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Abstract

This paper is concemed with a generalized type of Darboux transformations defined in
terms of a twisted derivation $D$ satisfying $D(AB)=D(A)+\sigma(A)B$ where $\sigma$ is a homo-
morphism. Such twisted derivations include regular derivations, difference and q-difference
operators and superderivatives as special cases. Remarkably, the formulae for the iteration of
Darboux transformations are identical with those in the standard case of a regular derivation
and are expressed in terms of quasideterminants. As an example, we revisit the Darboux
transformations for the Manin-Radul super $KdV$ equation.

1 Introduction

Recently noncommutative versions of integrable systems have received much attention [1-14].
It has been shown that such systems often have solutions expressed in terms of quasidetermi-
nants [15]. The prototypical example of this is the class of solutions of the noncommutative KP
equation found using Darboux transformations [16]. In [12] also, a second type of quasidetermi-
nant solutions for this equation were found using binary Darboux transformations.

Supersymmetric integrable systems are a particular noncommutative extension of integrable
systems. Among these, the Manin-Radul super $KdV$ equation [17] is perhaps the best known
example. Motivated in part by the properties of superderivatives, we consider a generalized
derivation which has regular derivations, difference operators, q-difference operators and su-
perderivatives as some of its special cases. We call this a twisted derivation, following the
terminology used in [18, 19]. We show that one can formulate Darboux transformations for such
twisted derivations and the iteration formulae are expressed in terms of quasideterminants in
which one simply replaces the derivative with the twisted derivation.

In [20, 21] solutions for the Manin-Radul super $KdV$ equation were constructed by means of
Darboux transformations and binary Darboux transformations. In this paper, we use an alter-
native approach to such Darboux transformations using quasideterminants. This is successful
in obtaining simple unified formulae for the solutions. From these quasideterminant solutions,
we recover the superdeterminant solutions given in [20, 21] and also get a superdeterminant
representation in the cases not considered in the earlier work.

The paper is organized as follows. In Section 2, we give a brief review of relevant properties
of quasideterminants. In Section 3, in order to introduce the basic ideas, we discuss Darboux
transformations for the noncommutative KP equation. Then, in Section 4, the main results are
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described. Twisted derivation and related Darboux transformation are defined and a quaside-
terminant iteration formula for twisted Darboux transformation is obtained. Section 5 contains
some basic facts about supersymmetric objects. In Section 6 the Darboux and binary Darboux
transformations to the Manin-Radul super $KdV$ system are discussed. Finally, in Section 7, the
solutions obtained using iterated Darboux and binary Darboux transformations are reexpressed
in terms of superdeterminants. Proofs of the results stated in this paper are given in [22].

2 Properties of quasideterminants

In this section, we record some basic facts about quasideterminants [15, 16, 23]. The reader is
referred to the above mentioned literature for more details.

An $n\cross n$ matrix $M=(m_{i)j})$ over a ring $\mathcal{R}$ (noncommutative, in general) has $n^{2}$ quaside-
terminants written as $|M|_{i,j}$ for $i,j=1,$ $\ldots,$

$n$ , which are also elements of $\mathcal{R}$ . They are defined
recursively by

$|M|_{i,j}=m_{i_{1}j}-r_{i}^{j}(M^{i,j})^{-1}c_{j}^{i}$ , $M^{-1}=(|M|_{j_{l}i}^{-1})_{i,j=1,\ldots,n}$ . (1)

In the above $r_{i}^{j}$ represents the ith row of $M$ with the jth element removed, $c_{j}^{i}$ the jth column
with the ith element removed and $M^{i,j}$ the submatrix obtained by removing the ith row and
the jth column from $M$ . Quasideterminants can be also denoted as shown below by boxing the
entry about which the expansion is made

$|M|_{i,j}=|_{r_{i}^{j}}^{M^{i,j}}$ $m_{i_{l}j}c_{j}^{i}|$ .

Note that if the entries in $M$ commute then

$|M|_{i,j}=(-1)^{i+j} \frac{\det(M)}{\det(M^{i,j})}$ . (2)

Noncommutative Jacobi Identity There is a quasideterminant version of the Jacobi iden-
tity for determinants [15]. The simplest version of this identity is given by

A B $C$

$D$ $f$ $g$

$E$ $h$ $i$

$=|_{E}^{A}$ $\underline{\prod iC}|-|\begin{array}{ll}A BE h\end{array}||\begin{array}{ll}A BD f\end{array}||\begin{array}{ll}A CD \underline{\Pi}\end{array}|$ , (3)

where $f,$ $g,$ $h,$ $i\in \mathcal{R},$ $A$ is an $n\cross n$ matrix and $B,$ $C$ (resp. $D,$ $E$ ) are column (resp. row) n-vectors
over $\mathcal{R}$ .

Quasi-Pl\"ucker coordinates Given an $(n+k)\cross n$ matrix $A$ , denote the ith row of $A$ by
$A_{i}$ , the submatrix of $A$ having rows with indices in a subset $I$ of $\{1, 2, \ldots, n+k\}$ by $A_{I}$ and
$A_{\{1,\ldots,n+k\}\backslash \{i\}}$ by $A_{\hat{l}}$. Given $i,j\in\{1,2, \ldots, n+k\}$ and $I$ such that $\# I=n-1$ and $j\not\in I$ , one
defines the (right) quasi-Plucker coordinates

$r_{ij}^{I}=r_{ij}^{I}(A):=|\begin{array}{l}A_{I}A_{i}\end{array}||\begin{array}{l}A_{I}A_{j}\end{array}|=-|\begin{array}{ll}A_{I} 0A_{i} 0A_{j} 1\end{array}|$ , (4)

for any column index $s\in\{1, \ldots, n\}$ . The final equality in (4) comes from an identity of the
form (3) and proves that the definition is independent of the choice of $s$ .
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Derivatives of quasideterminants Consider the derivative of an arbitrary quasideterminant

$|\begin{array}{ll}A BC d\end{array}|=d’-C’ A^{-1}B+CA^{-1}A’ A^{-1}B-CA^{-1}B’$ (5)

where $A$ is an $n\cross n$ matrix, $C$ is a row vector and $B$ a column vector. Let $I$ denote the $n\cross n$

identity matrix and let $Z^{k}$ and $Z_{k}$ denote the kth row and the kth column of a matrix $Z$ ,
respectively. Then

