslash$

$(UH(G_{\tau})\cap J(G_{\tau}))$ (see Remark 2.13).

Remark 3.50. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ . Suppose that for each $h\in\Gamma_{\tau},$ $h$ is a real polynomial and
each critical value of $h$ in $\mathbb{C}$ belongs to $\mathbb{R}$ . Suppose also that for each $z\in P(G_{\tau})\cap J(G_{\tau})$ ,
there exists an element $g_{z}\in G_{\tau}$ such that $g_{z}(z)\in F(G_{\tau})$ . Then $J_{ker}(G_{\tau})$ is included in
the unbounded component of $\mathbb{C}\backslash (UH(G_{\tau})\cap J(G_{\tau}))$ .

3.5 Conditions to be $J_{ker}(G)=\emptyset$

In this subsection, we present some sufficient conditions to be $J_{ker}(G)=\emptyset$ .
The following is a natural question.

Question 3.51. When do we have that $J_{ker}(G)=\emptyset$?

We give several answers to this question.

Lemma 3.52. Let $\Gamma$ be a subset of Rat such that the interior of $\Gamma$ with respect to the
topology of Rat is not empty. Let $G=\langle\Gamma\rangle$ . Suppose that $F(G)\neq\emptyset$ . Then, $J_{ker}(G)=\emptyset$ .

Definition 3.53. Let $\Lambda$ be a finite dimensional complex manifold and let $\{g_{\lambda}\}_{\lambda\in\Lambda}$ be a
family of rational maps on $\hat{\mathbb{C}}$ . We say that $\{g_{\lambda}\}_{\lambda\in\Lambda}$ is a holomorphic family of rational
maps if the map $(z, \lambda)\in\hat{\mathbb{C}}\cross\Lambda\mapsto g_{\lambda}(z)\in\hat{\mathbb{C}}$ is holomorphic on $\hat{\mathbb{C}}\cross\Lambda$ . We say that $\{g_{\lambda}\}_{\lambda\in\Lambda}$

is a holomorphic family of polynomials if $\{g_{\lambda}\}_{\lambda\in\Lambda}$ is a holomorphic family of rational maps
and each $g_{\lambda}$ is a polynomial.

Definition 3.54. Let $\mathcal{Y}$ be a subset of $\mathcal{P}$ .

1. We say that $\mathcal{Y}$ is admissible if for each $z_{0}\in \mathbb{C}$ there exists a holomorphic family
of polynomials $\{g_{\lambda}\}_{\lambda\in\Lambda}$ such that $\{g_{\lambda}|\lambda\in\Lambda\}\subset \mathcal{Y}$ and the map $\lambda\mapsto g_{\lambda}(z_{0})$ is
nonconstant in $\Lambda$ .

2. We say that $\mathcal{Y}$ is strongly admissible if for each $(z_{0}, h_{0})\in \mathbb{C}\cross \mathcal{Y}$ there exists a
holomorphic family $\{g_{\lambda}\}_{\lambda\in\Lambda}$ of polynomials and a point $\lambda_{0}\in\Lambda$ such that $\{g_{\lambda}|\lambda\in$

$\Lambda\}\subset \mathcal{Y},$ $g_{\lambda_{0}}=h_{0}$ , and the map $\lambda\mapsto g_{\lambda}(z_{0})\in \mathbb{C}$ is nonconstant in any neighborhood
of $\lambda_{0}$ in $\Lambda$ .

Example 3.55.

1. Let $\mathcal{Y}$ be a strongly admissible subset of $\mathcal{P}$ . Let $\mathcal{Y}$ be endowed with the relative
topology from $\mathcal{P}$ . If $\Gamma$ is a non-empty open subset of $\mathcal{Y}$ , then $\Gamma$ is strongly admissible.
If $\Gamma$

‘ is a subset of $\mathcal{Y}$ such that the interior of $\Gamma’$ in $\mathcal{Y}$ is not empty, then $\Gamma’$ is
admissible.
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2. $\mathcal{P}$ is strongly admissible. If $\Gamma$ is a subset of $\mathcal{P}$ such that the interior of $\Gamma$ in $\mathcal{P}$ is not
empty, then $\Gamma$ is admissible.

3. For a fixed $h_{0}\in \mathcal{P},$ $\mathcal{Y}$ $:=\{h_{0}+c|c\in \mathbb{C}\}$ is a strongly admissible closed subset
of $\mathcal{P}$ . If $\Gamma$ is a subset of $\mathcal{Y}$ such that the interior of $\Gamma$ in $\mathcal{Y}$ is not empty, then $\Gamma$ is
admissible.

Lemma 3.56. Let $\Gamma$ be a relative compact admissible subset of $\mathcal{P}$ . Let $G=\langle\Gamma\rangle$ . Then,
$J_{ker}(G)=\emptyset$ .

Proposition 3.57. Let $\mathcal{Y}$ be a closed subset of an open subset of $\mathcal{P}$ . Suppose that $\mathcal{Y}$ is
strongly admissible. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{Y})$ . Let $V_{1}$ be any neighborhood of $\tau$ in $\mathfrak{M}_{1}(\mathcal{Y})$ and $V_{2}$

any neighborhood of $\Gamma_{\tau}$ in Cpt $(\hat{\mathbb{C}})$ . Then, there exists an element $\rho\in \mathfrak{M}_{1}(\mathcal{Y})$ such that
$\rho\in V_{1},$ $\Gamma_{\rho}\in V_{2},$ $\#\Gamma_{\rho}<\infty$ , and $J_{ker}(G_{\rho})=\emptyset$ .

Remark 3.58 (Cooperation Principle III). By Lemma 3.56, Proposition 3.57, Theo-
rems 3.14, 3.15, we can state that for most $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ , the chaos of the averaged system
of the Markov process induced by $\tau$ disappears. In the subsequent paper [42], we investi-
gate the further detail regarding this result.

Example 3.59. Let $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ be such that $\Gamma_{\tau}$ is admissible. Suppose that there
exists an element $h\in\Gamma_{\tau}$ with int $(K(h))=\emptyset$ . Then $\hat{K}(G_{\tau})=\emptyset$ and the statements in
Theorem 3.41 hold. For, if $\hat{K}(G_{\tau})\neq\emptyset$ , then since $\Gamma_{\tau}$ is admissible and since $G_{\tau}(\hat{K}(G_{\tau}))\subset$

$\hat{K}(G_{\tau})$ , we have int $(\hat{K}(G_{\tau}))\neq\emptyset$ . However, since int $(K(h))=\emptyset$ , this is a contradiction.
Thus $\hat{K}(G_{\tau})=\emptyset$ .

From the above argument, we obtain many examples of $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ such that
$\hat{K}(G_{\tau})=\emptyset$ . For example, if $h(z)=z^{2}+c$ belongs to the boundary of the Mandelbrot
set and $\Gamma_{\tau}$ contains a neighborhood of $h$ in the c-plane, then from the above argument,
$\hat{K}(G_{\tau})=\emptyset$ and the statements in Theorem 3.41 hold. Thus the above argument general-
izes [4, Theorem 2.2] and a statement in [2, Theorem 2.4].

3.6 Mean stability

In this subsection, we introduce mean stable rational semigroups, and we present some
results on mean stability.

Definition 3.60. Let $Y$ be a compact metric space and let $\Gamma\in$ Cpt(CM $(Y)$ ). Let $G=\langle\Gamma\rangle$ .
We say that $G$ is mean stable if there exist non-empty open subsets $U,$ $V$ of $F(G)$ and a
number $n\in \mathbb{N}$ such that all of the following hold.

(1) $\overline{V}\subset U$ and $\overline{U}\subset F(G)$ .

(2) For each $\gamma\in\Gamma^{\mathbb{N}},$ $\gamma_{n,1}(\overline{U})\subset V$.

(3) For each point $z\in Y$ , there exists an element $g\in G$ such that $g(z)\in U$.

Note that this definition does not depend on the choice of a compact set $\Gamma$ which generates
$G$ . Moreover, for a $\Gamma\in$ Cpt(CM $(Y)$ ), we say that $\Gamma$ is mean stable if $\langle\Gamma\}$ is mean stable.
Furthermore, for a $\tau\in \mathfrak{M}_{1,c}$(CM $(Y)$ ), we say that $\tau$ is mean stable if $G_{\tau}$ is mean stable.
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Remark 3.61. It is easy to see that if $G$ is mean stable, then $J_{ker}(G)=\emptyset$ .

By Montel’s theorem, it is easy to see that the following lemma holds.

Lemma 3.62. Let $\Gamma\in$ Cpt(Rat) be mean stable. Suppose $\#(\hat{\mathbb{C}}\backslash V)\geq 3$ , where $V$ is
the open set coming from Definition 3.60. Then there exists a neighborhood $\mathcal{U}$ of $\Gamma$ in
Cpt(Rat) with respect to the Hausdorff metric such that each $\Gamma‘\in \mathcal{U}$ is mean stable.

Proposition 3.63. Let $\Gamma\in$ Cpt $(Rat_{+})$ . Suppose that $J_{ker}(\langle\Gamma\rangle)=\emptyset$ and $\langle\Gamma)$ is semi-
hyperbolic. Then there exists an open neighborhood $U$ of $\Gamma$ in Cpt(Rat) such that for each
$\Gamma‘\in U,$ $\Gamma’$ is mean stable and $J_{ker}(\langle\Gamma’\rangle)=\emptyset$ .

Remark 3.64. Let $\Gamma\in$ Cpt(Rat$+$ ). Suppose that $J_{ker}(\langle\Gamma\rangle)=\emptyset$ and $\langle\Gamma\rangle$ is semi-
hyperbolic. Then for a small perturbation $\Gamma’$ of $\Gamma,$ $\Gamma$

’ is mean stable, which is the conse-
quence of Proposition 3.63, but $\langle\Gamma’\}$ may not be semi-hyperbolic. See Proposition 4.1-(c).

Proposition 3.65. Let $\tau\in \mathfrak{M}_{1,c}$ be mean stable. Suppose that $J(G_{\tau})\neq\emptyset$ . Let $V$ be
the set coming from Definition 3.60. Let $S_{\tau}$

$:= \bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}$ L. Then we have all of the
following.

1. $S_{\tau}\subset\overline{G_{\tau}^{*}(\overline{V})}\subset F(G_{\tau})$ .

