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ENDOMORPHISMS OF PROJECTIVE VARIETIES AND THEIR
INVARIANT HYPERSURFACES

DE-QI ZHANG

ABSTRACT. We consider surjective endomorphisms f of degree > 1 on projective man-
ifolds X of Picard number one and their f~!-stable hypersurfaces V. When X = P"
with n = 3, we show that V is a hyperplane (i.e., deg(V) = 1) but with four possible
exceptions; it is conjectured that deg(V) =1 for any n > 2; cf. [8], (3]. For general X,
we show that V is rationally chain connected. Also given is an optimal upper bound for

the number of f~1-stable prime divisors on (not necessarily smooth) projective varieties.

1. ENDOMORPHISMS OF P3

We work over the field C of complex numbers. We start with the consideration of
endomorphisms of the projective three space. The main result of this section is Theorem
1.1 below.

Theorem 1.1. Let f : P2 — P? be an endomorphism of degree > 1 and V an irreducible
hypersurface such that f~1(V) = V. Then either deg(V) =1, i.e., V is a hyperplane, or
V =V, := {S; = 0} is a cubic hypersurface given by one of the following four defining
equations S; in suitable projective coordinates:

(1) S1 = X3+ Xo X1 X2;

(2) Sz = X3 X3+ XoX? + X3;

(3) S3 = X§ X2+ X7 Xs;

(4) Sy = XoX1 X2 + X2X5 + X3.

We are unable to rule out the four cases in Theorem 1.1 but see Examples 2.8 (for ;).

Remark 1.2. (1) The non-normal locus of V; (i = 3,4) is a single line C and stabi-
lized by f~1. Let o : V! — V; (i = 3,4) be the normalization. Then V/ is the
(smooth) Hirzebruch surface F; (i.e., the one-point blowup of P?); see [1, Theorem
1.5, [17].

(2) Vi (resp. V3) is unique as a normal cubic (or degree three del Pezzo) surface of
Picard number one and with the singular locus SingV} = 34, (resp. SingV, =
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Eg); see [20, Theorem 1.2] and {10, Theorem 4.4] (for the anti-canonical embedding
of Vi in P?). Vi contains exactly three lines (of triangle-shaped) whose three
vertices form the singular locus of V;. And V, contains a single line on which lies
its unique singular point. f~3 (replaced by its cube) fixes the singular point(s) of
Vi (i = 1,2).

(8) f! (or its power) does not stabilize the only line L on V; by using [15, Theorem
4.3.1] since the pair (V2, L) is not log canonical at the singular point of V3. For
V1, we do not know whether f~! (or its power) stabilizes its three lines.

We now sketch the proof of Theorem 1.1.

By [16, Theorem 1.5], we may assume that ¥V C P® is an irreducible rational singular
cubic hypersurface.

We first consider the case where V' is non-normal. Such V is classified in [6, Theorem
9.2.1] to the effect that either V = V; (i = 3,4) or V is a cone over a nodal or cusp-
idal rational planar cubic curve B. The description in Remark 1.2 on V3, V4 and their
normalizations, is given in [17, Theorem 1.1}, 1, Theorem 1.5, Case (C), (E1)].

We can rule out the case where V is a cone over B.

Next we consider the case where V C P is a normal rational singular cubic hyper-
surface. By the adjunction formula, —Ky = —(Kps + V)|V ~ H|V which is ample,
where H C PP® is a hyperplane. Since Ky is a Cartier divisor, V has only Du Val (or
rational double, or ADFE) singularities. Let o : V/ — V be the minimal resolution. Then
Ky = 0*Ky ~ o*(—H|V). For f : P — P3, we can apply f|V to the result below.

Lemma 1.3. Let V C P? be a normal cubic surface, and fv : V. = V an endomor-
phism such that f,(H|V) ~ qH|V for some q > 1 and the hyperplane H C P3. Let
S(V) = {(irreducible) G C V|G? < 0} be the set of negative curves on V, and set
Ev := ¥ ges(v) E. Replacing fy by its power, we have:

(1) If fvG = aG for some Weil divisor G # 0, then a = q. fy(L|V) ~ q(L|V)
Jor every divisor L on P3. Especially, deg(fv) = ¢*; Ky ~ —H|V satisfies
fvKv ~ qKy.