$|\begin{array}{ll}A BC d\end{array}|’=|\begin{array}{ll}A BC d\end{array}|+ \sum_{k=1}^{n}|\begin{array}{ll}A I_{k}C 0\end{array}| |\begin{array}{ll}A B(A^{k})’ (B^{k})’\end{array}|$ . (6)

3 Darboux transformations for the $ncKP$ equation

To introduce the key aspects of Darboux transformations we consider the standard example of
the noncommutative KP $(ncKP)$ equation [1-9, 12, 16]

$(v_{t}+v_{xxx}+3v_{x}v_{x})_{x}+3v_{yy}-3[v_{x}, v_{y}]=0$ . (7)

Its Lax pair is

$L=\partial_{x}^{2}+v_{x}-\partial_{y}$ , (8)
$M=4\partial_{x}^{3}+6v_{x}\partial_{x}+3v_{xx}+3v_{y}+\partial_{t}$ . (9)

Let $\theta$ be such that $L(\theta)=M(\theta)=0$ , and we call $\theta$ an eigenfunction. Define the operator

$G_{\theta}=\theta\partial_{x}\theta^{-1}=\partial_{x}-\theta_{x}\theta^{-1}$ . (10)

The Lax pair is covariant with respect to $G_{\theta}$ in the sense that

$\tilde{L}=G_{\theta}LG_{\theta}^{-1}$ , $\overline{M}=G_{\theta}MG_{\theta}^{-1}$ ,

have the same form as $L$ and $M$ with $v$ changed to cir $=v+2\theta_{x}\theta^{-1}$ . This transformation is
called a Darboux transformation. Since the form of $L$ and $M$ is preserved, it induces a B\"acklund
transformation for the $ncKP$ equation.

This transformation may be iterated as follows. Let $\phi_{[0]}=\phi$ be a generic eigenfunction and
let $\theta_{0},$

$\ldots,$
$\theta_{n-1}$ be invertible eigenfunctions of $(L[0], M[0])=(L, M)$ . Define $\theta[0]=\theta_{0}$ . Then

$\phi[1]$ $:=G_{\theta[0]}(\phi[0])$ and $\theta[1]=\phi[1]|_{\phiarrow\theta_{1}}$ are eigenfunctions for

$(L[1], M[1])=(G_{\theta[0]}L[0]G_{\theta[0]}^{-1}, G_{\theta[0]}M[0]G_{\theta[0]}^{-1})$ .

In general, for $n\geq 0$ define the nth Darboux transform of $\phi$ by

$\phi[n+1]=\phi[n]^{(1)}-\theta[n]^{(1)}\theta[n]^{-1}\phi[n]$ ,

in which
$\theta[k]=\phi[k]|_{\phiarrow\theta_{k}}$ .

After $n$ Darboux transformations the change of the Lax pair is that

$v[n]=v+2 \sum_{i=0}^{n-1}\theta[i]_{x}\theta[i]^{-1}$ . (11)
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Further, it may be proved by induction that

$\sum_{i=0}^{n-1}\theta[i]_{x}\theta[i]^{-1}=-|\begin{array}{ll}\Theta 0\vdots \vdots\Theta^{(n-2)} 0\Theta^{(n-1)} 1\Theta^{(n)} 0\end{array}|$ , (12)

where $\Theta=(\theta_{0}, \ldots, \theta_{n-1})$ and $\Theta^{(k)}$ is its kth derivative with respect to $x$ .
To define a binary Darboux transformation one needs to consider the adjoint Lax pair

$L^{\uparrow}=\partial_{x}^{2}+v_{x}^{\uparrow}+\partial_{y}$ , (13)
$M^{\uparrow}=-4\partial_{x}^{3}-6v_{x}^{\uparrow}\partial_{x}-3v_{xx}^{\uparrow}+3v_{y}^{\uparrow}-\partial_{t}$ . (14)

Following the standard construction of a binary Darboux transformation (see [24, 25]) one
introduces a potential $\Omega(\phi, \psi)$ satisfying

$\Omega(\phi, \psi)_{x}=\psi^{\uparrow\emptyset}$ , $\Omega(\phi, \psi)_{y}=\psi^{\uparrow}\phi_{x}-\psi_{x}^{\uparrow\emptyset}$, $\Omega(\emptyset, \psi)_{t}=-4(\psi\uparrow\phi_{xx}-\psi_{x}^{1}\phi_{x}+\psi_{xx}^{\uparrow}\phi)-6\psi\dagger_{v_{x}\phi}$.
(15)

The definition is consistent whenever $L(\phi)=M(\phi)=0$ and $L^{\uparrow}(\psi)=M^{\uparrow}(\psi)=0$ . More
generally, we can define $\Omega(\Phi, \Psi)$ for any row vectors $\Phi$ and $\Psi$ such that $L(\Phi)=M(\Phi)=0$ and
$L^{\uparrow}(\Psi)=M^{\uparrow}(\Psi)=0$ . If $\Phi$ is an n-vector and $\Psi$ is an m-vector then $\Omega(\Phi, \Psi)$ is an $m\cross n$ matrix.

A binary Darboux transformation is then defined by

$\phi_{[n+1]}=\phi_{[n]}-\theta_{[n]}\Omega(\theta_{[n]}, \rho_{[n]})^{-1}\Omega(\phi_{[n]}, \rho_{[n]})$

and
$\psi_{[n+1]}=\psi_{[n]}-\rho_{[n]}\Omega(\theta_{[n]}, \rho_{[n]})^{-\dagger}\Omega(\theta_{[n]}, \psi_{[n]})^{\dagger}$ ,

where
$\theta_{[n]}=\phi_{[n]}|_{\phiarrow\theta_{n}}$ , $\rho_{[n]}=\psi_{[n]}|_{\psiarrow\rho_{n}}$

Using the notation $\Theta=(\theta_{0}, \ldots, \theta_{n-1})$ (as above) and $P=(\rho_{0}, \ldots, \rho_{n-1})$ it is can be shown that
for $n\geq 1$ ,

$\phi_{[n]}=|\begin{array}{llll}\Omega(\Theta P) \Omega(\phi P)\Theta \phi \end{array}|$ , (16)

$\Omega(\Theta, P)^{\uparrow}$ $\Omega(\Theta, \psi)^{\uparrow}$

$\psi_{[n]}=$ , (17)
$P$ $\psi$

and

$\Omega(\phi_{[n]}, \psi_{[n]})=|\begin{array}{ll}\Omega(\Theta,P) \Omega(\phi,P)\Omega(\Theta,\psi) \Omega(\phi,\psi)\end{array}|$ . (18)

The effect of this transformations on the Lax pair is to give new coefficients defined in terms of

$\hat{v}=v+2\theta\Omega(\theta, \rho)^{-1}\rho^{\uparrow}$ .