2. Let $W$ $:= \bigcup_{A\in Con(F(G_{\tau})),A\cap S_{\tau}\neq\emptyset}$ A. Let $\mathcal{U}_{W}$ $:=\{\varphi\in C_{W}(W)|\exists a\in S^{1},$ $M_{\tau}(\varphi)=$

$a\varphi,$ $\varphi\neq 0\}$ Moreover, let $\Psi_{W}$ : LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))arrow C_{W}(W)$ be the map defined by
$\varphi\mapsto\varphi|_{W}$ . Then $\Psi_{W}$ $($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))=$ LS $(\mathcal{U}_{W})$ and $\Psi_{W}$ : LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))arrow$ LS $(\mathcal{U}_{W})$

is a linear isomo$7phism$.

3. Let $Z:= \bigcup_{A\in Con(F(G_{\tau})),A\cap\overline{G(\overline{V})}\neq\emptyset}$ A. Let $\mathcal{U}_{Z}$ $:=\{\varphi\in C_{Z}(Z)|\exists a\in S^{1},$ $M_{\tau}(\varphi)=$

$a\varphi,$ $\varphi\neq 0\}$ Moreover, let $\Psi_{Z}$ : LS $(\mathcal{U}_{f^{\tau}},(\hat{\mathbb{C}}))arrow C_{Z}(Z)$ be the map defined by $\varphi\mapsto$

$\varphi|z$ . Then $\Psi_{Z}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))=$ LS $(\mathcal{U}_{Z})$ and $\Psi_{Z}$ : LS $(\mathcal{U}_{f)}\tau(\hat{\mathbb{C}}))arrow$ LS $(\mathcal{U}_{Z})$ is a linear
isomorphism.

Remark 3.66. Under the assumptions and notation of Proposition 3.65, we have
$\dim_{\mathbb{C}}C_{W}(W)<\infty$ and $\dim_{\mathbb{C}}C_{Z}(Z)<\infty$ . Thus, in order to seek $\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})$ and $\mathcal{U}_{v,\tau}(\hat{\mathbb{C}})$ , it
suffices to consider the eigenvectors and eigenvalues of the matrix representation of $M_{\tau}$

on the finite dimensional linear space $C_{W}(W)$ or $C_{Z}(Z)$ .

Remark 3.67. Let $\Gamma\in$ Cpt(Rat$+$ ) and let $G=\langle\Gamma\rangle$ .

1. Suppose that $G$ is semi-hyperbolic and $J_{ker}(G)=\emptyset$ . Then by Proposition 3.63, $G$

is mean stable. Moreover, the set $V$ in Definition 3.60 can be taken to be a small
neighborhood of $A(G)$ in $F(G)$ , where

$A(G)$ $:=G(\{z\in\hat{\mathbb{C}}|\exists g\in G$ s.t. $g(z)=z,$ $|m(g,$ $z)|<1\})$ .

In this case, $\{A\in$ Con $(F(G))|A\cap\overline{G^{*}(\overline{V})}\neq\emptyset\}=\{A\in$ Con$(F(G))|A\cap A(G)\neq$

$\emptyset.\}$ .

2. Similarly, suppose that $G$ is hyperbolic and $J_{ker}(G)=\emptyset$ . Then by Proposition 3.63,
$G$ is mean stable. Moreover, the set $V$ in Definition 3.60 can be taken to be a small
neighborhood of $P(G)$ in $F(G)$ . In this case, $\{A\in$ Con $(F(G))|A\cap\overline{G^{*}(\overline{V})}\neq\emptyset\}=$

$\{A\in$ Con $(F(G))|A\cap P(G)\neq\emptyset.\}$ .
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3.7 Necessary and Sufficient conditions to be $J_{ker}(G_{\tau})\neq\emptyset$

In this subsection, we present some results on necessary and sufficient conditions to be
$J_{ker}(G_{\tau})\neq\emptyset$ . The proofs are given in subsection 3.7.

The following is a natural question.

Question 3.68. What happens if $J_{ker}(G_{\tau})\neq\emptyset$ ?

Definition 3.69. Let $Y$ be a compact metric space with $\dim_{H}(Y)<\infty$ and let $\tau\in$

$\mathfrak{M}_{1,c}$(CM $(Y)$ ). Since the function $\gamma\mapsto\dim_{H}(\hat{J}_{\gamma_{2}\Gamma_{\tau}})$ is Borel measurable and since $(\sigma,\tilde{\tau})$

is ergodic, there exists a number $a\in[0,$ $\infty)$ such that for $\tilde{\tau}- a.e$ . $\gamma\in\Gamma_{\tau},$ $\dim_{H}(\hat{J}_{\gamma,\Gamma_{\tau}})=a$ .
We set $MHD(\tau)$ $:=a$ .

Remark 3.70. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $G=\langle\Gamma)$ . Suppose that $G$ is semi-hyperbolic
and $F(G)\neq\emptyset$ . Then, $\gamma\mapsto J_{\gamma}$ is continuous on $\Gamma^{N}$ with respect to the Hausdorff metric
(this is non-trivial) and for each $\gamma\in\Gamma^{N},$ $J_{\gamma}=\hat{J}_{\gamma,\Gamma}$ (see [30, Theorem 2.14]). Moreover,
there exists a constant $0\leq b<2$ such that for each $\gamma\in\Gamma^{N},$ $\dim_{H}(J_{\gamma})\leq b$ (see [33,
Theorem 1.16] $)$ . Note that if we do not assume semi-hyperbolicity, then $\gamma\mapsto J_{\gamma}$ is not
continuous in general.

Theorem 3.71. Let $\tau\in \mathfrak{M}_{1,c}$ (Rat$+$ ). Suppose that $G_{\tau}$ is semi-hyperbolic and $F(G_{\tau})\neq\emptyset$ .
Then, we have all of the following.

1. $\dim_{H}(J_{pt}^{0}(\tau))\leq$ MHD$(\tau)<2$ .

2. $J_{ker}(G_{\tau})\subset J_{pt}^{0}(\tau)$ .

3.
$\mathfrak{M}_{1}(\hat{\mathbb{C}})F_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ if and only if $J_{ker}(G_{\tau})=\emptyset$ . If $J_{ker}(G_{\tau})\neq\emptyset$ , then $J_{meas}(\tau)=$

4. If, in addition to the assumption, $\#\Gamma_{\tau}<\infty$ , then we have the following.

(a) $G_{\tau}^{-1}(J_{ker}(G_{\tau}))\subset J_{pt}^{0}(\tau)$ .

(b) Either $F_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ or $J_{pt}(\tau)=J(G_{\tau})$ .

Remark 3.72. Let $G$ be a hyperbolic rational semigroup with $G\cap$ Rat$+\neq\emptyset$ . Then, $G$ is
semi-hyperbolic and $F(G)\neq\emptyset$ .

3.8 Singular properties and regularity of non-constant finite linear com-
binations of unitary eigenvectors of $M_{\tau}$

In this subsection, we present some results on singular properties and regularity of non-
constant finite linear combinations $\varphi$ of unitary eigenvectors of $M_{\tau}$ : $C(\hat{\mathbb{C}})arrow C(\hat{\mathbb{C}})$ . It
turns out that under certain conditions, such $\varphi$ is non-differentiable at each point of an
uncountable dense subset of $J(G_{\tau})$ (see Theorem 3.82). Moreover, we investigate the
pointwise H\"older exponent of such $\varphi$ (see Theorem 3.82 and Theorem 3.84).

Lemma 3.73. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $Y$ be a compact metric space and let
$h_{1},$ $h_{2},$

$\ldots$ , $h_{m}\in$ OCM $(Y)$ . Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\}$ . Suppose that for each $(i,j)$ with $i\neq j$ ,
$h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ . Then, $J_{ker}(G)=\emptyset$ .
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Definition 3.74. For each $m\in \mathbb{N}$ , we set $\mathcal{W}_{m}$ $:= \{(p_{1}, \ldots,p_{m})\in(0,1)^{m}|\sum_{j=1}^{m}p_{j}=1\}$ .

Lemma 3.75. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=$ $(h_{1}, \ldots , h_{m})\in(Rat)^{m}$ and let $G=$
$\langle h_{1},$

$\ldots,$
$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ and let $\tau=\sum_{j=1}^{m}p_{j}\delta_{h_{j}}$ . Suppose that $J(G)\neq\emptyset$

and that $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ . Then int $(J(G))=\emptyset$ and
for each $\varphi\in$ $($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}$ ,

$J(G)=$ { $z\in\hat{\mathbb{C}}|$ for any neighborhood $U$ of $z,$ $\varphi|_{U}$ is not constant}.
Definition 3.76. Let $U$ be a domain in $\hat{\mathbb{C}}$ and let $g:Uarrow\hat{\mathbb{C}}$ be a meromorphic function.
For each $z\in U$ , we denote by il $g’(z)\Vert_{s}$ the norm of the derivative of $g$ at $z$ with respect
to the spherical metric.

Deflnition 3.77. Let $m\in \mathbb{N}$ . Let $h=(h_{1}, \ldots, h_{m})\in($Rat$)^{m}$ be an element such that
$h_{1},$

$\ldots,$
$h_{m}$ are mutually distinct. We set $\Gamma$ $:=\{h_{1}, \ldots, h_{m}\}$ . Let $f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow\Gamma^{N}\cross\hat{\mathbb{C}}$ be the

skew product associated with $\Gamma$ . Let $\mu\in \mathfrak{M}_{1}(\Gamma^{N}\cross\hat{\mathbb{C}})$ be an $f$-invariant Borel probability
measure. For each $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ , we define a function $\tilde{p}$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow \mathbb{R}$ by
$\tilde{p}(\gamma, y);=p_{j}$ if $\gamma_{1}=h_{j}$ (where $\gamma=(\gamma_{1},$ $\gamma_{2},$ $\ldots)$ ), and we set

$u(h,p, \mu);=\frac{-(\int_{\Gamma^{N}\cross\hat{C}}\log\tilde{p}d\mu)}{\int_{\Gamma^{N}\cross\hat{\mathbb{C}}}\log\Vert f\Vert_{s}d\mu}$

(when the integral of the denominator converges).