(2) S(V) is a finite set. fyE = qE for every E € S(V). So f,Ey = qEy.

(3) A curve E C V is a line in P® if and only if E is equal to o(E') for some (—1)-
curve E' Cc V'. '

(4) Every curve E € S(V) is a line in P3. ,

(5) We have Ky + Ey = fi(Kv+ Ey)+A for some effective divisor A containing no
line in S(V), so that the ramification divisor Ry, = (¢— 1)Ey +A. In particular,
the cardinality #S(V) < 3, and the equality holds ezactly when Ky + Ey ~q 0;
in this case, fy is étale outside the three lines of S(V) and f;;'(Sing V).
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Remark 1.4. In the proof of Theorem 1.1, we can actually show: if fy : V — V is an
endomorphism (not necessarily the restriction of some f : P* — P3) of deg(fv) > 1 of a
Gorenstein normal del Pezzo surface with K% = 3 (i.e., a normal cubic surface), then V

is equal to V; or V3 in Theorem 1.1 in suitable projective coordinates.

2. SUMMARY OF MAIN RESULTS

Below is the summary of our recent paper [23]. Theorem 2.1 ~ Theorem 2.4 are our
main results.

Theorem 2.1. Let X be a locally factorial normal projective variety of dimension n > 2
and Picard number one, and with only log canonical singularities, and let f : X — X be
a surjective endomorphism with deg(f) = q" > 1. Then we have:
(1) There are at most n + 1 prime divisors V; C X with f~}(V;) = V,.
(2) There aren+1 of suchV; if and only if: X =P*, V, ={X; =0} (1<i<n+1)
(in suitable projective coordinates), and f is given by

f:[Xo .-, Xa] — [X§, ..., X3].

We refer to S. -W. Zhang [21, Conjecture 1.3.1] for the Dynamic Manin-Mumford
conjecture etc. solved for the (X, f) in Theorem 2.1 (2).

A projective variety X is rationally chain connected if every two points x; € X are
contained in a connected chain of rational curves on X. When X is smooth, X is rationally

chain connected if and only if X is rationally connected, in the sense of Campana, and
Kollar-Miyaoka-Mori.

Theorem 2.2. Let X be a projective manifold of dimenion n > 2 and Picard number one,
f: X — X an endomorphism of degree > 1, and V C X a prime divisor with f~}(V) =
V. Then X, V and the normalization V' of V are all rationally chain connected.

In Theorem 2.2, the smoothness and Picard number one assumption on X are necessary
(cf. Remark 2.6 and Example 2.9). Theorem 2.2 is known for X = P" with n < 3 (cf. [§],
[16]). In Theorem 2.2, X is indeed a Fano manifold. See Remark 2.6 for the case when
X is singular.

Corollary 2.3. With the notation and assumptions in Theorem 2.2, both X and V are
simply connected, while V' has a finite (topological) fundamental group.

A morphism f : X — X is polarized (by H) if f*H ~ gH for some ample line bundle H
and some ¢ > 0; then deg(f) = ¢¥™X. For instance, every non-constant endomorphism
of a projective variety X of Picard number one, is polarized; an f-stable subvariety



171

DE-QI ZHANG

X C P" for a non-constant endomorphism f : P® — P", has the restriction f|X : X — X
polarized by the hyperplane; the multiplication map m4 : A — A, z +— mz (with m # 0)
of an abelian variety A is polarized by any H = L + (—1)*L with L an ample divisor, so
that m%H ~ m?H.

In Theorems 2.1 and 2.4, we give upper bounds for the number of f~!-stable prime
divisors on a (not necessarily smooth) projective variety; the bounds are optimal, and
the second possibility in Theorem 2.4(2) does occur (cf. Examples 2.8 and 2.9). One
may remove the condition (*) in Theorem 2.4, when p(X) = 1, or X is a weak Q-Fano
variety, or the closed cone NE(X) of effective curves has only finitely many extremal rays
(cf. Remark 2.6); here N1(X) := NS(X) ®z R is the Néron-Severi group (over R) and
p(X) := rankg N(X) is the Picard number of X. We refer to [11, Definition 2.34] for

the definitions of Kawamata log terminal (klt) and log canonical singularities.