Thus after $n$ binary Darboux transformations we obtain

$v_{[n]}=v+2 \sum_{k=0}^{n-1}\theta_{[k]}\Omega(\theta_{[k]}, \rho_{[k]})^{-1}\rho_{[k]}^{\dagger}$, (19)
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and this may be reexpressed in terms of a single quasideterminant as

$v_{[n|}=v-2|\begin{array}{lll}\Omega(\Theta P) P^{\uparrow}\Theta 0\end{array}|$ . (20)

In this way one obtains a second expression for solutions of the $ncKP$ equation in terms of
quasideterminants.

4 Darboux transformations for twisted derivations

Suppose that $\mathcal{A}$ is an associative, unital algebra over ring $K$ . Suppose that there is a homo-
morphism $\sigma:\mathcal{A}arrow \mathcal{A}$ (i.e. for all $\alpha\in K,$ $a,$ $b\in \mathcal{A},$ $\sigma(\alpha a)=\alpha\sigma(a),$ $\sigma(a+b)=\sigma(a)+\sigma(b)$

and $\sigma(ab)=\sigma(a)\sigma(b))$ and a twisted derivation or $\sigma$-derivation [18, 19] $D:\mathcal{A}arrow \mathcal{A}$ satisfying
$D(K)=0$ and $D(ab)=D(a)b+\sigma(a)D(b)$ .

Important particular examples of such a set-up arise when elements $a\in \mathcal{A}$ depend on a
variable $x$ , say.

Derivative Here $D=\partial/\partial x$ satisfies $D(ab)=D(a)b+aD(b)$ and $\sigma$ is the identity mapping.

Forward difference The homomorphism is the shift operator $T$ , where $T(a(x))=a(x+1)$
and the twisted derivation is

$\Delta(a(x))=\frac{a(x+h)-a(x)}{h}$ ,

satisfying $\triangle(ab)=D(a)b+T(a)D(b)$ .

Jackson derivative The homomorphism is a q-shift operator defined by $S_{q}(a(x))=a(qx)$ and
the twisted derivation is

$D_{q}(a(x))= \frac{a(qx)-a(x)}{(q-1)x}$ .

satisfying $D_{q}(ab)=D_{q}(a)b+S_{q}(a)D_{q}(b)$ .

Superderivative As described in Section 5, for $a,$ $b\in \mathcal{A}$ , a superalgebra, $D(ab)=D(a)b+\hat{a}D(b)$

where $\sim$ is the grade involution.

4.1 Darboux transformations

Here we consider a more abstract situation modelled on the Darboux transformation for the KP
equation. Let $\theta_{0},$ $\theta_{1},$ $\theta_{2},$

$\ldots$ be a sequence in $\mathcal{A}$ . Consider the sequence $\theta[0],$ $\theta[1],$ $\theta[2],$
$\ldots$ in $\mathcal{A}$ ,

generated from the first sequence by Darboux transformations of the form

$G_{\theta}=\sigma(\theta)D\theta^{-1}=D-D(\theta)\theta^{-1}$ , (21)

where $D$ and $\sigma$ are the twisted derivation and homomorphism defined above. To be specific,
$\theta[0]=\theta_{0}$ and $G[0]=G_{\theta[0]}$ , then let

$\theta[1]=G[0](\theta_{1})=D(\theta_{1})-D(\theta_{0})\theta_{0}^{-1}\theta_{1}$ (22)

and $G[1]=G_{\theta[1]},$ $\theta[2]=G[1]\circ G[0](\theta_{2})$ and $G[2]=G_{\theta[2]}$ and so on. In general, for $k\in \mathbb{N}$ ,

$\theta[k]=G[k-1]\circ G[k-2]0\cdots oG[0](\theta_{k})$ , $G[k]=\sigma(\theta[k])D\theta[k]^{-1}$ , (23)

122



in which we require that each $\theta[k]$ is invertible.
In the standard case of a derivation, $D=\partial$ and $\sigma=$ Id, it is well known that the terms

in the sequence of Darboux transformations have closed form expressions in terms of the orig-
inal sequence. In the case that $\mathcal{A}$ is commutative, they are expressed as ratios of wronskian
determinants [26],

$\theta[n]=\frac{1_{\theta_{0}^{(n-1)}\ldots\theta_{n-1}^{(n-1)}\theta_{n}^{(n-1)1}}^{\theta_{0}^{(.\cdot.1)}.\cdot.\cdot.\cdot\theta_{n-1}^{(1)}\theta_{n}^{(1)}}\theta_{0}^{(n)}\theta_{n-1}^{(n)}\theta_{n}^{(n)}\theta_{0}\ldots\theta_{n.-1}\theta_{n}}{|\begin{array}{lll}\theta_{0} \cdots \theta_{n-1}\theta_{0}^{(1)} \cdots \theta_{n-1}^{(1)}| |\theta_{0}^{(n-1)} \cdots \theta_{n-1}^{(n-1)}\end{array}|}$

, $n\in \mathbb{N}$ , (24)

where $\theta_{j}^{(i)}$ denotes $\partial^{i}(\theta_{j})$ . In the case that $\mathcal{A}$ is not commutative, the terms in the sequence are
expressed as quasideterminants [16],

$\theta_{0}$ . . . $\theta_{n-1}$ $\theta_{n}$

$\theta_{0}^{(1)}$ . . . $\theta_{n-1}^{(1)}$ $\theta_{n}^{(1)}$

$\theta[n]=$ : : $n\in \mathbb{N}$ . (25)
$\theta_{0}^{(n-1)}$ . . . $\theta_{n-1}^{(n-1)}$ $\theta_{n}^{(n-1)}$

$\theta_{0}^{(n)}$ . . . $\theta_{n-1}^{(n)}$ $\theta_{n}^{(n)}$

The following theorem gives a generalisation of this formula to the case of general $D$ and $\sigma$ . Note
in particular that the expressions do not depend on $\sigma$ and are obtained simply by replacing $\partial$

with $D$ . It is proved by induction.