Definition 3.78. Let $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ be an element such that $h_{1},$
$\ldots,$

$h_{m}$ are
mutually distinct. We set $\Gamma$ $:=\{h_{1}, \ldots, h_{m}\}$ . For any $(\gamma, y)\in\Gamma^{N}\cross \mathbb{C}$ , let $G_{\gamma}(y):=$

$\lim_{narrow\infty}\frac{1}{\deg(\gamma_{n,1})}\log^{+}|\gamma_{n,1}(y)|$ , where $\log^{+}a:=\max\{\log a, 0\}$ for each $a>0$ . By the argu-
ments in [25], for each $\gamma\in\Gamma^{N},$ $G_{\gamma}(y)$ exists, $G_{\gamma}$ is subharmonic on $\mathbb{C}$ , and $G_{\gamma}|_{A_{\infty,\gamma}}$ is equal
to the Green’s function on $A_{\infty)\gamma}$ with pole at $\infty$ . Moreover, $(\gamma, y)\mapsto G_{\gamma}(y)$ is continuous
on $\Gamma^{N}\cross \mathbb{C}$ . Let $\mu_{\gamma}$ $:=dd^{c}G_{\gamma}$ , where $d^{c}:= \frac{i}{2\pi}(\overline{\partial}-\partial)$ . Note that by the argument in [16, 17],
$\mu_{\gamma}$ is a Borel probability measure on $J_{\gamma}$ such that $supp\mu_{\gamma}=J_{\gamma}$ . Furthermore, for each
$\gamma\in\Gamma^{\mathbb{N}}$ , let $\Omega(\gamma)=\sum_{c}G_{\gamma}(c)$ , where $c$ runs over all critical points of $\gamma_{1}$ in $\mathbb{C}$ , counting
multiplicities.

Remark 3.79. Let $h=(h_{1}, \ldots, h_{m})\in($Rat$+)^{m}$ be an element such that $h_{1},$
$\ldots,$

$h_{m}$ are
mutually distinct. Let $\Gamma=\{h_{1}, \ldots, h_{m}\}$ and let $f$ : $\Gamma^{\mathbb{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{N}\cross\hat{\mathbb{C}}$ be the skew product
map associated with $\Gamma$ . Moreover, let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ and let $\tau=\sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in$

$\mathfrak{M}_{1}(\Gamma)$ . Then, there exists a unique $f$-invariant ergodic Borel probability measure $\mu$ on
$\Gamma^{N}\cross\hat{\mathbb{C}}$ such that $\pi_{*}(\mu)=\tilde{\tau}$ and $h_{\mu}(f| \sigma)=\max_{\rho\in\cdot 1(\Gamma^{N}\cross\hat{\mathbb{C}}):f\cdot(\rho)=\rho,\pi.(\rho)=\overline{\tau}}h_{\rho}(f|\sigma)=$

$\sum_{j=1}^{m}p_{j}\log(\deg(h_{j}))$ , where $h_{\rho}(f|\sigma)$ denotes the relative metric entropy of $(f, \rho)$ with
respect to $(\sigma,\tilde{\tau})$ , and $C_{1}(\cdot)$ denotes the space of ergodic measures (see [29]). This $\mu$ is
called the maximal relative entropy measure for $f$ with respect to $(\sigma,\tilde{\tau})$ .
Definition 3.80. Let $V$ be a non-empty open subset of $\hat{\mathbb{C}}$ . Let $\varphi$ : $Varrow \mathbb{C}$ be a function
and let $y\in V$ be a point. Suppose that $\varphi$ is bounded around $y$ . Then we set

H\"ol $( \varphi, y):=\inf\{\beta\in \mathbb{R}|\lim_{zarrow}\sup_{y}\frac{|\varphi(z)-\varphi(y)|}{d(z,y)^{\beta}}=\infty\}$ ,

where $d$ denotes the spherical distance. This is called the pointwise H\"older exponent
of $\varphi$ at $y$ .
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Remark 3.81. If H\"ol $(\varphi, y)<1$ , then $\varphi$ is non-differentiable at $y$ . If H\"ol $(\varphi, y)>1$ , then
$\varphi$ is differentiable at $y$ and the derivative at $y$ is equal to $0$ .

We now present a result on non-differentiability of non-constant finite linear combi-
nations of unitary eigenvectors of $M_{\tau}$ at almost every point in $J(G_{\tau})$ with respect to the
projection of maximal relative entropy measure.

Theorem 3.82 (Non-differentiability of $\varphi\in(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}$ at points in $J(G_{\tau})$ ).
Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in(Rat_{+})^{m}$ and we set $\Gamma$ $:=\{h_{1}, h_{2}, \ldots, h_{m}\}$ .
Let $G=\langle h_{1},$

$\ldots,$
$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ . Let $f$ : $\Gamma^{\mathbb{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{N}\cross\hat{\mathbb{C}}$ be the skew

product associated with $\Gamma$ . Let $\tau$ $:= \sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in \mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}(\mathcal{P})$ . Let $\mu\in \mathfrak{M}_{1}(\Gamma^{N}\cross\hat{\mathbb{C}})$

be the maximal relative entropy measure for $f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow\Gamma^{N}\cross\hat{\mathbb{C}}$ with respect to $(\sigma,\tilde{\tau})$ .
Moreover, let $\lambda$ $:=(\pi_{\hat{\mathbb{C}}})_{*}(\mu)\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ . Suppose that $G$ is hyperbolic, and $h_{i}^{-1}(J(G))\cap$

$h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ . Then, we have all of the following.

1. $G_{\tau}=G$ is mean stable and $J_{ker}(G)=\emptyset$ .

2. $0<\dim_{H}(J(G))<2$ .

3. $supp\lambda=J(G)$ .

4. For each $z\in J(G),$ $\lambda(\{z\})=0$ .

5. There exists a Borel subset $A$ of $J(G)$ with $\lambda(A)=1$ such that for each $z_{0}\in A$ and
each $\varphi\in$ $($LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc},$ H\"ol $(\varphi, z_{0})=u(h,p, \mu)$ .

6. If $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ , then

$u(h,p, \mu)=\frac{-(\sum_{j=1}^{m}p_{j}\log p_{j})}{\sum_{j=1}^{m}p_{j}\log\deg(h_{j})+\int_{\Gamma^{N}}\Omega(\gamma)d\tilde{\tau}(\gamma)}$

and

$2>\dim_{H}(\{z\in J(G)|$ for each $\varphi\in(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc},$ H\"ol( $\varphi$ , $z)=u(h,p,$ $\mu)\})$

$\geq\frac{\sum_{j=1}^{m}p_{j}\log\deg(h_{j})-\sum_{j=1}^{m}p_{j}\log p_{j}}{\sum_{j=1}^{m}p_{j}\log\deg(h_{j})+\int_{\Gamma^{N}}\Omega(\gamma)d\tilde{\tau}(\gamma)}>0$.

7. Suppose $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ . Moreover, suppose that at least one of the following
(a), (b), and (c) holds: $( a)\sum_{j=1}^{m}p_{j}\log(p_{j}\deg(h_{j}))>0$ . $(b)P^{*}(G)$ is bounded in

$\mathbb{C}$ . $(c)m=2$ . Then, $u(h,p, \mu)<1$ and for each non-empty open subset $U$ of $J(G)$

there exists an uncountable dense subset $A_{U}$ of $U$ such that for each $z\in A_{U}$ and
each $\varphi\in(LS(\mathcal{U}_{j,\tau}(\hat{\mathbb{C}})))_{nc},$

$\varphi$ is non-differentiable at $z$ .

Remark 3.83. By Theorems 3.15 and 3.82, it follows that under the assumptions of
Theorem 3.82, the chaos of the averaged system disappears in the $C^{0}$ “sense”, but it
remains in the $C^{1}$ “sense”.

We now present a result on the representation of pointwise H\"older exponent of $\varphi\in$

$($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}$ at almost every point in $J(G_{\tau})$ with respect to the $\delta$-dimensional Hausdorff
measure, where $\delta=\dim_{H}(J(G_{\tau}))$ .
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Theorem 3.84. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in($Rat$+)^{m}$ and we set
$\Gamma$ $:=\{h_{1},$ $h_{2},$

$\ldots,$
$h_{m}\}$ . Let $G=\langle h_{1},$

$\ldots,$
$h_{m}\}$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ . Let $f$ : $\Gamma^{\mathbb{N}}\cross\hat{\mathbb{C}}arrow$

$\Gamma^{N}\cross \mathbb{C}$ be the skew product associated with $\Gamma$ . Let $\tau$ $:= \sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in \mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}(Rat_{+})$.
Suppose that $G$ is hyperbolic and $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ . Let

$\delta$ $:=\dim_{H}J(G)$ and let $H^{\delta}$ be the $\delta$ -dimensional Hausdorff measure. Let $\tilde{L}$ : $C(\tilde{J}(f))arrow$

$C(\tilde{J}(f))$ be the operator defined by $\tilde{L}(\varphi)(z)=\sum_{f(w)=z}\varphi(w)\Vert f’(w)\Vert_{s}^{-\delta}$ . Moreover, let $L$ :
$C(J(G))arrow C(J(G))$ be the operator defined by $L( \varphi)(z)=\sum_{j=1}^{m}\sum_{h_{j}(w)=z}\varphi(w)\Vert h_{j}’(w)\Vert_{s}^{-\delta}$ .
Then, we have all of the following.

1. $G_{\tau}=G$ is mean stable and $J_{ker}(G)=\emptyset$ .

2. There exists a unique element $\tilde{\nu}\in \mathfrak{M}_{1}(\tilde{J}(f))$ such that $\tilde{L}^{*}(\tilde{\nu})=\tilde{\nu}$ . Moreover, the
limits $\tilde{\alpha}=\lim_{narrow\infty}\tilde{L}^{n}(1)\in C(\tilde{J}(f))$ and $\alpha=\lim_{narrow\infty}L^{n}(1)\in C(J(G))$ exist, where
1 denotes the constant function taking its value 1.

3. Let $\nu$ $:=(\pi_{\hat{\mathbb{C}}})_{*}(\tilde{\nu})\in \mathfrak{M}_{1}(J(G))$ . Then $0<\delta<2,0<H^{\delta}(J(G))<\infty$ , and $\nu=$

$\frac{H^{\delta}}{H^{\delta}(J(G))}$ .

4. Let $\tilde{\rho}:=\tilde{\alpha}\tilde{\nu}\in \mathfrak{M}_{1}(\tilde{J}(f))$ . Then $\tilde{\rho}$ is f-invariant and ergodic. Moreover, $\min_{z\in J(G)}\alpha(z)>$

$0$ .