Theorem 2.4. Let X be a projective variety of dimension n with only Q-factorial Kawa-
mata log terminal singularities, and f : X — X a polarized endomorphism with deg(f) =
g™ > 1. Suppose (x) : either f*| N*(X) = q id, orn < 3. Then we have (with p := p(X)):

(1) Let V; ¢ X (1 < i < ¢) be prime divisors with f~Y(V;) = V,. Thenc < n + p.
Further, if ¢ > 1, then the pair (X, Y V;) is log canonical and X is uniruled.

(2) Suppose that ¢ > n + p — 2. Then either X is rationally connected, or there is a
fibration X — E onto an elliptic curve E so that every fibre is normal rationally
connected and some positive power f* descends to an fg : E — E of degree q.

(3) Suppose that c > n+ p— 1. Then X is rationally connected.

(4) Suppose that ¢ > n+ p. Then c =n + p, (for some t > 0)

n+p
Kx+Y Vi~q0,  (f)|Pic(X)=¢"id,

i=1
f is étale outside (UV;) U f~1(Sing X) (and X is a toric surface with 3V, its
boundary divisor, when dim X = 2).

Theorems 2.4 and 2.1 motivate the question below (without assuming the condition
(*) in Theorem 2.4), where the last part is also Shokurov’s conjecture (cf. {18, Theorem
6.4]).

Question 2.5. Suppose that a projective n-fold (n > 3) X has only Q-factorial Kawa-
mata log terminal singularities, f : X — X a polarized endomorphism of degree > 1, and
V; € X (1 <i < s) prime divisors with f~1(V;) = V;. Then, is it true that s < n+ p(X),
and equality holds only when X is a toric variety with 3_V; its boundary divisor?

Remark 2.6. (1) In Theorem 2.2, it is necessary to assume that p(X) = 1 (cf. Example
2.9), and X is smooth or at least Kawamata log terminal (klt). Indeed, for every projective
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cone Y over an elliptic curve and every section V C Y (away from the vertex), there is an
endomorphism f : Y — Y of deg(f) > 1 and with f~}(V) = V (cf. [15, Theorem 7.1.1,
or Proposition 5.2.2]). The cone Y has Picard number one and a log canonical singularity
at its vertex. Of course, V is an elliptic curve, and is not rationally chain connected. By
the way, Y is rationally chain connected, but is not rationally connected.

(2) Let X be a projective variety with only klt singularities. If the closed cone NE(X) of
effective curves has only finitely many extremal rays, then every polarized endomorphism
f: X — X satisfies f*| N}(X) = ¢ id with deg(f) = ¢%™X, after replacing f by its
power, so that we can apply Theorem 2.4 (cf. [16, Lemma 2.1]). For instance, if X
or (X,A) is Q-Fano, i.e,, X (resp. (X,A)) has only klt singularities and —Kx (resp.
—(Kx + A)) is nef and big, then NE(X) has only finitely many extremal rays.

(3) By Example 2.8, it is necessary to assume the local factoriality of X or the Cartier-
ness of V; in Theorem 2.1 (2) even when X has only klt singularities. We remark that
a Q-factorial Gorenstein terminal threefold is locally factorial. For Theorem 2.1(2), one
may also use Fujita’s theory to prove X ~ P", but our method is useful even when V;’s
are only Q-Cartier (cf. Theorem 2.4).

2.7. A motivating conjecture. Here are some motivations for our paper. It is conjec-
tured that every hypersurface V. C P stabilized by the inverse f~! of an endomorphism
f :P* — P® of deg(f) > 1, is linear. This conjecture is still open when n > 3 and V'
is singular, since the proof of [3] is incomplete as we were informed by an author. The
smooth hypersurface case was settled in the affirmative (in any dimension) by Cerveau -
Lins Neto [4] and independently by Beauville [2]. See also [16, Theorem 1.5 in its arXiv
version: arXiv:0908.1688v1].

From the dynamics point of view, as seen in Dinh-Sibony [5, Theorem 1.3, Corollary
1.4], f : P* — P" behaves nicely ezactly outside those f~!-stabilized subvarieties. We
refer to Fornaess-Sibony [8], and [5] for further references.