Theorem 1. Let $\phi[0]=\phi$ and for $n\in \mathbb{N}$ let

$\phi[n]=D(\phi[n-1])-D(\theta[n-1])\theta[n-1]^{-1}\phi[n-1]$ ,

where $\theta[n]=\phi[n]|_{\phiarrow\theta_{n}}$ . Then, for $n\in \mathbb{N}$ ,

$\theta_{0}$

$D(\theta_{0})$

$\theta_{n-1}$ $\phi$

$D(\theta_{n-1})$ $D(\phi)$

$\phi[n]=$ : : : (26)
$D^{n-1}(\theta_{0})$ . . . $D^{n-1}(\theta_{n-1})$ $D^{n-1}(\phi)$

$D^{n}(\theta_{0})$ . . . $D^{n}(\theta_{n-1})$ $D^{n}(\phi)$

As an application of this theorem, we will apply it to the super $KdV$ equation in which the
twisted derivation is a superderivative. Before that, we will recall the definition of a superalgebra
and related concepts.

5 Superalgebras and superderivatives

In this section, we collect together some basic facts about supersymmetric objects such as
superderivatives, supermatrices, supertranspose and superdeterminants [27, 28] and about the
relationship between superdeterminants and quasideterminants [29].
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Let $\mathcal{A}$ be a supercommutative, associative, unital superalgebra over a (commutative) ring
$K$ . There is a standard $\mathbb{Z}_{2}$ -grading $\mathcal{A}=\mathcal{A}_{0}\oplus \mathcal{A}_{1}$ such that $\mathcal{A}_{i}\mathcal{A}_{j}\subseteq \mathcal{A}_{i+j}$ . Elements of $\mathcal{A}$ that
belong to either $\mathcal{A}_{0}$ or $\mathcal{A}_{1}$ are called homogeneous; those in $\mathcal{A}_{0}$ are called even and those in
$\mathcal{A}_{1}$ are called odd. The parity $|a|$ of a homogeneous element $a$ is $0$ if it is even and 1 if it is

$thatallodd.Ithomogeneouse1ementsa,bsatisfyba=(-1)|_{a||b|}ab,ie.evene1ementscommutewithf_{0}11owsthatifa,barehomogeneousthen|ab$

all elements, and odd elements anticommute. In particular, this implies that $a_{1}^{2}=0$ , for all
$a_{1}\in \mathcal{A}_{1}$ .

Grade involution and superderivative The homomorphism $\wedge:\mathcal{A}arrow \mathcal{A}$ satisfying $\hat{a}_{i}=$

$(-1)^{i}a_{i}$ for $a_{i}\in \mathcal{A}_{i}$ is called the grade involution. For general $a\in \mathcal{A}$ , expressed as $a=a_{0}+a_{1}$

where $a_{i}\in \mathcal{A}_{i}$ , we have $\hat{a}=a_{0}-a_{1}$ . Also for any matrix $M=(m_{ij})$ over $\mathcal{A},\hat{M}:=(\hat{m}_{ij})$ . It is
easy to see that $\hat{\hat{a}}=a$ .

A superderivative $D$ is a linear mapping $D:\mathcal{A}arrow \mathcal{A}$ such that $D(K)=0$ and $D(\mathcal{A}_{i})\subseteq \mathcal{A}_{i+1}$

and satisfying $D(ab)=D(a)b+\hat{a}D(b)$ . One way to obtain a superderivative is as $D=\partial_{\theta}+\theta\partial_{x}$

where $x$ is an even variable and $\theta$ is an odd (Grassmann) variable. For such a superderivative
$D^{2}=\partial_{x}$ .

Note that since $D(\mathcal{A}_{0})\subseteq \mathcal{A}_{1}$ and $D(\mathcal{A}_{1})\subseteq \mathcal{A}_{0}$ , it follows that $D(\hat{a})=D(a_{0})-D(a_{1})=-\overline{D(a)}$

and so grade involution and superderivatives anticommute.

Even and odd supermatrices A block matrix $\mathcal{M}=(\begin{array}{ll}X YZ T\end{array})$ over $\mathcal{A}$ where $X$ is $r\cross m,$ $Y$

is $r\cross n,$ $Z$ is $s\cross m$ and $T$ is $s\cross n$ for integers $r,$ $s,$ $m$ and $n$ with $r,$ $m\geq 1$ and $s,$ $n\geq 0$ is called
an $(r|s)\cross(m|n)$ supermatrix. It is said to be even, and has parity $0$ , if $X$ and $T$ (if not empty)
have even entries and $Y$ and $Z$ (if non-empty) have odd entries. One the other hand, if $X$ and
$T$ have odd entries and $Y,$ $Z$ have even entries then $\mathcal{M}$ is said to be odd, and has parity 1. It
is said to be homogeneous if it is either even or odd.