5. There exists a Borel subset of $A$ of $J(G)$ with $H^{\delta}(A)=H^{\delta}(J(G))$ such that for each
$z_{0}\in A$ and each $\varphi\in$ $($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}$ ,

H\"ol $( \varphi, z_{0})=u(h,p,\tilde{\rho})=\frac{-\sum_{j--1}^{m}(\log p_{j})\int_{h_{j}^{-1}(J(G))}\alpha(y)dH^{\delta}(y)}{\sum_{j=1}^{m}\int_{h_{j}^{-1}(J(G))}\alpha(y)\log\Vert h_{j}’(y)\Vert_{s}dH^{\delta}(y)}$ .

Remark 3.85. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ and let $G=$
$(h_{1},$

$\ldots,$
$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ and let $\tau=\sum_{j=1}^{m}p_{j}\delta_{h_{j}}$ . Suppose that $\hat{K}(G)\neq\emptyset$ ,

$G$ is hyperbolic, and $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ . Then, by
Lemma 3.73 and Theorem 3.22, $T_{\infty,\tau}\in(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}$ .

Remark 3.86. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ and we set $\Gamma$ $:=$

$\{h_{1}, \ldots, h_{m}\}$ . Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ . Let $f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow$

$\Gamma^{N}\cross\hat{\mathbb{C}}$ be the skew product associated with $\Gamma$ . Let $\tau$ $:= \sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in \mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}(\mathcal{P})$ .
Suppose that $\hat{K}(G)\neq\emptyset,$ $G$ is hyperbolic, and $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each
$(i,j)$ with $i\neq j$ . Moreover, suppose we have at least one of the following (a),(b),(c): (a)
$\sum_{j=1}^{m}p_{j}\log(p_{j}\deg(h_{j}))>0$ . (b) $P^{*}(G)$ is bounded in $\mathbb{C}$ . $(c)m=2$ . Then, combining
Theorem 3.82, Theorem 3.84, and Remark 3.85, it follows that there exists a number
$q>0$ such that if $p_{1}<q$ , then we have all of the following.

1. Let $\mu$ be the maximal relative entropy measure for $f$ with respect to $(\sigma,\tilde{\tau})$ . Let
$\lambda=(\pi_{\hat{\mathbb{C}}})_{*}\mu\in \mathfrak{M}_{1}(J(G))$ . Then for $\lambda- a.e$ . $z_{0}\in J(G)$ and for any $\varphi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))_{nc}$

$(e.g., \varphi=T_{\infty,\tau}),$ $\lim\sup_{narrow\infty}\frac{|\varphi(y)-\varphi(zo)|}{|y-z_{0}|}=\infty$ and $\varphi$ is not differentiable at $z_{0}$ .

2. Let $\delta=\dim_{H}(J(G))$ and let $H^{\delta}$ be the $\delta$-dimensional Hausdorff measure. Then
$0<H^{\delta}(J(G))<\infty$ and for $H^{\delta}- a.e$ . $z_{0}\in J(G)$ and for any $\varphi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ (e.g.,
$\varphi=T_{\infty,\tau}),$ $\lim\sup_{narrow\infty}\frac{|\varphi(y)-\varphi(zo)|}{|y-z_{0}|}=0$ and $\varphi$ is differentiable at $z_{0}$ .
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Combining Theorem 3.15 and Theorem 3.82, we obtain the following result.

Corollary 3.87. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in \mathcal{P}^{m}$ and we set $\Gamma$ $:=$

$\{h_{1}, \ldots, h_{m}\}$ . Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ . Let $f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow$

$\Gamma^{N}\cross\hat{\mathbb{C}}$ be the skew product associated with $\Gamma$ . Let $\tau$ $:= \sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in \mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}(\mathcal{P})$ .
Suppose that $\hat{K}(G)\neq\emptyset,$ $G$ is hyperbolic, and $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$

with $i\neq j$ . Moreover, suppose we have at least one of the following (a), (b), (c): (a)
$\sum_{j=1}^{m}p_{j}\log(p_{j}\deg(h_{j}))>0$. $(b)P^{*}(G)$ is bounded in $\mathbb{C}$ . $(c)m=2$ . Let $\varphi\in C(\hat{\mathbb{C}})$ . Then,
we have exactly one of the following (i) and (ii).

(i) There eststs a constant function $\zeta\in C(\hat{\mathbb{C}})$ such that $M_{\tau}^{n}(\varphi)arrow\zeta$ as $narrow\infty$ in $C(\hat{\mathbb{C}})$ .

(ii) There exists an element $\psi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))_{nc}$ and a number $l\in \mathbb{N}$ such that

$-M_{\tau}^{l}(\psi)=\psi$ ,
$-\{M_{\tau}^{j}(\psi)\}_{j=0}^{l-1}\subset(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}\subset C_{F(G)}(\hat{\mathbb{C}})$ ,
-there exists an uncountable dense subset $A$ of $J(G)$ such that for each $z_{0}\in A$

and each $j,$ $M_{\tau}^{j}(\psi)$ is not differentiable at $z_{0}$ , and
$-M_{\tau}^{nl+j}(\varphi)arrow M_{\tau}^{j}(\psi)$ as $narrow\infty$ for each $j=0,$ $\ldots,$ $l-1$ .

We present a result on H\"older continuity of $\varphi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ .

Theorem 3.88. Let $m\in \mathbb{N}$ with $m\geq 2$ . Let $h=(h_{1}, \ldots, h_{m})\in Rat_{+}^{m}$ and we set $\Gamma$ $:=$

$\{h_{1}, \ldots, h_{m}\}$ . Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ . Let $p=(p_{1}, \ldots,p_{m})\in \mathcal{W}_{m}$ and let $\tau$ $:= \sum_{j=1}^{m}p_{j}\delta_{h_{j}}\in$

$\mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}$ (Rat$+$ ). Suppose that $G$ is hyperbolic and $h_{i}^{-1}(J(G))\cap h_{j}^{-1}(J(G))=\emptyset$ for
each $(i,j)$ with $i\neq j$ . Then, $G$ is mean stable and there exists an $\alpha>0$ such that for each
$\varphi\in$ LS $(\mathcal{U}_{f_{1}\tau}(\hat{\mathbb{C}})),$

$\varphi$ : $\hat{\mathbb{C}}arrow[0,1]$ is $\alpha$ -Holder continuous on $\hat{\mathbb{C}}$ .

Remark 3.89. In the proof of Theorem 3.82, we use the Birkhoff ergodic theorem and the
Koebe distortion theorem, in order to show that for each $\varphi\in(LS(\mathcal{U}_{f^{\tau}},))_{nc},$ H\"ol $(\varphi, z_{0})=$

$u(h,p, \mu)$ . Moreover, we apply potential theory in order to calculate $u(h,p, \mu)$ by using $p$ ,
$\deg(h_{j})$ , and $\Omega(\gamma)$ .

3.9 Stability and bifurcation
In this subsection, we present some results on stability and bifurcation of $M_{\tau}$ or $M_{\tau}^{*}$ . The
proofs of the results will be written in [42].

Definition 3.90. Let $\mathcal{O}$ be the topology of $\mathfrak{M}_{1,c}(Rat)$ such that $\mu_{n}arrow\mu$ in $(\mathfrak{M}_{1,c}(Rat), \mathcal{O})$

as $narrow\infty$ if and only if (1) $\int\varphi d\mu_{n}arrow\int\varphi d\mu$ for each bounded continuous function
$\varphi$ : Rat $arrow \mathbb{C}$ , and (2) $supp\mu_{n}arrow supp\mu$ with respect to the Hausdorff metric.

Definition 3.91. Let $\Gamma\in$ Cpt(Rat) and let $G=\langle\Gamma\rangle$ . We say that $L\in{\rm Min}(G,\hat{\mathbb{C}})$ is
attracting (for $(G,\hat{\mathbb{C}})$ ) if there exist non-empty open subsets $U,$ $V$ of $F(G)$ and a positive
integer $n$ such that all of the following hold.

(1) $L\subset V\subset\overline{V}\subset U\subset\overline{U}\subset F(G),$ $\#(\hat{\mathbb{C}}\backslash V)\geq 3$ .

(2) For each $\gamma\in\Gamma^{N},$ $\gamma_{n,1}(\overline{U})\subset V$.
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Remark 3.92. For each $h\in G\cap$ Rat$+$ ,

#{attracting minimal set for $(G,\hat{\mathbb{C}})$ } $\leq$ {attracting cycles of $h$} $<\infty$ .

Lemma 3.93. Let $\Gamma\in$ Cpt(Rat) and let $G=\langle\Gamma\rangle$ . Let $L\in{\rm Min}(G,\hat{\mathbb{C}})$ be attracting for
$(G,\hat{\mathbb{C}})$ . Let $U,$ $V$ be as in Definition 3.91. Let $W:= \bigcup_{A\in Con(F(G)),A\cap L\neq\emptyset}$ $A$ and let $W$‘ $be$

a relative compact open subset of $W$ including L. Then there exists an open neighborhood
$\mathcal{U}$ of $\Gamma$ in Cpt(Rat) such that the following hold.

(1) For each $\Gamma‘\in \mathcal{U}$ , there exists a unique $L’\in{\rm Min}(\langle\Gamma‘\}, \hat{\mathbb{C}})$ with $L’\subset W’$ .

(2) The above $L’$ is attracting for $(\langle\Gamma^{l}\},\hat{\mathbb{C}})$ .

Lemma 3.94. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $G=\langle\Gamma\rangle$ . Let $L\in{\rm Min}(G,\hat{\mathbb{C}})$ . Suppose that
(1) $L\subset F(G)$ and (2) for each $g\in G$ and for each $U\in$ Con$(F(G))$ with $U\cap L\neq\emptyset$ and
$g(U)\subset U,$ $U$ is not a subset of a Siegel disk or a Hemann ring of $g$ . Then, $L$ is attracting
for $(G,\hat{\mathbb{C}})$ .

Lemma 3.95. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $G=\langle\Gamma)$ . Let $L\in{\rm Min}(G,\hat{\mathbb{C}})$ . Then exactly one
of the following holds.

(1) $L$ is attracting.

(2) $L\cap J(G)\neq\emptyset$ .

(3) $L\subset F(G)$ and there exists an element $g\in G$ and an element $U\in$ Con$(F(G))$ with
$L\cap U\neq\emptyset$ such that $g(U)\subset U$ and $U$ is a subset of a Siegel disk or a Hermann ring
of $g$ .