A smooth hypersurface X in P*"*! with deg(X) > 3 and n > 2, has no endomorphism
fx : X — X of degree > 1 (cf. [2, Theorem]). However, singular X may have plenty of
endomorphisms fx of arbitrary degrees as shown in Example 2.8 below. Conjecture 2.7
asserts that such fx can not be extended to an endomorphism of P*+1,

Example 2.8. We now construct many polarized endomorphisms for some degree n + 1
hypersurface X c P**!, with X isomorphic to the V; in Theorem 1.1 when n = 2.
Let f = (Fo,...,F,) : P* — P* (n > 2), with F; = F;(Xo,...,X,) homogeneous,
be any endomorphism of degree ¢" > 1, such that f~!(S) = S for a reduced degree
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n + 1 hypersurface S = {S(Xo,...,Xn) = 0}. So S must be normal crossing and
linear: S = 3, S; (cf. (16, Thm 1.5 in arXiv version]). Thus we may assume that
f=(X§,...,X2) and S; = {X; = 0}. The relation S ~ (n+ 1)H with H C P" a
hyperplane, defines

w: X = Spec ®y O(—iH) — P

which is a Galois Z/(n + 1)-cover branched over S so that 7*S; = (n + 1)7T; with the
restriction 7|T; : T; — S; an isomorphism.

This X is identifiable with the degree n + 1 hypersurface {Z"*! = S(Xo,...,X,)} C
P"*! and has singularity of type 2"+ = zy over the intersection points of S locally defined
as zy = 0. Thus, when n = 2, we have Sing X = 34, and X is isomorphic to the V; in
Theorem 1.1 (cf. Remark 1.2). We may assume that f*S(Xo,...,Xn) = S(Xo,...,Xn)?
after replacing S(Xo,...,X,) by a scalar multiple, so f lifts to an endomorphism g =
(29, Fy, ..., F,) of P! (with homogeneous coordinates [Z, Xy, . .., X,]), stabilizing X,
so that gx := g|X : X — X is a polarized endomorphism of deg(gx) = ¢" (cf. [16, Lemma
2.1]). Note that g~1(X) is the union of ¢ distinct hypersurfaces {Z = (*S(Xo,...,Xn)} C
P! (all isomorphic to X), where ¢ := exp(2rv/—1/q).

This X has only Kawamata log terminal singularities and Pic X = (PicP**!)|X (n > 2)
is of rank one (using Lefschetz type theorem [12, Example 3.1.25] when n > 3). We have
f7Y(S:) = S; and g% (T;) = T;, where 0 < i < n. Note that (n 4+ 1)T; = 7*S; is Cartier,
but T; is not Cartier (cf. Theorems 2.1).

When n = 2, the relation (n + 1)(T7 — Tp) ~ 0 gives rise to an étale-in-codimenion-one
Z/(n + 1)-cover T : P* ~ X — X so that Yt o7*T; is a union of n + 1 normal crossing
hyperplanes; indeed, 7 restricted over X \ UT;, is its universal cover (cf. [13, Lemma 6}),
so that gx lifts up to X. A similar result seems to be true for n > 3, by considering
the ‘composite’ of the Z/(n + 1)-covers given by (n + 1)(T; — Tp) ~ 0 (1 < i < n); see
Question 2.5.

The simple Example 2.9 below shows that the conditions in Theorem 2.4 (2) (3), or
the condition p(X) = 1 in Theorem 2.2, is necessary.

Example 2.9. Let my : A — A (z — mz) with m > 2, be the multiplication map
of an abelian variety A of dimension © > 1 and Picard number one, and let g : P¥ —
P ([Xo,-..,Xy] — [X&,...,X9]) with v > 1 and ¢ := m2. Then f = (my X g) :
X = Ax P’ — X is a polarized endomorphism with f*| N*(X) = diag[g, g], and f~!
stabilizes v 4+ 1 prime divisors V; = A x {X; = 0} C X and no others; indeed, f is étale
outside UV;. Note that X and V; >~ A x P"~! are not rationally chain connected, and
v+1=dimX + p(X) — (1 4+ dim A).
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2.10. The results of Favre (7], Nakayama [15] and Wahl [19] are very inspiring about
the restriction of the singularity type of a normal surface imposed by the existence of
an endomorphism of degree > 1 on the surface. For the proof of our results, the basic
ingredients are: a log canonical singularity criterion, a rational connectedness criterion
of Qi Zhang [24] and its generalization in Hacon-McKernan {9], the equivariant MMP in
our early paper [22], and the characterization in Mori [14] on hypersurfaces in weighted
projective spaces.
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