Supertranspose The supertranspose of a homogeneous supermatrix $\mathcal{M}$ , is defined to be

$\mathcal{M}^{st}=(\begin{array}{ll}X^{t} (-1)^{|\mathcal{M}|}Z^{t}-(-1)^{|\mathcal{M}|}Y^{t} T^{t}\end{array})$ , (27)

where $t$ denotes the normal matrix transpose. In particular, an even $(m|n)$-row vector has the
form $(a_{01}, a_{02}, \ldots , a_{0m}, a_{11}, a_{12}, \ldots, a_{1n}))$ where $a_{ij}\in A$ , and its supertranspose is

$(a_{01}, a_{02}, \ldots, a_{0m}, a_{11}, a_{12}, \ldots, a_{1n})^{st}=(a_{01}, a_{02}, \ldots, a_{0m}, -a_{11}, -a_{12}, \ldots, -a_{1n})^{t}$. (28)

On the other hand, an odd $(m|n)$-row vector has the form $(a_{11}, a_{12}, \ldots, a_{1m}, a_{01}, a_{02}, \ldots , a_{0n})$ ,
and the supertranspose

$(a_{11}, a_{12}, \ldots, a_{1m}, a_{01}, a_{02}, \ldots, a_{0n})^{st}=(a_{11}, a_{12}, \ldots, a_{1m}, a_{01}, a_{02}, \ldots, a_{0n})^{t}$ . (29)

For homogenous supermatrices $\mathcal{L},$ $\mathcal{M}$ and $\mathcal{N}$ , it is known that

$(\mathcal{M}\mathcal{N})^{st}=(-1)^{|\mathcal{M}||\mathcal{N}|}\mathcal{N}^{st}\mathcal{M}^{st}$ , (30)
$(\mathcal{M}^{st})^{st}=(-1)^{1\mathcal{M}}$ I $\hat{\mathcal{M}}$ . (31)

Supertranspose commutes with the grade involution but not with a superderivative; for a ho-
mogeneous matrix $\mathcal{M}$ ,

$(\mathcal{M}st_{=\overline{(\mathcal{M})^{st}}}$ , $(D(\mathcal{M}))^{st}=(-1)^{|\Lambda 4|}D(\hat{\mathcal{M}}^{st})$ . (32)

124



Superdeterminants Consider an even $(m|n)\cross(m|n)$ supermatrix $\mathcal{M}=(\begin{array}{ll}X YZ T\end{array})$ in which

$X$ and $T$ are non-singular. The superdeterminant, or Berezinian, of $\mathcal{M}$ is defined to be

Ber$( \mathcal{M})=\frac{\det(X-YT^{-1}Z)}{\det(T)}=\frac{\det(X)}{\det(T-ZX^{-1}Y)}$ .

It is also convenient to define
$Ber^{*}(\mathcal{M})=\frac{1}{Ber(\mathcal{M})}$ .

Relationship between quasideterminants and superdeterminants The basic formulae
connecting quasideterminants of even supermatrices with their Berezinians are given in [29].

Theorem 2. Let $\mathcal{M}$ be an $(m|n)\cross(m|n)$ -supermatrix. Then

$|\mathcal{M}|_{ij})=\{\begin{array}{ll}(-1)^{i+j}\frac{Ber(\mathcal{M},)}{Ber(\mathcal{M}^{ij})} 1\leq i, j\leq m,(-1)^{i+j}\frac{Ber^{*}(\mathcal{M},)}{Ber^{*}(\mathcal{M}^{ij})} m+1\leq i,j\leq m+n,\end{array}$ (33)

(cf. (2).)

Roughly speaking, a quasideterminant with indices in one of the even blocks of $\mathcal{M}$ is given
as a ratio of Berezinians. A quasideterminant with its indices in the one of the odd blocks is
not well-defined.

6 The Manin-Radul super $KdV$ equation

The Manin-Radul supersymmetric $KdV$ (MRSKdV) system [17] is

$\alpha_{t}=\frac{1}{4}(\alpha_{xx}+3\alpha D(\alpha)+6\alpha u)_{x}$ , $u_{t}= \frac{1}{4}(u_{xx}+3u^{2}+3\alpha D(u))_{x}$ , (34)

where $u$ and $\alpha$ are even and odd dependent variables respectively, $x,$ $t$ are even independent
variables and $D$ is the superderivative defined by $D=\partial_{\theta}+\theta\partial_{x}$ , where $\theta$ is a Grassmann odd
variable, satisfying $D^{2}=\partial_{x}$ . This system has the Lax pair

$L=\partial_{x}^{2}+\alpha D+u$, (35)
$M= \partial_{x}^{3}+\frac{3}{4}((\alpha\partial_{x}+\partial_{x}\alpha)D+u\partial_{x}+\partial_{x}u)$, (36)

in the sense that $L_{t}+[L, M]=0$ implies (34). Eigenfunctions satisfy

$L(\phi)=\lambda\phi$ , $\phi_{t}=M(\phi)$ , (37)

for eigenvalue $\lambda$ .

6.1 Darboux transformations

A Darboux transformation for this system [21] is

$\phiarrow D(\phi)-D(\theta)\theta^{-1}\phi$ , (38)
$\alphaarrow-\alpha+2(D(\theta)\theta^{-1})_{x}$ , (39)
$uarrow u+D(\alpha)-2D(\theta)\theta^{-1}(\alpha-(D(\theta)\theta^{-1})_{x})$ , (40)

125



where $\theta$ is an invertible, and hence necessarily even, solution of (37). Note that it is an example
of the general type of Darboux transformation discussed in Section 4.1. As discussed there, this
transformation may be iterated by taking solutions $\theta_{0},$ $\theta_{1},$ $\theta_{2},$

$\ldots$ of (37) to obtain

$\phi[k+1]=D(\phi[k])-D(\theta[k])\theta[k]^{-1}\phi[k]$ , (41)
$\theta[k]=\phi[k]|_{\phiarrow\theta_{k}}$ . (42)

The requirement that each $\theta[k]$ is invertible means that it must be even and consequently that
$\theta_{i}$ must have parity $i$ . The corresponding solutions of MRSKdV are $\alpha[0]=\alpha,$ $u[0]=u$ and

$\alpha[k+1]=-\alpha[k]+2(D(\theta[k])\theta[k]^{-1})_{x}$ , (43)

$u[k+1]=u[k]+D(\alpha[k])-2D(\theta[k])\theta[k]^{-1}(\alpha[k]-(D(\theta[k])\theta[k]^{-1})_{x})$ . (44)

From Theorem 1, we have a closed-form expression (26) for $\phi[n]$ as a quasideterminant and
the corresponding expressions for $\alpha[n]$ and $u[n]$ may also be found. For $i,$ $j\geq 0$ define the
quasideterminants

:
$0$

$1$

$0$

$\theta_{0}$ . . . $\theta_{n-1}$

$D(\theta_{0})$ . . . $D(\theta_{n-1})$

. ..
$D^{n-j-2}(\theta_{0})$ . . . $D^{n-j-2}(\theta_{n-1})$

$Q_{n}(i, j)=D^{n-j-1}(\theta_{0})$ . . . $D^{n-j-1}(\theta_{n-1})$

$D^{n-j}(\theta_{0})$ . . . $D^{n-j}(\theta_{n-1})$

$D^{n-1}(\theta_{0})$

:
$.\cdot.\cdot$

. $D^{n-1}(\theta_{n-1})$

:

$D^{n+i}(\theta_{0})$ . . . $D^{n+i}(\theta_{n-1})$

$\theta_{0}$ . . . $\theta_{n-1}$

$0$

$0$

(45)

:
$0$

$0$

. .. .