Definition 3.96. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $G=\langle\Gamma\rangle$ . Let $L\in{\rm Min}(G,\hat{\mathbb{C}})$ .

$\bullet$ We say that $L$ is J-touching (for $(G,\hat{\mathbb{C}})$ ) if $L\cap J(G)\neq\emptyset$ .

$\bullet$ We say that $L$ is sub-rotative (for $(G,\hat{\mathbb{C}})$ ) if (3) in Lemma 3.95 holds.

Definition 3.97. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $L\in{\rm Min}(\langle\Gamma\rangle,\hat{\mathbb{C}})$ . Suppose $L$ is J-touching
or sub-rotative. Moreover, suppose $L\neq\hat{\mathbb{C}}$ . Let $g\in\Gamma$ . We say that $g$ is a bifurcation
element for $(\Gamma, L)$ if one of the following statements (1) (2) holds.

(1) $L$ is J-touching and there exists a point $z\in L\cap J(\langle\Gamma\})$ such that $g(z)\in J(\langle\Gamma\})$ .

(2) $L$ is sub-rotative and there exist an open subset $U$ of $\hat{\mathbb{C}}$ with $U\cap L\neq\emptyset$ and finitely
many elements $\gamma_{1},$

$\ldots,$
$\gamma_{n-1}\in\Gamma$ such that $g\circ\gamma_{n-1}\cdots\circ\gamma_{1}(U)\subset U$ and $U$ is a subset

of a Siegel disk or a Hermann ring of $g\circ\gamma_{n-1}\cdots\circ\gamma_{1}$ .

Furthermore, we say that an element $g\in\Gamma$ is a bifurcation element for $\Gamma$ if there exists
an $L\in{\rm Min}(\langle\Gamma\rangle,\hat{\mathbb{C}})$ such that $g$ is a bifurcation element for $(\Gamma, L)$ .

Lemma 3.98. Let $\Gamma\in$ Cpt $(Rat_{+})$ and let $L\in{\rm Min}(\langle\Gamma\rangle,\hat{\mathbb{C}})$ . Suppose $L$ is J-touching or
sub-rotative. Moreover, suppose $L\neq\hat{\mathbb{C}}$ . Let $g\in\Gamma$ be a bifurcation element for $(\Gamma, L)$ .
Then, $g\in\partial\Gamma$ , where the boundary of $\Gamma$ is taken in the space $Rat_{+}$ .
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Theorem 3.99. Let $\Gamma\in$ Cpt $(Rat_{+})$ . Suppose that there exists an attracting $L\in{\rm Min}(\langle\Gamma\rangle,\hat{\mathbb{C}})$ .
Let $\{L_{j}\}_{j=1}^{r}$ be the set of attmcting minimal sets for $(\langle\Gamma\},\hat{\mathbb{C}})$ such that $L_{i}\neq L_{j}$ if $i\neq j$

(Remark: by Remark 3.92, the set of attracting minimal sets is finite). Let $\mathcal{U}$ be a neigh-
borhood of $\Gamma$ in Cpt $(Rat_{+})$ . For each $j=1,$ $\ldots,$

$r$ , let $\mathcal{V}_{j}$ be a neighborhood of $L_{j}$ with
respect to the Hausdorff metric in Cpt $(\hat{\mathbb{C}})$ . Then, there exists an element $\Gamma‘\in \mathcal{U}$ with
$\Gamma’\supset\Gamma$ such that all of the following hold.

(1) $\#$ { $L^{l}\in{\rm Min}(\langle\Gamma’\rangle,\hat{\mathbb{C}})|L^{l}$ is attmcting} $=r$ and for each $j=1,$ $\ldots,$
$r$ , there exists

a unique element $L_{j}\in{\rm Min}(\langle\Gamma’\rangle,\hat{\mathbb{C}})$ with $L_{j}\in \mathcal{V}_{j}$ such that $L_{j}$ is attracting for
$(\langle\Gamma^{l}\},\hat{\mathbb{C}})$ .

(2) $\langle\Gamma’\rangle$ is mean stable and $\#{\rm Min}(\langle\Gamma’\},\hat{\mathbb{C}})=r$ .

Theorem 3.100. Let $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ . Suppose that there exists an attracting $L\in$

${\rm Min}(G_{\tau},\hat{\mathbb{C}})$ . Let $\{L_{j}\}_{j=1}^{r}$ be the set of attracting minimal sets for $(G_{\tau},\hat{\mathbb{C}})$ such that $L_{i}\neq L_{j}$

if $i\neq j$ . Let $\mathcal{U}$ be a neighborhood of $\tau$ in $(\mathfrak{M}_{1,c}(Rat_{+}), \mathcal{O})$ . For each $j=1,$ $\ldots,$
$r$ , let $\mathcal{V}_{j}$ be

a neighborhood of $L_{j}$ with respect to the Hausdorff metric in Cpt $(\hat{\mathbb{C}})$ . Then, there $e$ vists
an element $\rho\in \mathcal{U}$ with $\#\Gamma_{\rho}<\infty$ such that all of the following hold.

(1) $\#$ { $L’\in{\rm Min}(G_{\rho},\hat{\mathbb{C}})|L’$ is attracting} $=r$ and for each $j=1,$ $\ldots,$
$r$ , there exists a

unique element $L_{j}’\in{\rm Min}(G_{\rho},\hat{\mathbb{C}})$ with $L_{j}\in \mathcal{V}_{j}$ such that $L_{j}’$ is attracting for $(G_{\rho},\hat{\mathbb{C}})$ .

(2) $G_{\rho}$ is mean stable and $\#{\rm Min}(G_{\rho},\hat{\mathbb{C}})=r$.

Theorem 3.101 (Cooperation Principle IV).

(1) The set { $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|\tau$ is mean stable} is open and dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$ . More-
over, the set $\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|J_{ker}(G_{\tau})=\emptyset, J(G_{\tau})\neq\emptyset\}$ contains $\{\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|$

$\tau$ is mean stable}.
(2) The set { $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})|\tau$ is mean stable, $\#\Gamma_{\tau}<\infty$ } is dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$ .

Proposition 3.102. Let $\Gamma\in$ Cpt $(Rat_{+})$ . Suppose that there exists no attracting minimal
set for $(G,\hat{\mathbb{C}})$ . Let $\mathcal{U}$ be a neighborhood of $\Gamma$ in Cpt $(Rat_{+})$ . Then, there exists an element
$\Gamma‘\in \mathcal{U}$ with $\Gamma‘\supset\Gamma$ such that ${\rm Min}(\langle\Gamma’\rangle,\hat{\mathbb{C}})=\{\hat{\mathbb{C}}\}$ and $J(\langle\Gamma’\rangle)=\hat{\mathbb{C}}$ .

Corollary 3.103. Let $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ . Suppose that there exists no attracting minimal
set for $(G_{\tau},\hat{\mathbb{C}})$ . Let $\mathcal{U}$ be a neighborhood of $\tau$ in $(\mathfrak{M}_{1,c}(Rat_{+}), \mathcal{O})$ . Then, there exists an
element $\rho\in \mathcal{U}$ such that ${\rm Min}(G_{\rho},\hat{\mathbb{C}})=\{\hat{\mathbb{C}}\}$ and $J(G_{\rho})=\hat{\mathbb{C}}$ .

Corollary 3.104. The set

$\{\tau\in \mathfrak{M}_{1,c}(Rat_{+})|\tau$ is mean $stable\}\cup\{\tau\in \mathfrak{M}_{1,c}(Rat_{+})|{\rm Min}(G_{\rho},\hat{\mathbb{C}})=\{\hat{\mathbb{C}}\}, J(G_{\rho})=\hat{\mathbb{C}}\}$

is dense in $(\mathfrak{M}_{1,c}$ (Rat$+$ ), $\mathcal{O})$ .

Definition 3.105. Let $\tau\in \mathfrak{M}_{1,c}(Rat)$ be such that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . Then
by Theorem 3.15, we have the direct sum decomposition $C(\hat{\mathbb{C}})=$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))\oplus \mathcal{B}_{0\tau,\}}$ . We
denote by $\pi_{\tau}$ : $C(\hat{\mathbb{C}})arrow$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ the canonical projection with respect to this direct
sum decomposition.
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Theorem 3.106. Let $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ be mean stable. Then there exists a neighborhood
$\Omega$ of $\tau$ in $(\mathfrak{M}_{1,c}(Rat_{+}), \mathcal{O})$ such that all of the following hold.

(1) For each $\nu\in\Omega,$ $\#{\rm Min}(G_{\nu},\hat{\mathbb{C}})=\#{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ .

(2) For each $\nu\in\Omega,$ $\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\nu}(\hat{\mathbb{C}})))=\dim_{C}(LS(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))$ .

(3) The map $\nu\mapsto\pi_{\nu}$ is continuous on $\Omega$ . More precisely, for each $\nu\in\Omega$ , there exists
a basis $\{\varphi_{j,\nu}\}_{j=1}^{q}$ of LS $(\mathcal{U}_{f,\nu}(\hat{\mathbb{C}}))$ , where $q=\dim_{\mathbb{C}}($LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))$ , and a finite family
$\{\rho_{j,\nu}\}_{j=1}^{q}$ in $C(\hat{\mathbb{C}})^{*}$ such that all of the following hold.

(a) For each $j,$ $\nu\mapsto\varphi_{j,\nu}\in C(\hat{\mathbb{C}})$ is continuous on $\Omega$ .
(b) For each $j,$ $\nu\mapsto\rho_{j,\nu}\in C(\hat{\mathbb{C}})^{*}$ is continuous on $\Omega$ .
(c) For each $(i,j)$ and each $\nu\in\Omega,$ $\rho_{i,\nu}(\varphi_{j,\nu})=\delta_{ij}$ .
(d) For each $\nu\in\Omega$ and each $\varphi\in C(\hat{\mathbb{C}}),$

$\pi_{\nu}(\varphi)=\sum_{j=1}^{q}\rho_{j,\nu}(\varphi)\cdot\varphi_{j\mu})$.

Theorem 3.107. We consider the following subsets $A,$ $B,$ $C,$ $D$ of $\mathfrak{M}_{1,c}(Rat_{+})$ which are
defined as follows.

(1) $A:=$ { $\tau\in \mathfrak{M}_{1,c}($Rat$+)|\tau$ is mean stable}.
(2) Let $B$ be the set of $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ satisfying that there exists a neighborhood $\Omega$

of $\tau$ in $(\mathfrak{M}_{1,c}$ (Rat$+$ ), $\mathcal{O})$ such that (a) for each $\nu\in\Omega,$ $J_{ker}(G_{\nu})=\emptyset$ , and (b) $\nu\mapsto$

$\#{\rm Min}(G_{\nu},\hat{\mathbb{C}})$ is constant on $\Omega$ .

(3) Let $C$ be the set of $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ satisfying that there exists a neighborhood $\Omega$

of $\tau$ in $(\mathfrak{M}_{1,c}$ (Rat$+$ ), $\mathcal{O})$ such that (a) for each $\nu\in\Omega,$ $F(G_{\nu})\neq\emptyset$ , and (b) $\nu\mapsto$

$\#{\rm Min}(G_{\nu},\hat{\mathbb{C}})$ is constant on $\Omega$ .

(4) Let $D$ be the set of $\tau\in \mathfrak{M}_{1,c}(Rat_{+})$ satisfying that there exists a neighborhood $\Omega$

of $\tau$ in $(\mathfrak{M}_{1,c}(Rat_{+}), \mathcal{O})$ such that (a) for each $\nu\in\Omega,$ $J_{ker}(G_{\nu})=\emptyset$ , and (b) $\nu\mapsto$

LS $(\mathcal{U}_{f,\nu}(\hat{\mathbb{C}}))$ is continuous on $\Omega$ ($i.e.$ , statements (2) and (3) in Theorem 3.106 hold).

Then, $A=B=C=D$.

Proposition 3.108. Let $\mathcal{Y}$ be a strongly admissible closed subset of $\mathcal{P}$ . For each $t\in[0,1]$ ,
let $\mu_{t}$ be an element of $\mathfrak{M}_{1,c}(\mathcal{Y})$ . Suppose that all of the following conditions (1) $-(5)$ hold.

(1) $t\mapsto\mu_{t}\in(\mathfrak{M}_{1,c}(\mathcal{Y}), \mathcal{O})$ is continuous on $[0,1]$ .

(2) For each $t\in[0,1]f$ there exists an open subset $V_{t}$ of $\mathcal{Y}$ such that $\Gamma_{\mu_{t}}=\overline{V_{t}}$ where the
closure is taken in the space $\mathcal{Y}$ .

(3) If $t_{1},$ $t_{2}\in[0,1]$ and $t_{1}<t_{2}$ , then $\Gamma_{\mu_{t_{1}}}\subset int\Gamma_{\mu_{t_{2}}}$ with respect to the topology of $\mathcal{Y}$ .

(4) $\mu_{0}$ and $\mu_{1}$ are mean stable.

(5) $\#({\rm Min}(\langle\Gamma_{\mu 0}\rangle,\hat{\mathbb{C}}))\neq\#({\rm Min}(\langle\Gamma_{\mu_{1}}\rangle,\hat{\mathbb{C}}))$ .
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Then,

$1\leq\#$ {$t\in[0,1]|$ there exists a bifurcation element $g\in\Gamma_{\mu_{t}}$ for $\Gamma_{\mu_{t}}$ } $<\infty$ .

Example 3.109. Let $c$ be a point in the Mandelbrot set $\mathcal{M}$ such that $z\mapsto z^{2}+c$ is
hyperbolic. Let $r_{0}>0$ be a small number. Let $r_{1}>0$ be such that $D(c, r_{1})\cap(\mathbb{C}\backslash \mathcal{M})\neq\emptyset$ .
For each $t\in[0,1]$ , let $\mu_{t}\in \mathfrak{M}_{1}(\overline{D(c,(1-t)r_{0}+tr_{1})})$ be the normalized 2-dimensional
Lebesgue measure on $\overline{D(c,(1-t)r_{0}+tr_{1})}$ . Then $\{\mu_{t}\}_{t\in[0,1]}$ satisfies the conditions (1)$-$

(5) in Proposition 3.108 $($ for example, $\#{\rm Min}(\langle\Gamma_{\mu 0}\rangle,\hat{\mathbb{C}})>\#{\rm Min}(\langle\Gamma_{\mu 0}\rangle,\hat{\mathbb{C}})=1)$ . Thus

$1\leq\#$ {$t\in[0,1]|$ there exists a bifurcation element $g\in\Gamma_{\mu_{t}}$ for $\Gamma_{\mu_{t}}$ } $<\infty$ .

3.10 Spectral properties of $M_{\tau}$ and stability

In this subsection, we present some results on spectral properties of $M_{\tau}$ acting on the
space of H\"older continuous functions on $\hat{\mathbb{C}}$ and the stability. The proofs of the results will
be written in [42].

Theorem 3.110. Let $\tau\in \mathfrak{M}_{1,c}$(Rat). Suppose that $J_{ker}(G_{\tau})=\emptyset$ and $J(G_{\tau})\neq\emptyset$ . Then,
there exists an $\alpha>0$ such that each $\varphi\in$ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}}))$ is a-Holder continuous on $\hat{\mathbb{C}}$ .

Notation: For each $\alpha\in(0,1)$ , let $H_{\alpha}(\hat{\mathbb{C}})$ be the Banach space of all complex-valued
$\alpha$-H\"older continuous functions on $\hat{\mathbb{C}}$ endowed with the $\alpha$-H\"older norm $\Vert\cdot\Vert_{\alpha}$ .

If $\tau\in \mathfrak{M}_{1,c}$ (Rat) is mean stable and $J(G_{\tau})\neq\emptyset$ , then by Proposition 3.65, we have
$\bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}L\subset F(G_{\tau})$ . From this point of view, we consider the situation that $\tau\in$

$\mathfrak{M}_{1,c}$ (Rat) satisfies $J_{ker}(G_{\tau})=\emptyset,$ $J(G_{\tau})\neq\emptyset$ , and $\bigcup_{L\in{\rm Min}(G_{r},\hat{\mathbb{C}})}L\subset F(G_{\tau})$ . Under this
situation, we have several very strong results.

Theorem 3.111. Let $\tau\in \mathfrak{M}_{1,c}$ (Rat). Suppose that $J_{ker}(G_{\tau})=\emptyset,$ $J(G_{\tau})\neq\emptyset$ , and
$\bigcup_{L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})}L\subset F(G_{\tau})$ . Let $r$ $:= \prod_{L\in{\rm Min}(G_{\tau},\overline{\mathbb{C}})}\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(L)))$ . Then, there exists
a constant $\alpha\in(0,1)$ , a constant $\lambda\in(0,1)$ , and a constant $C>0$ such that for each
$\varphi\in H_{\alpha}(\hat{\mathbb{C}})$ , we have all of the following.

(1) $\Vert M_{\tau}^{nr}(\varphi)-\pi_{\tau}(\varphi)\Vert_{\alpha}\leq C\lambda^{n}\Vert\varphi-\pi_{\tau}(\varphi)\Vert_{\alpha}$ for each $n\in \mathbb{N}$ .

(2) $\Vert M_{\tau}^{n}(\varphi-\pi_{\tau}(\varphi))\Vert_{\alpha}\leq C\lambda^{n}\Vert\varphi-\pi_{\tau}(\varphi)\Vert_{\alpha}$ for each $n\in \mathbb{N}$ .

(3) $\Vert M_{\tau}^{n}(\varphi-\pi_{\tau}(\varphi))\Vert_{\alpha}\leq C\lambda^{n}\Vert\varphi\Vert_{\alpha}$ for each $n\in \mathbb{N}$ .

(4) $\Vert\pi_{\tau}(\varphi)\Vert_{\alpha}\leq C|\}\varphi\Vert_{\alpha}$ .

We now consider the spectrum $Spec(M_{\tau})$ of $M_{\tau}$ : $H_{\alpha}(\hat{\mathbb{C}})arrow H_{\alpha}(\hat{\mathbb{C}})$ . IFlrom Theo-
rem 3.111, we can show that the distance between $\mathcal{U}_{v,\tau}(\hat{\mathbb{C}})$ and $Spec(M_{\tau})\backslash \mathcal{U}_{v,\tau}(\hat{\mathbb{C}})$ is
positive.

Theorem 3.112. Under the assumptions of Theorem 3.111, we have all of the following.

(1) $Spec(M_{\tau})\subset\{z\in \mathbb{C}||z|\leq\lambda\}\cup \mathcal{U}_{v,\tau}(\hat{\mathbb{C}})$ , where $\lambda\in(0,1)$ denotes the constant in
Theorem 3. 111.
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(2) Let $\zeta\in \mathbb{C}\backslash (\{z\in \mathbb{C}||z|\leq\lambda\}\cup \mathcal{U}_{v,\tau}(\hat{\mathbb{C}}))$ . Then, $(\zeta I-M_{\tau})^{-1}$ : $H_{\alpha}(\hat{\mathbb{C}})arrow H_{\alpha}(\hat{\mathbb{C}})$ is
equal to

$( \zeta I-M_{\tau})|_{LS(\mathcal{U}_{f,\tau}(\hat{C}))}^{-1}\circ\pi_{\tau}+\sum_{n=0}^{\infty}\frac{M_{\tau}^{n}}{\zeta^{n+1}}(I-\pi_{\tau})$ ,

where I denotes the identity on $H_{\alpha}(\hat{\mathbb{C}})$ .

Remark 3.113. Let $h_{1},$
$\ldots,$

$h_{m}\in$ Rat. Let $G=\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ . Suppose that $J_{ker}(G)=$

$\emptyset,$ $J(G)\neq\emptyset$ and $\bigcup_{L\in{\rm Min}(G_{I}\hat{C})}L\subset F(G)$ . Let $\mathcal{W}_{m}$ $:= \{(a_{1}, \ldots, a_{m})\in(0,1)^{m}|\sum_{j=1}^{m}a_{j}=1\}$ .
For each $a=(a_{1}, \ldots, a_{m})\in W_{m}$ , let $\tau_{a}:=\sum_{j=1}^{m}a_{j}\delta_{h_{j}}$ . Then by Theorem 3.112 and [18],

it follows that for each $b\in \mathcal{W}_{m}$ , there exists an $\alpha\in(0,1)$ such that $a\mapsto(\pi_{\tau_{a}}$ : $H_{\alpha}(\hat{\mathbb{C}})arrow$

$H_{\alpha}(\hat{\mathbb{C}}))$ is real-analytic on an open neighborhood of $b$ in $\mathcal{W}_{m}$ .