. $-1$

$D^{n-j-2}(\theta_{0})$ . . . $D^{n-j-2}(\theta_{n-1})$
$\theta_{0}$ . . . $\theta_{n-1}$

$=-$ $D^{n-j}(\theta_{0})$

$..\cdot.\cdot$

$D^{n-j}(\theta_{n-1}):$

. $D^{n-1}(\theta_{0})$

:
$.\cdot.\cdot$

. $D^{n-1}(\theta_{n-1})_{n-j,s}:$

’ (46)

$D^{n-1}(\theta_{0})$

:
. . . $D^{n-1}(\theta_{n-1})$

$D^{n+i}(\theta_{0})$ . . . $D^{n+i}(\theta_{n-1})$

$n,s$

for any $s=1,$ $\ldots,$
$n$ (see (4)).

Theorem 3. After $n$ repeated Darboux transformations, the MRSKdV system has new solutions
$\alpha[n]$ and $u[n]$ expressed in terms of $Q_{n}(0,0)$ and $Q_{n}(0,1)$ .

$\alpha[n]=(-1)^{n}\alpha-2Q_{n}(0,0)_{x}$ , (47)

$u[n]=u-2Q_{n}(0,1)_{x}-2Q_{n}(0,0)((-1)^{n} \alpha-Q_{n}(0,0)_{x})+\frac{1-(-1)^{n}}{2}D(\alpha)$ . (48)

6.2 Binary Darboux transformations

Binary Darboux transformations for the MRSKdV system were discussed in [20, 30]. In these
articles, solutions expressed in terms of determinants were obtained. As discussed in connection
with Darboux transformations it is to be expected that solutions for this supersymmetric system
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should be superdeterminants in general. In this section, we will construct a more general type of
binary Darboux transformation which will be shown to give these superdeterminants solutions
and includes the solutions found in $[$20, 30$]$ as a special case.

First we recall the definition of the adjoint for supersymmetric linear operators. For a linear
operator $P,$ $|P|$ denotes its parity. For example, $|D|=1$ and $|\partial|=0$ , where $\partial$ denotes any
derivative with respect to an even variable, and the parity of multiplication by a homogeneous
element is the parity of that element (in the usual sense). The rules defining the superadjoint
are

$D^{\uparrow}=-D$ , $\partial^{\uparrow}=-\partial$ , $\mathcal{M}^{\dagger}=\mathcal{M}^{st}$ , (49)

where $\mathcal{M}$ denotes any matrix over $\mathcal{A}$ , together with the product rule

$(PQ)^{\dagger}=(-1)^{|P||Q|}Q^{\dagger}P^{\dagger}$ , (50)

where $P$ and $Q$ are operators (cf. (30) for the case of matrices). In particular, this gives
$(D^{n})^{\uparrow}=(-1)^{n(n+1)/2}D^{n}$ and, consistently, $(\partial^{n})^{\uparrow}=(-1)^{n}\partial^{n}$ . For any $a\in \mathcal{A},$

$a^{\uparrow}=a$ .
The Lax pair (35), (36) has the adjoint form

$L^{\uparrow}=\partial_{x}^{2}+D\alpha+u$ , (51)
$M^{\dagger}=- \partial_{x}^{3}-\frac{3}{4}(D(\alpha\partial_{x}+\partial_{x}\alpha)+u\partial_{x}+\partial_{x}u)$ , (52)

and adjoint eigenfunctions satisfy

$L^{\uparrow}(\psi)=\xi\psi$ , $-\psi_{t}=M^{\dagger}(\psi)$ , (53)

for eigenvalue $\xi$ . Given an (eigenfunction, adjoint) eigenfunction pair $(\theta, \rho)$ , the binary Darboux
transformation [20, 30] is given by

$\phiarrow\phi-\theta\Omega(\theta, \rho)^{-1}\Omega(\phi, \rho)$ , (54)
$\psiarrow\psi-\rho\Omega(\theta, \rho)^{-1}\Omega(\theta, \psi)$ , (55)
$\alphaarrow\alpha+2(\theta\Omega(\theta, \rho)^{-1}\hat{\rho})_{x}$ (56)
$uarrow u-2(\alpha+(\theta\Omega(\theta, \rho)^{-1}\hat{\rho})_{x})\theta\Omega(\theta, \rho)^{-1}\hat{\rho}+2(\theta\Omega(\theta, \rho)^{-1}D(\rho))_{x}$ , (57)

where eigenfunction $\theta$ and adjoint eigenfunction $\rho$ have opposite parities. Since $D(\Omega(\phi, \psi)=\psi\phi$ ,
$\Omega$ is even and assumed to be invertible. When iterating this transformation, both previous
papers [20, 30] on this topic considered the case that all eigenfunctions are even and all adjoint
eigenfunctions are odd. We will show that this is not the most general possibility however.