4 Examples

We give some examples to which we can apply Theorem 3.14, Theorem 3.15, Theorem 3.22,
Proposition 3.26, Theorem 3.31, Theorem 3.34, Proposition 3.63, Theorem 3.82, Theo-
rem 3.84, Corollary 3.87, and Theorem 3.88.

Proposition 4.1. Let $f_{1}\in \mathcal{P}$ . Suppose that int $(K(f_{1}))$ is not empty. Let $b\in$ int $(K(f_{1}))$

be a point. Let $d$ be a positive integer such that $d\geq 2$ . Suppose that $(\deg(f_{1}), d)\neq(2,2)$ .
Then, there exists a number $c>0$ such that for each $\lambda\in\{\lambda\in \mathbb{C} : 0<|\lambda I <c\}$ , setting
$f_{\lambda}=(f_{\lambda,1}, f_{\lambda 2}))=(f_{1}, \lambda(z-b)^{d}+b)$ and $G_{\lambda}$ $:=\langle f_{1},$ $f_{\lambda,2}\rangle$ , we have all of the following.

(a) $f_{\lambda}$ satisfies the open set condition with an open subset $U_{\lambda}$ of $\hat{\mathbb{C}}(i.e.,$ $f_{\lambda_{1}1}^{-1}(U_{\lambda})\cup$

$f_{\lambda_{2}2}^{-1}(U_{\lambda})\subset U_{\lambda}$ and $f_{\lambda 11}^{-1}(U_{\lambda})\cap f_{\lambda_{2}2}^{-1}(U_{\lambda})=\emptyset),$ $f_{\lambda_{2}1}^{-1}(J(G_{\lambda}))\cap f_{\lambda,2}^{-1}(J(G_{\lambda}))=\emptyset$ , int $(J(G_{\lambda}))=$

$\emptyset,$ $J_{ker}(G_{\lambda})=\emptyset,$ $G_{\lambda}(K(f_{1}))\subset K(f_{1})\subset$ int $(K(f_{\lambda,2}))$ and $\emptyset\neq K(f_{1})\subset\hat{K}(G_{\lambda})$ .

(b) If $K(f_{1})$ is connected, then $P^{*}(G_{\lambda})$ is bounded in $\mathbb{C}$ .

(c) If $f_{1}$ is semi-hyperbolic (resp. hyperbolic) and $K(f_{1})$ is connected, then $G_{\lambda}$ is semi-
hyperbolic (resp. hyperbolic), $J(G_{\lambda})$ is porous (for the definition of porosity, see
$[33J)$ , and $\dim_{H}(J(G_{\lambda}))<2$ .

Example 4.2 (Devil’s coliseum). Let $g_{1}(z)$ $:=z^{2}-1,$ $g_{2}(z)$ $:=z^{2}4,$ $h_{1}$ $:=g_{1}^{2}$ , and $h_{2}$ $:=g_{2}^{2}$ .
Let $G=\langle h_{1},$ $h_{2}\}$ and $\tau$ $:= \sum_{i=1}^{2}\frac{1}{2}\delta_{h_{i}}$ . Then it is easy to see that setting $A;=K(h_{2})\backslash$

$D(O, 0.4)$ , we have $\overline{D(0,0.4)}\subset$ int $(K(h_{1})),$ $h_{2}(K(h_{1}))\subset$ int $(K(h_{1})),$ $h_{1}^{-1}(A)\cup h_{2}^{-1}(A)\subset A$ ,
and $h_{1}^{-1}(A)\cap h_{2}^{-1}(A)=\emptyset$ . Therefore $h_{1}^{-1}(J(G))\cap h_{2}^{-1}(J(G))=\emptyset$ and $\emptyset\neq K(h_{1})\subset$

$\hat{K}(G)$ . Moreover, using the argument in the proof of Proposition 4.1, we obtain that $G$ is
hyperbolic. By Lemma 3.73, $J_{ker}(G)=\emptyset$ . By Theorem 3.22 and Lemma 3.75, we obtain
that $T_{\infty,\tau}$ is continuous on $\hat{\mathbb{C}}$ and the set of varying points of $T_{\infty,\tau}$ is equal to $J(G)$ .
Moreover, by Theorem 3.82, $\dim_{H}(J(G))<2$ and for each non-empty open subset $U$ of
$J(G)$ there exists an uncountable dense subset $A_{U}$ of $U$ such that for each $z\in A_{U},$ $T_{\infty,\tau}$

is not differentiable at $z$ . See Figures 2, 3, and 4. $T_{\infty,\tau}$ is called a devil’s coliseum. It is a
complex analogue of the devil’s staircase.

We now present a way to construct examples of $(h_{1}, h_{2})\in \mathcal{P}^{2}$ such that $G=\langle h_{1},$ $h_{2}\rangle$

is hyperbolic, $\bigcap_{j=1}^{2}h_{j}^{-1}(J(G))=\emptyset$ , and $\hat{K}(G)\neq\emptyset$ .
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Figure 4: Figure 3 upside down. A “fractal wedding cake”.
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Proposition 4.3. Let $g_{1},$ $g_{2}\in \mathcal{P}$ be hyperbolic. Suppose that $(J(g_{1})\cup J(g_{2}))\cap(P(g_{1})\cup$

$P(g_{2}))=\emptyset,$ $K(g_{1})\subset$ int $(K(g_{2}))$ , and the union $A$ of attracting cycles of $g_{2}$ in $\mathbb{C}$ is included
$in$ int $(K(g_{1}))$ . Then, there exists an $m\in \mathbb{N}$ such that for each $n\in \mathbb{N}$ with $n\geq m$ , setting
$h_{i,n}=g_{i}^{n}$ and $G_{n}=\langle h_{1,n},$ $h_{2,n}\rangle$ , we have that $G_{n}$ is hyperbolic, $h_{1_{1}n}^{-1}(J(G_{n}))\cap h_{2,n}^{-1}(J(G_{n}))=$

$\emptyset$ , and $\emptyset\neq K(g_{1})\subset\hat{K}(G_{n})$ .

Proposition 4.4. Let $m\in \mathbb{N}$ and let $g=(g_{1}, \ldots,g_{m})\in \mathcal{P}^{m}$ . Let $G=\langle g_{1},$ $\ldots,g_{m}\}$ .
Suppose that $g_{i}^{-1}(J(G))\cap g_{j}^{-1}(J(G))=\emptyset$ for each $(i,j)$ with $i\neq j$ , that $G$ is hyperbolic,
and that $\hat{K}(G)\neq\emptyset$ . Then, there exists a neighborhood $U$ of $g$ in $\mathcal{P}^{m}$ such that for each
$h=(h_{1}, \ldots, h_{m})\in U$ , setting $H=\langle h_{1},$

$\ldots,$
$h_{m}\}$ , we have that $h_{i}^{-1}(J(H))\cap h_{j}^{-1}(J(H))=\emptyset$

for each $(i,j)$ with $i\neq j$ , that $H$ is hyperbolic, and that $\hat{K}(H)\neq\emptyset$ .

Proposition 4.5. Let $(g_{1}, g_{2})\in \mathcal{P}^{2}$ and let $(p_{1},p_{2})\in \mathcal{W}_{2}$ . For each $n\in \mathbb{N}$ , we set $h_{1,n}$ $:=$

$g_{1}^{n},$ $h_{2,n}$ $:=g_{2}^{n},$ $G_{n}$ $:=\langle h_{1,n},$ $h_{2,n}\rangle$ , and $\tau_{n}$ $:= \sum_{j=1}^{2}p_{j}\delta_{h_{i.n}}$ . Suppose that $\bigcap_{j=1}^{2}g_{j}^{-1}(J(G_{1}))=$

$\emptyset,$ $G_{1}$ is hyperbolic and $\hat{K}(G_{1})\neq\emptyset$ . Then, there exists an $m\in \mathbb{N}$ such that for each
$n\in \mathbb{N}$ with $n\geq m,$ (1) $G_{n}$ is hyperbolic, (2) $\bigcap_{j=1}^{2}h_{j1n}^{-1}(J(G_{n}))=\emptyset,$ (3) $\hat{K}(G_{n})\neq\emptyset,$ $(4)$

$($ LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc}\neq\emptyset,$ (5) for each $j=1,2,,$ $1<p_{j} \min\{\Vert h_{j,n}(z)\Vert_{s}|z\in h_{jn}^{-1}(J(G_{n}))\}$ , and
(6) for each $z_{0}\in J(G_{n})$ and for each $\varphi\in($LS $(\mathcal{U}_{f,\tau}(\hat{\mathbb{C}})))_{nc},$

$\lim\sup_{zarrow z0\overline{d(z_{1}z_{0})}}=\infty$

$|_{\varphi(z)-\varphi(z_{0})|}$

and $\varphi$ is not differentiable at $z_{0}$ .

Remark 4.6. Combining Proposition 4.1, Proposition 4.3, Proposition 4.4, Proposi-
tion 3.63, and Remark 3.42, we obtain many examples to which we can apply Theorem 3.15,
Lemma 3.75, Theorem 3.82, Theorem 3.84, Corollary 3.87, and Theorem 3.88.

We now give an example of $\tau\in \mathfrak{M}_{1,c}(\mathcal{P})$ such that $J_{ker}(G_{\tau})=\emptyset$ and such that there
exists a minimal set $L\in{\rm Min}(G_{\tau},\hat{\mathbb{C}})$ with $L\cap J(G_{\tau})\neq\emptyset$ .

Example 4.7. Let $f_{1}\in \mathcal{P}$ and suppose that $f_{1}$ has a parabolic cycle $\alpha$ . Let $b$ be a point
of the immediate basin of $\alpha$ . Let $d\in \mathbb{N}$ with $d\geq 2$ such that $(\deg(f_{1}), d)\neq(2,2)$ . Then
by Proposition 4.1, there exists a $c>0$ such that for each $a\in \mathbb{C}$ with $0<|a|<c$ ,
setting $f_{2}$ $:=a(z-b)^{d}+b$ and $G=\langle f_{1},$ $f_{2}\rangle$ , we have $f_{1}^{-1}(J(G))\cap f_{2}^{-1}(J(G))=\emptyset$ and
$G(K(f_{1}))\subset K(f_{1})\subset$ int $(K(f_{2}))$ . Let $p=(p_{1},p_{2})\in \mathcal{W}_{2}$ and let $\tau=\sum_{i=1}^{2}p_{i}\delta_{f_{i}}$ . Then by
Lemma 3.73, $J_{ker}(G_{\tau})=J_{ker}(G)=\emptyset$ . Since $G(K(f_{1}))\subset K(f_{1})\subset$ int $(K(f_{2}))$ , there exists
a minimal set $L$ for $(G_{\tau},\hat{\mathbb{C}})$ such that $L\subset K(f_{1})$ . Since $b$ belongs to the immediate basin
of $\alpha$ for $f_{1}$ , it follows that $\alpha\subset L$ . In particular, $L\cap J(G_{\tau})\neq\emptyset$ .

We now give an example of small perturbation of a single map.

Example 4.8. Let $\mathbb{D}$ $:=\{z\in \mathbb{C}||z|<1\}$ . Let $R$ : $\hat{\mathbb{C}}\cross \mathbb{D}arrow\hat{\mathbb{C}}$ be a holomorphic map such
that for each $z\in\hat{\mathbb{C}},$ $c\mapsto R(z, c)$ is non-constant on $\mathbb{D}$ . We set $R_{c}(z)$ $:=R(z, c)$ for each
$(z, c)\in\hat{\mathbb{C}}\cross \mathbb{D}$ . Let $m\in \mathbb{N}$ and suppose that $R_{0}$ has exactly $m$ attracting cycles $\alpha_{1},$

$\ldots,$
$\alpha_{m}$ .

For each $j$ , let $A_{j}$ be the immediate basin of $\alpha_{j}$ for $R_{0}$ . Then by [9, Theorem 0.1] and
Theorem 3.15, there exists a $\delta_{0}>0$ such that for each $0<\delta<\delta_{0}$ , denoting by $\tau_{\delta}$ the
normalized 2-dimensional Lebesgue measure on $\overline{D(0,\delta)}$ , we have (1) $\tau_{\delta}$ is mean stable, (2)
$J_{ker}(G_{\tau}\delta)=\emptyset,$ (3) $\#{\rm Min}(G_{\tau}\delta’\hat{\mathbb{C}})=m,$ (4) for each $L\in{\rm Min}(G_{\tau}\delta’\hat{\mathbb{C}})$ , there exists a $j$ such
that $L\subset A_{j}$ , and (5) for each $L\in{\rm Min}(G_{\tau_{\delta}},\hat{\mathbb{C}}),$

$r_{L}$ $:=\dim_{\mathbb{C}}(LS(\mathcal{U}_{f,\tau}(L)))$ is equal to the
period of $\alpha_{j}$ for $R_{0}$ .
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We now give an example of higher dimensional random complex dynamics to which
we can apply Theorem 3.14.

Example 4.9. Let $h\in$ NHM $(\mathbb{C}\mathbb{P}^{n})$ . Suppose that int $(J(h))=\emptyset$ and there exist finitely
many attracting periodic cycles $\alpha_{1},$

$\ldots,$
$\alpha_{m}$ such that for every $z\in F(h),$ $d(h^{n}(z), \bigcup_{j=1}^{m}\alpha_{j})arrow$

$0$ as $narrow\infty$ . Then, there exists a compact neighborhood $\Gamma$ of $h$ in NHM $(\mathbb{C}\mathbb{P}^{n})$ such that
$\Gamma$ is mean stable, such that $J_{ker}(\langle\Gamma\rangle)=\emptyset$ , and such that for any $\tau\in \mathfrak{M}_{1}$ (NHM $(\mathbb{C}\mathbb{P}^{n})$ )
with $\Gamma_{\tau}=\Gamma$ , Leb$2n(J_{\gamma})=0$ for $\tilde{\tau}- a.e$ . $\gamma\in($NHM $(\mathbb{C}\mathbb{P}^{n}))^{N}$ . For, if $\Gamma$ is small enough, then
there exists a neighborhood $U$ of $\bigcup_{j=1}^{m}\alpha_{j}$ such that $\overline{\langle\Gamma\rangle(U)}\subset U\subset\overline{U}\subset F(\langle\Gamma\rangle)$. Moreover,
for each $z\in \mathbb{C}\mathbb{P}^{n}$ , there exists a $g\in\Gamma$ such that $g(z)\in F(h)$ . Thus $\Gamma$ is mean stable
and $J_{ker}(\langle\Gamma\rangle)=\emptyset$ . By Theorem 3.14, it follows that for each $\tau\in \mathfrak{M}_{1}$ (NHM $(\mathbb{C}\mathbb{P}^{n})$ ) with
$\Gamma_{\tau}=\Gamma$ , Leb$2n(J_{\gamma})=0$ for $\tilde{\tau}- a.e$ . $\gamma\in($NHM $(\mathbb{C}\mathbb{P}^{n}))^{N}$ .

We now give an example of $\tau$ with $J_{ker}(G_{\tau})\neq\emptyset$ to which we can apply Theorem 3.71.

Example 4.10. Let $0<a<1$ and let $g_{1}(z)=z^{2}$ . Let $g_{2}\in \mathcal{P}$ be such that $J(g_{2})=$

$\{z\in \mathbb{C}||z+a|=|1+a|\},$ $g_{2}(1)=1$ and $g_{2}([1, \infty))\subset[1, \infty)$ . Let $l\in \mathbb{N}$ with $l\geq 2$

and let $\alpha\subset J(g_{2})$ be a repelling cycle of $g_{2}$ of period $l$ . Then there exists an $m\in \mathbb{N}$

such that $P(\langle g_{1}^{m}, g_{2}^{m}\rangle)\subset F(\langle g_{1}^{m}, g_{2}^{m}\rangle)$ and $g_{1}^{m}(\alpha)\subset F_{\infty}(\langle g_{1}, g_{2}\rangle)\subset F_{\infty}((g_{1}^{m}, g_{2}^{m}\rangle)$ . Let
$h_{1}$ $:=g_{1}^{m}$ and $h_{2}$ $:=g_{2}^{m}$ . Let $(p_{1},p_{2})\in \mathcal{W}_{2}$ and let $\tau$ $:= \sum_{i=1}^{2}p_{i}\delta_{h}.\cdot$ Then we have
$1\in J_{ker}(G_{\tau})\cap\partial F_{\infty}(G_{\tau}),$ $G_{\tau}$ is hyperbolic, and $\alpha\subset F_{pt}^{0}(\tau)$ . Thus $T_{\infty,\tau}$ is discontinuous at
1, $1\in J_{pt}^{0}(\tau)$ , and $T_{\infty,\tau}$ is continuous at each point of $\alpha$ . Moreover, by Theorem 3.71, we
have $\dim_{H}(J_{pt}^{0}(\tau))\leq$ MHD $(\tau)<2,$ $J_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ , and $J_{pt}(\tau)=J(G_{\tau})$ .

We now give an example of $\tau$ with $J_{ker}(G_{\tau})\neq\emptyset$ to which we can apply Theorem 3.48.

Example 4.11. Let $g_{1}(z)=z^{2}-1$ . Let $a= \frac{1+\sqrt{5}}{2}$ . Then $g_{1}(a)=a\in J(g_{1})$ . Moreover,
$-1$ is a superattracting fixed point of $g_{1}^{2}$ . Let $b$ $:= \frac{a+(-1)}{2}$ . Then it is easy to see that
$b$ belongs to the immediate basin $A_{1}$ of $0$ for the dynamics of $g_{1}^{2}$ . Let $g_{2}\in \mathcal{P}$ be such
that $J(g_{2})=\{z\in \mathbb{C}||z-b|=a-b\},$ $g_{2}(a)=a$ and $g_{2}(-1)=-1$ . Let $\epsilon>0$ be
a small number so that $b-\epsilon$ belongs to $A_{1}$ . Let $c=b-\epsilon$ . Let $g_{3}\in \mathcal{P}$ be such that
$J(g_{3})=\{z\in \mathbb{C}||z-c|=a-c\}$ and $g_{3}(a)=a$ . Then $b$ is an attracting fixed point of
$g_{2},$ $c$ is an attracting fixed point of $g_{3},$ $\{b, c\}$ is included in $A_{1},$ $\{0, c\}$ is included in the
immediate basin $A_{2}$ of $b$ for $g_{2}$ , and $\{0, b, -1\}$ is included in the immediate basin $A_{3}$ of $c$

for $g_{3}$ .
Let $m\in \mathbb{N}$ be sufficiently large and let $h_{1}=g_{1}^{2m},$ $h_{2}=g_{2}^{m}$ , and $h_{3}=g_{3}^{m}$ . Let $G=$

$\langle h_{1},$ $h_{2},$ $h_{3}\rangle$ . Then $UH(G)\cap J(G)=P(G)\cap J(G)=\{-1\},$ $-1\not\in J_{ker}(G)$ and $a\in J_{ker}(G)$ .
Let $(p_{1},p_{2},p_{3})\in \mathcal{W}_{3}$ and let $\tau=\sum_{i=1}^{3}p_{i}\delta_{h_{\mathfrak{i}}}$ . By Theorem 3.48, we obtain that (1) for $\tilde{\tau}- a.e$ .
$\gamma\in \mathcal{P}^{N}$ , Leb$2(J_{\gamma})=Leb_{2}(\hat{J}_{\gamma,\Gamma_{\tau}})=0,$ (2) $Leb_{2}(J_{pt}^{0}(\tau))=0$ , and (3) for $Leb_{2}- a.e$ . $y\in\hat{\mathbb{C}}$ ,
$T_{\infty,\tau}$ is continuous at $y$ . Moreover, since $-1$ is a superattracting fixed point of $h_{1}$ and
$-1\in J(h_{2})$ , setting $\rho=(h_{1}, h_{1}, h_{1}, \ldots)\in X_{\tau}$ , we have $-1\in$ int $(\hat{J}_{\rho,\Gamma_{\tau}})$ (see [33, Theorem
$1.6(2)])$ . Therefore for each $\beta\in\bigcup_{n\in N}\sigma^{-n}(\rho)$ , int $(\hat{J}_{\beta,\Gamma_{\tau}})\neq\emptyset$ . Note that $\bigcup_{n\in \mathbb{N}}\sigma^{-n}(\rho)$ is
dense in $X_{\tau}$ . Thus, (I) for $\tilde{\tau}- a.e$ . $\gamma\in X_{\tau}$ , Leb$2(\hat{J}_{\gamma,\Gamma_{\tau}})=0$ , and (II) there exists a dense
subset $B$ of $X_{\tau}$ such that for each $\beta\in B$ , int $(\hat{J}_{\beta,\Gamma_{\tau}})\neq\emptyset$ .
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