Consider an even $(m|n)$-row vector eigenfunction $\mathcal{E}=(\theta_{0}, \ldots\theta_{m+n-1})$ and an odd $(m|n)$-row
vector adjoint eigenfunction $\mathcal{O}=(\rho 0, \ldots, \rho_{m+n-1})$ , where $\theta_{i}$ for $i=0,$ $\ldots,$ $m-1$ and $\rho_{m+j}$ for
$j=0,$ $\ldots,$ $n-1$ are even and $\rho_{i}$ for $i=0,$ $\ldots,$ $m-1$ and $\theta_{m+j}$ for $j=0,$ $\ldots,$ $n-1$ are odd.
These row vectors satisfy

$L(\mathcal{E})=\mathcal{E}\Lambda$ , $\mathcal{E}_{t}=M(\mathcal{E})$ , (58)
$L^{\dagger}(\mathcal{O})=\mathcal{O}\Xi$ , $-\mathcal{O}_{t}=M^{\uparrow}(\mathcal{O})$ , (59)

where $\Lambda$ and $\Xi$ are constant $(m+n)\cross(m+n)$ diagonal matrices containing the eigenvalues.
Then $\Omega=\Omega(\mathcal{E}, \mathcal{O})$ is an even $(m|n)\cross(m|n)$ -supermatrix defined up to a constant by

$D(\Omega)=\mathcal{O}^{\uparrow}\mathcal{E}$ , $\Omega\Lambda-\Xi\Omega=D(\mathcal{O}^{\uparrow\dagger}\mathcal{E}_{x}-\mathcal{O}_{x}\mathcal{E})-\hat{\mathcal{O}}^{\uparrow}\alpha \mathcal{E}$ , (60)
$\Omega_{t}=D(\mathcal{O}_{xx}^{\uparrow \mathcal{E}-\mathcal{O}_{x}^{\uparrow \mathcal{E}_{x}+\mathcal{O}^{\uparrow \mathcal{E}_{xx})+\frac{3}{2}\hat{\mathcal{O}}_{x}^{\dagger}\alpha \mathcal{E}+\frac{3}{4}\hat{\mathcal{O}}^{\dagger}\alpha_{x}\mathcal{E}+\frac{3}{2}D(\mathcal{O}^{\dagger}\alpha D(\mathcal{E}))+\frac{3}{2}D(\mathcal{O}u\mathcal{E})}}}\dagger$. (61)

The closed form expressions for the results of iterated binary Darboux transformations are
stated in the following theorems.
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Theorem 4. Iterating the binary Darboux $transfom\iota ations(54),$ (55) for $m+n\geq 1$ , one obtains

$\phi[m+n]=\Omega(\mathcal{E}, \mathcal{O})\mathcal{E}$ $\Omega(\phi, \mathcal{O})\phi$

’
$\psi[m+n]=\Omega(\mathcal{E}, \mathcal{O})^{\uparrow}\mathcal{O}$

$\Omega(\mathcal{E}, \psi)^{\uparrow}\psi|=|_{\Omega^{\frac{\overline(\mathcal{E},\mathcal{O}}{(\mathcal{E},\psi}})}^{\Omega)}$ $\mathcal{O}^{1}\psi|$ (62)

with
$\Omega(\phi[m+n], \psi[m+n])=|\begin{array}{ll}\Omega(\mathcal{E},\mathcal{O}) \Omega(\phi,\mathcal{O})\Omega(\mathcal{E},\psi) \Omega(\phi,\psi)\end{array}|$ . (63)

Theorem 5. Let $(\alpha, u)$ be a solution of MRSKdV and let $\mathcal{E}$ and $\mathcal{O}$ respectively be even and odd
$(m|n)$ -row vectors satisfying (58) and (59). Then for any integers $m+n\geq 0$

$\alpha[m+n]=\alpha-2A[m+n]_{x}$ , $u[m+n]=u+2(\alpha-A[m+n]_{x})A[m+n]-2U[m+n]_{x}$ , (64)

where
$A[m+n]=|\begin{array}{lll}\Omega(\mathcal{E} \mathcal{O}) \hat{o}\dagger\mathcal{E} 0\end{array}|$ , $U[m+n]=|\begin{array}{lll}\Omega(\mathcal{E} \mathcal{O}) D(\mathcal{O}^{\uparrow})\mathcal{E} 0\end{array}|$ , (65)

are also solutions of MRSKd $V$.

6.3 From quasideterminants to superdeterminants

It is usual in a supersymmetric integrable system for the solutions to be expressable in terms
of superdeterminants. Indeed, in this section we will show that this can be done here. The
expressions we will obtain coincide with the superdeterminant solutions found in [21] and we
also find the superdeterminant expressions in the case that they did not.

Let us therefore introduce the relabeling of the eigenfunctions used in the Darboux trans-
formations

$\theta_{2k}=E_{k}$ , $\theta_{2k+1}=O_{k}$ . (66)

Recall that $\theta_{i}$ has parity $i$ so that all $E_{k}$ are even and all $O_{k}$ are odd. Also, we write $D^{2j}(\theta)=\theta^{(j)}$

and $D^{2j+1}(\theta)=D(\theta^{(j)})$ , where $(j)$ denotes the jth derivative with respect to $x$ .
Consider the matrix

$W_{n}=\{\begin{array}{lll}\theta_{0}\ddots \cdots \theta_{n-l}| \ddots |D^{n-1}(\theta_{0}) \cdots D^{n-1}(\theta_{n-1})\end{array}\}$ , (67)

appearing in the definition (46) of $Q_{n}(i,j)$ . There is a natural reordering of the rows and columns

$W_{n}arrow \mathcal{W}_{n}=\{\begin{array}{ll}X_{n} Y_{n}Z_{n} T_{n}\end{array}\}$ , (68)

which gives an even matrix $\mathcal{W}_{n}$ . This reordering does not change the value of any associated
quasideterminant, as long as the expansion point in each refers to the same element. In the case
that $n$ is even,

$X_{2k}=\{\begin{array}{lll}E_{0} \cdots E_{k-l}| \ddots |E_{0}^{(k-1)} \cdots E_{k-1}^{(k-1)}\end{array}\}$ , $Y_{2k}=\{\begin{array}{lll}O_{0} \cdots O_{k-1}| \ddots |O_{0}^{(k-1)} \cdots O_{k-1}^{(k-1)}\end{array}\}$
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and $Z_{2k}=D(X_{2k})$ and $T_{2k}=D(Y_{2k})$ are all $k\cross k$ matrices. In the case that $n$ is odd, $X_{2k+1}$ is
$(k+1)\cross(k+1),$ $Y_{2k+1}$ is $(k+1)\cross k,$ $Z_{2k+1}$ is $k\cross(k+1)$ and $T_{2k+1}$ is a $k\cross k$ matrix whose
precise form can be easily deduced from the above description.

Similarly, consider the matrix

$W_{n}=\{\begin{array}{lll}\theta_{0}\ddots \cdots \theta_{n-1}| \ddots |D^{n-3}(\theta_{0}) \cdots D^{n-3}(\theta_{n-1})D^{n-l}(\theta_{0}) \cdots D^{n-1}(\theta_{n-1})D^{n}(\theta_{0}) \cdots D^{n}(\theta_{n-1})\end{array}\}$ , (69)

appearing in the definition (46) of $Q_{n}(0,1)$ . A similar reordering of this matrix

$W_{n}’arrow \mathcal{W}_{n}=\{\begin{array}{ll}X_{n}’ Y_{n}Z_{n}’ T_{n}’\end{array}\}$ (70)

gives another even matrix $\mathcal{W}_{n}$ where, for example,

$X_{2k}=\{\begin{array}{lll}E_{0} \cdots E_{k-1}|\cdots \ddots |E_{0}^{(k-2)}E_{0}^{(k)} \cdots E_{k\frac{k}{k(k}1}^{(-2)}E_{-1})\end{array}\}$ .

The solutions obtained by use of Darboux transformations (47)$-(48)$ are expressed in terms
of two particular quasideterminants $Q_{n}(0,0)$ and $Q_{n}(0,1)$ , The following theorem given the
superdeterminant expressions for these.

Theorem 6. For $n\in \mathbb{N}$ ,

$Q_{n}(0,0)=D(\log(B(\mathcal{W}_{n})))$ , $Q_{n}(0,1)=- \frac{B(\mathcal{W}_{n}’)}{B(\mathcal{W}_{n})}$ , (71)

where $B=$ Ber if $n$ is even, and $B=$ Ber$*ifn$ is odd.

Next we will show how the quasideterminant solutions $(A[m+n], U[m+n])$ obtained using
binary Darboux transformations can also be expressed in terms of superdeterminants. To do
this, it is necessary to introduce a more detailed notation for row vector eigenfunctions and
adjoint eigenfunctions. Recall that for the general transformation we use $(m|n)$-row vectors
$\mathcal{E}$ and $\mathcal{O}$ which are even and odd with entries $\theta_{i}$ and $\rho_{i}$ respectively. Here we will also write
$\mathcal{E}^{i}=(\theta_{0}, \ldots, \theta_{i-1})$ and $\mathcal{O}^{i}=(\rho 0, \ldots, \rho_{i-1})$ for the row vectors containing the first $i$ entries of $\mathcal{E}$

and $\mathcal{O}$ respectively, and denote by subscript $0$ and 1 the even and odd element parts of $\mathcal{E}$ and
$\mathcal{O}$ respectively. Thus $\mathcal{E}=(\mathcal{E}_{0}, \mathcal{E}_{1})$ and $\mathcal{O}=(\mathcal{O}_{1}, \mathcal{O}_{0})$ .

Theorem 7. The expressions $(A[m+n], U[m+n])$ can expressed as

$A[m+n]=D$ $(\log$ Ber $(\mathcal{G}_{(m|n)}))$ , $U[m+n]= \frac{Ber(\mathcal{G}_{(m+1|n)}’)}{Ber(\mathcal{G}_{(m|n)})}$ , (72)

where

$\mathcal{G}_{(m|n)}=(-.\sim\sim\sim\sim--\sim\sim\sim\sim-;^{\mathfrak{l}}\sim--\sim-\sim\Omega(\overline{\overline{\mathcal{E}}}_{0},\overline{\mathcal{O}}_{0})\mathfrak{l}_{1}\overline{\overline{\Omega}}(\overline{\mathcal{E}}_{1},\overline{\overline{\overline{\mathcal{O}}}}_{0}^{\frac{)}{)})}\Omega(\mathcal{E}_{0},\mathcal{O}_{1})\mathfrak{l}\prime \mathfrak{l}\Omega(\mathcal{E}_{1},.\mathcal{O}_{1}g’$ ,
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in an even $(m|n)\cross(m|n)$ -supe$7matrix$ and

$\mathcal{G}_{(m+1|n)}’(\begin{array}{lll}\Omega(\mathcal{E}_{0},\mathcal{O}_{1}) D(\mathcal{O}_{1}\dagger^{\acute{l}})’-\prime- \Omega(\mathcal{E}_{1},\mathcal{O}_{1})\text{コ}\sim\sim-\sim\sim----\sim\sim-\sim\Omega(\mathcal{E}_{0},\mathcal{O}_{0})\mathcal{E}_{0} ----\sim\sim--\sim-\prime\prime\sim- \text{コ}\sim-\vee\sim,--\sim-\sim-D(\mathcal{O}_{o-}^{\uparrow-})--\Omega(\mathcal{E}_{1}\mathcal{O}_{0})0’\prime \mathcal{E}_{1}\mathfrak{l}| \end{array})$ ,

in an even $(m+1|n)\cross(m+1|n)$ -supermatrix.

Remark 1. The earlier papers on this topic [20,30] deal with the case $n=0$ only. In this case,
$\mathcal{E}=\mathcal{E}_{0}$ and $\mathcal{O}=\mathcal{O}_{1}$ and the solutions can be expressed in terms of determinants rather than
the more general superdeterminants

$A[m]=D$(log det $\Omega(\mathcal{E}_{0},$ $\mathcal{O}_{1})$ ),

and

$U[m]= \frac{\det(\begin{array}{lll}\Omega(\mathcal{E}_{0} \mathcal{O}_{1}) D(\mathcal{O}_{1}^{t})\mathcal{E}_{0} 0\end{array})}{\det(\Omega(\mathcal{E}_{0},\mathcal{O}_{1}))}$

.

7 Conclusions

In this paper, we considered a twisted derivation which includes normal derivative, forward
difference operator, q-difference operator and superderivatives as special cases. Darboux trans-
formations defined in terms of twisted derivations have an quasideterminant iteration formula
very similar to the known one for the untwisted case. This result gives a framework for a
unified approach to Darboux transformations for differential, superdifferential, difference and
q-difference operators. As an example we showed how this is achieved for superderivatives in
the Manin-Radul super $KdV$ equation.
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